1 14.461 Advanced Macro: Additional Problems

Question 1 (Endogenous Growth Without Scale Effects): Consider the following model. Population at time t is $L(t)$ and grows at the constant rate n (i.e., $\dot{L}(t)=n L(t))$. All agents have preferences given by

$$
\begin{equation*}
\int_{0}^{\infty} \exp (-\rho t) \frac{C^{1-\theta}-1}{1-\theta} d t \tag{1}
\end{equation*}
$$

where C is consumption defined over the final good of the economy. This good is produced as

$$
Y=\left[\int_{0}^{N} y(i)^{\beta} d i\right]^{1 / \beta}
$$

where $y(i)$ is intermediate good i. The production function of each intermediate is

$$
y(i)=l(i)
$$

where $l(i)$ is labor allocated to this good.
New goods are produced by allocating workers to the R\&D process, with the production function

$$
\dot{N}=\eta \cdot N^{\phi} \cdot L_{R}
$$

where $\phi \leq 1$ and L_{R} is labor allocated to $R \& D$. So labor market clearing requires $\int_{0}^{N} l(i) d i+L_{R}=L$.

Risk-neutral firms hire workers for R\&D. A firm who discovers a new good becomes the monopoly supplier, with a perfectly and indefinitely enforced patent.

1. Characterize the balanced growth path equilibrium in the case where $\phi=1$ and $n=0$. Why does the long-run growth rate depend on θ ? Why does the growth rate depend on L ? Do you find this plausible? Why aren't there any transitional dynamics?
2. Now suppose that $\phi=1$ and $n>0$. What happens? Interpret.
3. Now characterize the balanced growth path equilibrium when $\phi<1$ and $n>0$. Does the growth rate now depend on L ? Does it depend on n ? Why? Do you think that the configuration $\phi<1$ and $n>0$ is more plausible than the one with $\phi=1$ and $n=0$?

Question 2 (Endogenous Skill-Biased Technical Change): There are H skilled and L unskilled workers, and two goods, y_{L} and y_{H}. All consumers have instantaneous utility defined over the final good y

$$
U=y=\left[y_{L}^{\rho}+\gamma y_{H}^{\rho}\right]^{1 / \rho},
$$

and are risk-neutral would discount rate r.

The production function of these two goods are:

$$
\begin{aligned}
y_{L} & =\left(\int_{0}^{1} q_{x}(i) x(i)^{\alpha} d i\right) l^{1-\alpha} \\
y_{H} & =\left(\int_{0}^{1} q_{z}(i) z(i)^{\alpha} d i\right) h^{1-\alpha}
\end{aligned}
$$

where l and h are quantities of skilled and skilled labor, $x(i)$ is the quantity of labor-complementary intermediate good i that an unskilled worker produces with, and $z(i)$ is the quantity of skill-complementary intermediate good i that a skilled worker produces. $q_{x}(i)$ and $q_{z}(i)$ denote the quality of the highest vintage of machine i used for sector L or H.

The profit function of a labor-intensive firm employing l workers is therefore:

$$
p_{L}\left(\int_{0}^{1} q_{x}(i) x(i)^{\alpha} d i\right) l^{1-\alpha}-\left(\int_{0}^{1} \chi(i) x(i) d i\right)-w_{L} l
$$

where w_{L} is unskilled wage, and p_{L} is the price of the labor intensive good, and $\chi(i)$ is the price of intermediate good $x(i)$. The profit function of a skillintensive good is similarly defined. Suppose that intermediate goods are supplied by monopolistically competitive firms, which set the prices of skill-intensive intermediates, $\chi(i)$ and $\zeta(i)$.

1. Take the distribution of $q_{x}(i)$ and $q_{z}(i)$ as given and assume that all intermediates can be produced at marginal cost equal to 1 in terms of the final good y. Characterize the equilibrium and find the unskilled and the skilled wage w_{L} and w_{H}. [Hint: final good producers have to make zero-profits].
2. What changes in parameters could increase the skill premium, w_{H} / w_{L}, in this economy. In answering this question, distinguish between $\rho>0$ and $\rho<0$, and explain why the results differ in these two cases.
3. Now endogenize $q_{x}(i)$ and $q_{z}(i)$. Assume that $\mathrm{R} \& \mathrm{D}$ on a machine of quality q costs κq units of the final good, and leads to a new vintage of quality λq. Assume that λ is high enough such that the producer of the new vintage can set the monopoly price (instead of a limit price). Characterize the balanced growth path equilibrium.
4. Can we have $d\left(w_{H} / w_{L}\right) / d(H / L)>0$? Give the intuition carefully, and explain why this can never happen when $\rho<0$.
5. Repeat this exercise when a new vintage in sector x is of quality $\lambda_{x} q$ while a new vintage in sector z is of quality $\lambda_{z} q$. Why haven't the results changed much?

Question 3 (Competition and Growth):

1. What is the effect of competition on the rate of growth of the economy in a standard product variety model of endogenous growth? What about the quality-ladder model? Explain the intuition.
2. Now consider the following one-period model. There are two Bertrand duopolists, producing a homogeneous good. At the beginning of each period, duopolist 1's marginal cost of production is determined as a draw from the uniform distribution $\left[0, \bar{c}_{1}\right]$ and the marginal cost of the second duopolists is determined as an independent draw from $\left[0, \bar{c}_{2}\right]$. Both cost realizations are observed and then prices are set. Demand is given by $Q=A-P$.
(a) Characterize the equilibrium pricing strategies and calculate expected ex ante profits of the two duopolists.
(b) Now imagine that both duopolists start with a cost distribution $[0, \bar{c}]$, and can undertake $\mathrm{R} \& \mathrm{D}$ at cost k. If they do, with probability λ, their cost distribution shifts to $[0, \bar{c}-\alpha]$ where $\alpha<1$. Find the conditions under which one of the duopolists will invest in R\&D and the conditions under which both will.
(c) What happens when \bar{c} declines? Interpreting the decline in \bar{c} as increased competition, discuss the effect of increased competition on innovation incentives. Why is the answer different from that implied by the standard endogenous growth model?
