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Recitation 10: Dynamics of the Diamond Coconut Model

The dynamic properties of the Diamond (1982) coconut model of search are analyzed in Diamond and
Fudenberg (1989), "Rational Expectations Business Cycles in Search Equilibrium," Journal of Political
Economy Vol. 97, No. 3 (Jun., 1989), 606-619. This recitation handout draws heavily from William Hawkins�
recitation notes (from Fall 2004).

1. System of Equations for Rational Expectations Equilibrium

The system of equations from Daron�s lecture notes is:

rVE(t)� _VE(t) = b(e(t))[y + VU (t)� VE(t)] (1)

rVU (t)� _VU (t) = a

Z c�(t)

c

[VEt� VU (t)� c] dG(c) (2)

The lecture notes concentrated upon steady state. In this recitation we will examine the out of steady state
dynamics. Therefore we do not want to set _VE(t) and _VU (t) equal to zero. Taking the di¤erence between
the two equations above and noting that VE(t)� VU (t) = c�(t), we obtain the equation:

�
c
�
= S(e; c�) = rc� � b(e)[y � c�]� a

Z c�

c

[c� � c] dG(c) (3)

This is a necessary condition for the optimal willingness to collect coconuts along any path. If we impose
the transversality condition that c� is uniformly bounded in t and does not reach zero when e (and so
b(e)) is positive, then the path is optimal. That is, beliefs about willingness to collect coconuts must be
asymptotically correct as well as instantaneously justi�able. Impose 0 < c� < y. Then equation (3) is
necessary and su¢ cient.
In addition, we have the equation for the evolution of the fraction of the population with a coconut from

the lecture notes:
�
e = T (e; c�) = a(1� e)G(c�)� b(e)e (4)

Note that time dependence is suppressed in both equations (3) and (4) above.
A Rational Expectations Equilibrium is a solution (e; c�) to the dynamical system de�ned by (3) and (4)

such that e satis�es the initial condition and c� satis�es the transversality condition.

2. Dynamics on the Familiar Diagram of the Diamond Model

The loci for
�
c
�
= 0 and

�
e = 0 have already been characterized in the lecture notes (Figure 1, page 49). The

�
c
�
= 0 locus is concave and both loci are increasing. This leads to the phase diagram as shown in Figure 1.

For convenience, Figure 1 is drawn so that there are precisely 3 stationary points (steady state equilibria).
It is immediate that there is a range of e (in particular, around the steady state e1) for which there are
multiple equilibria.
Figure 2 adds the trajectories going to (0; 0) and (e2; c�2). It is necessarily the case that the trajectory to

(0; 0) lies below the locus for
�
e = 0 at e1, while the trajectory to (e2; c�2) lies above

�
e = 0 at this point. Since

trading opportunities are better the higher the "employment" rate, the optimistic path Pareto-dominates
the pessimistic path. However, both are equilibrium paths.
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3. Hopf Bifurcation Example: Special Case 1

Since both the optimistic and pessimistic paths are rational expectations equilibria under some initial condi-
tions, there may be equilibria with "endogenous business cycles" in which traders correctly believe that the
economy will alternate between expanding and contracting phases. We examine the dynamics for a special
case.
Suppose b(e) = e and c � Unif[c; c + 1]. Diamond and Fudenberg (1989) analyze the dynamics for this

special case. It can be checked that the
�
e = 0 locus is convex here for c < k < �c.

Observe how the two locuses change with the interest rate r: the
�
e = 0 locus is unchanged, while the

�
c
�
= 0 locus shifts down monotonically as r increases. Hence for any e 2 [0; �e] we can de�ne r(e) to be the

unique value of r that leads to a steady state at e. One can check that

r(e) =

�
e

1� e

��
a(y � c)(1� e)2 + (e3=2)� e2

e2 + ac(1� e)

�
(5)

Figure 3 plots this curve.
Figure 4 from the paper shows an example of an orbit that spirals in to the steady state at (e1; c�1). But

for other parameters, this orbit can be unstable. If the interest rate r varies continuously from spirals in
to spirals out, then one might expect that at intermediate values of r there would be paths that are closed
cycles. In purely linear systems, all paths are cycles at the "bifurcation point" where the spirals switch
direction. This observation is extended to nonlinear second-order systems by the Hopf Bifurcation Theorem.
Using Hopf, Diamond and Fudenberg examine paramters for which cycles occur in the neighbourhood of e1.
To determine the system�s behaviour near e1, we calculate the linearized system around (e1; k1) (and

express everything in terms of e1 rather than c�1):" �
e
�
c
�

#
=

"
�2e1 � e21

1�e1 a(1� e1)
c� y + e21

a(1�e1) r + e1 +
e21
1�e1

# �
e� e1
c� � c�1

�

This matrix has eigenvalues proportional to t� (t2 � 4d)1=2, where

t = r � e1

d = �
�
r + e1 +

e21
1� e1

��
2e1 +

e21
1� e1

�
� a(1� e1)

�
c� y + e21

a(1� e1)

�
The sign of t, d and t2 � 4d determine the behavior of the system around (e1; c�1):

� If d < 0 ) Saddle point;

� If d > 0 and t2 � 4d > 0 ) Node

� Stable if t < 0;

�Unstable if t > 0;

� If d > 0 and t2 � 4d < 0 ) Spiral

� Stable if t < 0;

�Unstable if t > 0;

Some curves for t against d are graphed in Figure 5.
Note that since the same linearization also covers the steady state (e2; c�2), we want to consider only

spirals or nodes: that is, points where d > 0. By continuity, it is clear that there is a range of parameters for
y so that we can �nd a solution (e1; c�1) and r so that it is a steady state, with r(e1) = e1 so that t = 0, and
with d > 0 so that the eigenvalues associated with the dynamical system are purely imaginary. Decreasing r
a little makes the trace positive, so that the steady state becomes a spiral source, while for r a little higher
it is a spiral sink.
The Hopf Bifurcation Theorem then ensures that there is some range of interest rates so that for r 2

(r(e1)� "; r(e1)) there is a stable limit cycle for the dynamics.
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4. Explicit Construction of Limit Cycles: Special Case 2

A case for which limit cycles can be explicitly constructed is the slightly degenerate case where b(e) = e and
the cost distribution is degenerate at c. In this case there are cycles that take the following form: nobody
collects any coconuts in �slumps�while inventories fall from �e to e, followed by �booms�in which all coconut
collecting opportunities are taken and inventories rise from e back to �e. The equations for

�
e and _k are now:

�
e

8><>:
= �e2 c� < c

2 (�e2;�e2 + a(1� e)) c� = c

= �e2 + a(1� e) c� > c

�
c
�
=

(
(r + e)c� � ye c� � c
(r + e)c� + a(c� � c)� ye c� > c

It is possible to show that there exist economies parameterized by (a; r; c) that have such business cycles
for a large range of (e; �e) pairs.

5. William�s Graphs

William also included some rather nifty graphs illustrating simulated equilibrium paths and limit cycles. I
enclose these as well.
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