1 14.461 Advanced Macro: Additional Problems

Question 1 (Endogenous Growth Without Scale Effects): Consider the following model. Population at time \(t \) is \(L(t) \) and grows at the constant rate \(n \) (i.e., \(\dot{L}(t) = nL(t) \)). All agents have preferences given by

\[
\int_0^\infty \exp(-\rho t) \frac{C^{1-\theta} - 1}{1-\theta} \, dt,
\]

where \(C \) is consumption defined over the final good of the economy. This good is produced as

\[
Y = \left[\int_0^N y(i)^\beta \, di \right]^{1/\beta}
\]

where \(y(i) \) is intermediate good \(i \). The production function of each intermediate is

\[
y(i) = l(i)
\]

where \(l(i) \) is labor allocated to this good.

New goods are produced by allocating workers to the R&D process, with the production function

\[
\dot{N} = \eta \cdot N^\phi \cdot L_R
\]

where \(\phi \leq 1 \) and \(L_R \) is labor allocated to R&D. So labor market clearing requires

\[
\int_0^N l(i) \, di + L_R = L
\]

Risk-neutral firms hire workers for R&D. A firm who discovers a new good becomes the monopoly supplier, with a perfectly and indefinitely enforced patent.

1. Characterize the balanced growth path equilibrium in the case where \(\phi = 1 \) and \(n = 0 \). Why does the long-run growth rate depend on \(\beta \)? Why does the growth rate depend on \(L \)? Do you find this plausible? Why aren’t there any transitional dynamics?

2. Now suppose that \(\phi = 1 \) and \(n > 0 \). What happens? Interpret.

3. Now characterize the balanced growth path equilibrium when \(\phi < 1 \) and \(n > 0 \). Does the growth rate now depend on \(L \)? Does it depend on \(n \)? Why? Do you think that the configuration \(\phi < 1 \) and \(n > 0 \) is more plausible than the one with \(\phi = 1 \) and \(n = 0 \)?

Question 2 (Endogenous Skill-Biased Technical Change): There are \(H \) skilled and \(L \) unskilled workers, and two goods, \(y_L \) and \(y_H \). All consumers have instantaneous utility defined over the final good \(y \)

\[
U = y = [y_L^{\rho} + \gamma y_H^{\rho}]^{1/\rho},
\]

and are risk-neutral would discount rate \(r \).
The production function of these two goods are:

\[y_L = \left(\int_0^1 q_x(i) x(i)^{\alpha} di \right)^{1-\alpha} \]
\[y_H = \left(\int_0^1 q_z(i) z(i)^{\alpha} di \right)^{1-\alpha} \]

where \(l \) and \(h \) are quantities of skilled and skilled labor; \(x(i) \) is the quantity of labor-complementary intermediate good \(i \) that an unskilled worker produces with, and \(z(i) \) is the quantity of skill-complementary intermediate good \(i \) that a skilled worker produces. \(q_x(i) \) and \(q_z(i) \) denote the quality of the highest vintage of machine \(i \) used for sector \(L \) or \(H \).

The profit function of a labor-intensive firm employing \(l \) workers is therefore:

\[p_L \left(\int_0^1 q_x(i) x(i)^{\alpha} di \right)^{1-\alpha} - \left(\int_0^1 \chi(i) x(i) di \right) - w_L l \]

where \(w_L \) is unskilled wage, and \(p_L \) is the price of the labor intensive good, and \(\chi(i) \) is the price of intermediate good \(x(i) \). The profit function of a skill-intensive good is similarly defined. Suppose that intermediate goods are supplied by monopolistically competitive firms, which set the prices of skill-intensive intermediates, \(\chi(i) \) and \(\zeta(i) \).

1. Take the distribution of \(q_x(i) \) and \(q_z(i) \) as given and assume that all intermediates can be produced at marginal cost equal to 1 in terms of the final good \(y \). Characterize the equilibrium and find the unskilled and the skilled wage \(w_L \) and \(w_H \). [Hint: final good producers have to make zero-profits].

2. What changes in parameters could increase the skill premium, \(w_H/w_L \), in this economy. In answering this question, distinguish between \(\rho > 0 \) and \(\rho < 0 \), and explain why the results differ in these two cases.

3. Now endogenize \(q_x(i) \) and \(q_z(i) \). Assume that R&D on a machine of quality \(q \) costs \(q \) units of the final good, and leads to a new vintage of quality \(\lambda q \). Assume that \(\lambda \) is high enough such that the producer of the new vintage can set the monopoly price (instead of a limit price). Characterize the balanced growth path equilibrium.

4. Can we have \(d(w_H/w_L)/d(H/L) > 0 \)? Give the intuition carefully, and explain why this can never happen when \(\rho < 0 \).

5. Repeat this exercise when a new vintage in sector \(x \) is of quality \(\lambda_x q \) while a new vintage in sector \(z \) is of quality \(\lambda_z q \). Why haven’t the results changed much?

Question 3 (Competition and Growth):

2. Now consider the following one-period model. There are two Bertrand duopolists, producing a homogeneous good. At the beginning of each period, duopolist 1’s marginal cost of production is determined as a draw from the uniform distribution \([0, \bar{c}_1]\) and the marginal cost of the second duopolist is determined as an independent draw from \([0, \bar{c}_2]\). Both cost realizations are observed and then prices are set. Demand is given by \(Q = A - P\).

(a) Characterize the equilibrium pricing strategies and calculate expected ex ante profits of the two duopolists.

(b) Now imagine that both duopolists start with a cost distribution \([0, \bar{c}]\), and can undertake R&D at cost \(k\). If they do, with probability \(\lambda\), their cost distribution shifts to \([0, \bar{c} - \alpha]\) where \(\alpha < 1\). Find the conditions under which one of the duopolists will invest in R&D and the conditions under which both will.

(c) What happens when \(\bar{c}\) declines? Interpreting the decline in \(\bar{c}\) as increased competition, discuss the effect of increased competition on innovation incentives. Why is the answer different from that implied by the standard endogenous growth model?