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Drawing on Vickrey (Amer. Econ. Rev. 59, 251-261 (1969)) and subsequent
literature, this paper provides a thorough economic analysis of the simplest bottle-
neck model of road congestion with peak-load demand: In the morning rush hour, a
fixed number of identical individuals, one per car, must travel from home to work,
between which is a bottleneck of given capacity. The costs of travel include queuing
time and schedule delay (time early or late for work). The frequency distribution of
departure times adjusts so that in equilibrium all individuals have the same travel
costs. The paper extends the previous literature by examining a coarse toll and
solving for optimal capacities. The application of congestion tolls can generate
efficiency gains by altering the frequency distribution of departure times. Previous
estimates of the efficiency gains from congestion tolling are likely to be substantially
downward-biased because they have ignored this effect. © 1990 Academic Press. Inc.

Most urban economists are familiar with rush-hour traffic models which
treat flow congestion (Strotz [35], Vickrey [37, 38], Mohring [29] inter alia,
and reviewed in Arnott [3]). The simplest such model assumes that a fixed
number, N, of identical individuals, one per car, must travel between home
and work in the morning rush hour on a single road. An individual’s travel
time, T, is given by the congestion function T = T(N, w) (where w is road
width and dT/3N > 0, 3T/3dw < 0) which may be interpreted as implic-
itly assuming that the length of the rush hour is exogenous and that traffic
flow is uniform over the rush hour. We term this the ‘naive’ flow congestion
model to contrast it with the more sophisticated models of flow congestion
employed by traffic engineers, which explicitly treat the physics of traffic
flow. The model has been extended to allow for elastic trip demand (e.g.,
Wilson [40]) and multiple modes (e.g., Mohring [30]) and has been incorpo-
rated into the monocentric city model (e.g., Arnott [2], Kraus [24]). While
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widely used, this treatment of traffic congestion suffers from a severe
conceptual weakness: It fails to treat the individual’s departure time decision
—when to leave home. In making this decision, the individual must face a
tradeoff. The simplest way to model this tradeoff is in terms of travel time
vs schedule delay (early or late arrival at work); an individual can choose to
depart in the tails of the rush hour when travel time is low and pay the
penalty of arriving at work early or late, or at the peak when travel time is
high but schedule delay costs are low.

In the past few years, a new model of traffic congestion has been
developed which makes the departure time decision endogenous. To the
best of our knowledge, the original contribution is Vickrey [37, 38]. He
considered a situation where a fixed number of identical commuters have to
travel from a single entrance (home) to a single exit (work) along a single
road during the morning rush hour. There is a single bottleneck on the road
with a fixed capacity or service rate, and if the arrival rate at the bottleneck
exceeds this capacity a queue develops. The distribution of arrival times is
such that it is physically impossible for all commuters to arrive at work
exactly on time and to experience no queue; consequently, they face the
tradeoff’ described in the previous paragraph. Each commuter chooses his
departure time to minimize his trip costs, which are linear in queuing or
travel time and schedule delay, and include the toll charge where applica-
ble. Equilibrium obtains when no individual has an incentive to alter his
departure time. In addition to characterizing the no-toll equilibrium,
Vickrey [38] determined the social optimum and solved for the toll which
decentralizes it. He also provided an illuminating discussion of the benefits
of capacity expansion on a single route and for routes in parallel, with and
without the toll.

Vickrey’s model was independently formulated by Hendrickson and
Kocur [18] and Fargier [15). Fargier considered both the morning and
afternoon (characterized by a desired departure time) rush hours. Subse-
quent work has extended these papers. For example, Smith [34] proved the
existence of equilibrium under general assumptions on the function relating
trip costs to travel time and schedule delay, Daganzo [9] provided a proof
of uniqueness of equilibrium, and Hendrickson and Kocur [18] provided an
empirical application. Our paper continues this line of development, inves-
tigating the characteristics of equilibrium with an optimal step function or
coarse toll and solving for optimal capacity under various toll régimes.

While an exhaustive literature review would be out of place here, we
should mention other lines of development in which the departure rate
function has been endogenous. Henderson [16, 17] considered a model of
rush-hour congestion similar to Vickrey’s except that a form of flow
congestion, rather than queuing congestion, was treated; specifically, he
assumed that the travel time of a commuter is an increasing function of the
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departure rate at his departure time and is therefore independent of
downstream traffic conditions, a strong assumption.! Hurdle [22]}, mean-
while, provided essentially the same treatment of congestion as Vickrey, but
assumed that the departure rate at time ¢ is a function only of ¢, and of
travel time with departure at ¢, and is therefore independent of travel time
for other departure times—a zero cross-price elasticity assumption. Alpha
and Minh [1] and de Palma et al. [11] considered probabilistic demand
resulting in a stochastic equilibrium. A dynamic extension of this approach
to a day-to-day adjustment is considered in Ben-Akiva et al. [6].

Since rush-hour traffic flow models with endogenous departure times
have, with the exception of Vickrey and Henderson, been developed by
engineers, little attention has been paid to their economic implications. The
principal aim of this paper is to examine some of these implications.
Perhaps the most interesting finding is that the efficiency gains from
applying congestion tolls in our model may be substantially larger than the
gains computed using the naive flow congestion model. The reason is that a
major benefit from congestion tolls derives from the change they induce in
the departure rate function, an effect which is excluded by assumption in
the conventional naive flow congestion analysis. If the benefits from apply-
ing congestion tolls are as large as an example in the paper suggests, more
serious consideration should be given to the implementation of urban traffic
tolling schemes of the sort advocated by Vickrey [37].

While this paper examines urban automobile traffic congestion, it should
be possible to adapt and extend it to treat other congestible facilities with
peak-load demand such as telecommunications and air travel networks,
electricity grids, computers, and public facilities such as swimming pools.

Section I provides a formal description of the model. Section II charac-
terizes the no-toll equilibrium. Section III obtains the social optimum ard
describes the toll which decentralizes it. Section IV examines equilibrium
with a coarse toll. Section V contains an example. Section VI treats optimal
capacity under various toll régimes. Extensions are discussed in Section VII.

I. THE MODEL

Every morning during the rush hour, a fixed number, N, of individuals
travel between home (A) and work (B). Each individual travels by his own
car along the single road joining (A) and (B). Travel is uncongested except
at a single bottleneck through which at most s cars can pass per unit of

"Henderson has to impose the restriction that those departing later must arrive later. His
treatment of congestion, while physically unrealistic, has some nice properties. For example, in
contrast to Vickrey’s queuing model, he obtains the result that the no-toll equilibrium rush
hour is shorter than optimal, which accords wit4 intuition.
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time; if the arrival rate at the bottleneck exceeds s, a queue develops. We
term s either the capacity or the service rate of the bottleneck.
Travel time from A to B is

T(t) = T/ + T°(¢). (1)

where T/ is the fixed component of travel time from A to B. T?(t) is the
variable component, waiting time at the bottleneck, and ¢ is departure time
from home. Without restriction, we set T/ = 0; thus, an individual arrives at
the bottleneck as soon as he leaves home, and arrives at work immediately
upon leaving the bottleneck. Let D(¢) be the length of the queue. Then

T(t) = —=; (2)

an individual’s queuing time equals queue length at the time he joins the
queue divided by the service rate of the bottleneck. Where 7 is the most
recent time at which there was no queue, and r(¢) is the departure rate
function,

D(1) = /:r(u) du— s(1 - 7), (3a)
which implies that
D(t)=r(t)-s forD(¢t) >0, (3b)

where - denotes a time derivative.

Besides travel time costs, individuals incur schedule delay costs—the
costs of arriving at work early or late. To simplify the analysis,2 we assume
that all individuals want to arrive at work at ¢*. Let  be the departure time
for which an individual arrives at work on time. Then

P=r* - T(7). (4)

If an individual departs at ¢ < £, he is early by an amount ¢* — t — T°(¢),
while if he departs at ¢ > £, he is late by an amount ¢ + T°(¢) — ¢*.

*In an earlier version of the paper, Arnott, de Palma, and Lindsey [4], we allowed for an
“on-time” window, a period of on-time arrival time. We eliminated this in the current draft to
simplify the algebra. ;
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As in Vickrey [38], it is assumed that the cost of a trip, C, is linear in
travel time and schedule delay;? specifically

C = travel time costs + time early costs + time late costs + toll

a(travel time) + B(time early) + y(time late) + toll, (5)

where « is the shadow value of travel time, and 8 and y are the shadow
values of time early and late.

II. NO-TOLL EQUILIBRIUM

Equilibrium obtains when no individual has an incentive to change his
departure time. Since individuals are identical, this implies that trip cost
must be the same at all times at which departures occur.

With a > B8,* all vehicles except the first and last experience congestion,
and the departure rate is piecewise constant and given by

s+ P fort € [1,,7),
a—-f q
0={ ) (©)
- i for t € (1, tq,],

where 7, and ¢, are the times at which the rush hour queue begins and
ends, respectively. The intuition underlying this result is that the departure
rate function must be such that the marginal benefit from postponing
departure by a unit of time equals the marginal cost. In the case of
departure prior to 7, the marginal benefit from postponing departure is the
reduction in time early costs, B(1 + D/s), and the marginal cost the
increase in travel time costs, aD /s. Application of (3b) then gives r(¢) for
t e, 7). The reasoning for departure after { is analogous. The arrival rate
at work, meanwhile, is constant at s over the rush hour. Thus, a queue
builds up linearly from ¢, to 7 and then dissipates linearly until it disap-
pears at ¢,.

3This function was introduced by Vickrey [38], was employed in Hendrickson and Kocur
[18], and has been estimated by Small [32]. Assuming it to be linear considerably simplifies the
algebra and improves the clarity of the paper.

4 This accords with experimental data (e.g., McFadden, Talvitie, et al. [28] and Small {32]).
The case a < 8 is discussed briefly in Appendix 1 of Arnott, de Palma, and Lindsey [4].
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It remains to compute 1,, 1 ,» and . For this purpose, we write the
following three equations:

(f—tq)(s+alisﬁ)+(tq,—f)(s—afy)=N (7a)

(’“’q)a_p =(’q'"’)m (7b)

e AR (70)

The first equation states that the total number of vehicles which depart is
N, the second specifies that congestion disappears at t,, and the last
follows from the definition of 7. Solving these equations yields

I w
’q’=’*+(/3£y)(—1s!) (8b)
Fmpe - (a(%ﬁ)(%) (8¢)

Naturally, 1, <7<t 4~ Note furthermore that N and s enter the equations
only as N/s. The comparative static properties of (8) are intuitive and left
to the reader.

Cumulative departures from home and arrivals at work are plotted as a
function of time in Fig. 1. The slopes of the two curves give the departure
and arrival rates; the vertical distance between the two curves is queue
length, and the horizontal distance indicates travel time.

The trip cost of the individual departing at ¢,, who experiences only
schedule delay, is

clt,) = Bl = 1,). ©)
Substituting (8a) into (9) gives
By \(N
() = (755 )(5): (10)
Since everyone has the same trip cost, the total travel cost (TC) for all
commuters is
e_ [ By \(N?
Te - (225 )(5): (11)

where superscript e denotes the no-toll equilibrium.

_ . A ———
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FiG. 1. Queue length, travel time, cumulative departures and arrivals, total travel time,
total time early, and total time late: the no-toll equilibrium.

Total travel time may be computed as j,:‘:'D(t) dt—the area between the
cumulative departures and arrivals functions in Fig. 1. Total time early is
f,:'s(t* — 1) dr—the area under the cumulative arrivals schedule from ¢ q to
1*; and total time late, [,#'s(t — t*) dr. From these areas, using (8), one can
compute total travel time costs (TTC) and total schedule delay costs
(SDC),?

. e__ By (N?
TTC* = SDC __2(B+v)( d ) (12)

It is interesting to observe that TC®, SDC¢, and TTC® are all indepen-
dent of a. An explanation of this result is as follows: The length of the rush
hour is independent of «. Since the first and last individuals to depart
experience only schedule delay and no travel time, and since their trip costs
are the same in equilibrium, their schedule delay costs must be the same. It
follows that the start and end of the rush hour are independent of a (see
(8a) and (8b)). Since the trip cost of the first person to depart is indepen-
dent of a and equals everyone else’s trip cost, total travel costs are
independent of a. With knowledge of the start and end of the rush hour,
total schedule delay costs can be calculated, independent of a. And since
total travel time costs equal total travel costs minus schedule delay costs,

>The equality between SDC® and TTC® is essentially a geometric result, and stems from the
linearity of trip costs in schedule delay and travel time.
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they too are independent of a. As the shadow value of travel time increases,
total travel time decreases by the same proportional amount, so that total
travel time costs remain constant.

III. COMPARISON OF THE SOCIAL OPTIMUM AND
NO-TOLL EQUILIBRIUM

We provide a heuristic derivation of the social optimum, in which total
travel costs are minimized. First, waiting time is pure deadweight loss, so
that at the social optimum there is no queue and hence total travel time
costs are zero. Second, travel will occur over a continuous time interval;
otherwise, total schedule delay costs are unnecessarily large. These two
results together imply that the departure and arrival rates are s throughout
the rush hour. Third, the schedule delay cost of the first and last travelers
must be the same; otherwise, total schedule delay costs could be reduced by
transferring individuals from one end of the rush hour to the other. Since
the bottleneck is fully utilized over the rush hour in both the no-toll
equilibrium and the social optimum, and since the number of commuters is
the same in both cases, the length of the rush hour is the same in the no-toll
equilibrium and the social optimum.® Furthermore, in both the no-toll
equilibrium and the social optimum, the schedule delay costs must be the
same for the first and last travelers. In the former case, this follows from the
equal trip cost condition for equilibrium while in the latter this is an
efficiency condition. These results together imply that the start and end of
the rush hour and the cumulative arrivals function are the same in the no-toll
equilibrium and the social optimum.

The social optimum can be decentralized by employing the following
time-dependent toll, which we sometimes refer to as the optimal fine toll:”

0 1<t,
or) = a-(r*-1)B t€ [z, %) 13)
! a—(t~1%)y te [, 1,]
0 1>t

Here a < (By/(B + Y)X(N/s) and superscript o denotes the social opti-
mum. From the argument of the previous paragraph, it follows that, relative
to the no-toll equilibrium, application of the optimal fine toll does not change

®This result obtains because of the form of congestion assumed; with flow congestion and an
endogenous departure rate function, the rush hour is longer in the social optimum than in the
no-toll equilibrium (Henderson [17)).

7Throughout the paper, we express the toll as a function of arrival time. In the context of
auto congestion, this is natural since toll gates are at the front of queues.
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total schedule delay costs but eliminates travel time, resulting in a social
saving of TTC® (see (12)).

The time-dependent toll discussed above could be practically difficult to
administer. Not only does it require knowledge of the parameters B, v,
N/s, and r*, but also toll collection costs could be quite high. De Palma
and Arnott [10] have proposed a usage-dependent toll, whereby individuals
pay a toll proportional to the length of the queue they join (or, equivalently
in the context of the model, proportional to travel time). If the toll is set
arbitrarily high, no individual will join a queue. All the deadweight loss
associated with the queue is thereby eliminated and the social optimum
attained.

IV. THE OPTIMAL COARSE TOLL

One does not observe tolls as fine as the one described above. Instead,
most tolls are uniform over the day or are step functions. Since travel
demand is inelastic in the model, a uniform toll has no effect. In this
section, the simplest case of the latter class of tolls is examined, a toll with a
single step over the rush hour.

A coarse toll is defined to be a fee p° paid at the front of the queue over a
time interval [¢*, ¢7], where superscript ¢ denotes the optimal coarse toll
equilibrium and the superscripts + and — indicate the turning on and off
respectively of the toll. The object is to find the optimal fee and time
interval. A rigorous derivation of the coarse toll is tedious. Here we simply
present the results; calculations and proofs are available from the authors
on request.

The qualitative properties of equilibrium depend on whether v -—z a.
Empirical estimates (Small [32]) suggest that the shadow value of a minute
late is significantly larger than the shadow value of travel time, and hence
that y > a. We treat only this case here.

The qualitative effects of applying the optimal coarse toll are shown in
Fig. 2. First, the toll is applied at t*e (15, t*) and lifted at 1€ (r*, 1)
Second, t*, ¢~, and p° are chosen so that the length of the queue is zero at
the moment the toll is applied and also immediately before it is lifted, but
at no other times in the interior of the rush hour. Third, whether or not the
coarse toll is optimal, there are no departures for a period p°/a before the
toll is applied, while a mass of individuals of size 2sp°/(a + v) departs
immediately after the toll is lifted. The explanation of the former result is as
follows: Since the bottleneck is full throughout the rush hour, the first
person to arrive (at work) after the toll is applied arrives just after the last
person to arrive before the toll is applied. Both therefore have approxi-
mately the same schedule delay. For both to have the same trip cost, the
latter must incur travel time costs that are higher by the amount of the toll
and consequently must depart p°/« earlier. The explanation for the mass of
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Fi6.2. Traffic flow over the rush hour with an optimal coarse toll and y > a.

departures immediately after the toll is lifted is similar. The last person to
| arrive before the toll is lifted must have the same trip cost as the “first”
! person to arrive after the toll is lifted. The latter must therefore incur travel
time plus schedule delay costs that are p° higher than the former. This is
impossible unless there is a mass of departures just after the toll is lifted.
We assume that position in the mass is random. On this assumption, it is
easily demonstrated that the size of the mass is 25p°/(a + v). A final
characteristic of equilibrium is that no one departs after the mass.
Solving for the optimal toll gives

c___Br (N
ol (14
ce,s__Y (N (v —a)e
G ) e (14b)
e (14c)
- S A (14d)

To determine optimal capacity in Section VI, it will be necessary to know
the values of various aggregates.' These can be derived as follows: First,
schedule delay costs can be computed (per Fig. 2) as

s 2 s N 2
SDC* = 'BT(t* - t;) + Iz-—(t; + 3 t*) , (15)

- — — ey ———
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TABLE 1
Some Aggregates

Case SDC TTC TC
No toll é ¢ 2¢
Social

optimum ¢ 0 ¢
Optimal

coarse

toll

Y>a X9 ¢ -x)¢ Vo

Note.

]

2
s By (LVS_Z) c=1+ B —2)

2(B+7) By (et )
y=2___ (-8
2 2(B + v)(a +v)’

where ¢_ is given by (14b). Second, total toll revenues can be computed as
R = p%(t = 1t%), (16)
from (14). Third, total travel costs may be computed using the relation that

R¢ TC*
——N—+B(I*—t;) = N (17)

which states that, when toll revenues are equally redistributed, the trip cost
of the first person to depart (LHS of (17)) equals average trip cost (RHS of
(17)), which equals total travel costs divided by the population, since toll
revenues net out. Finally, TTC = TC — SDC. The results of the computa-
tions are given in Table 1. Of course, TC® > TC® > TC®. Also, SDC*® >
SDC* = SDC°. This pair of inequalities, along with TTC® = 0, imply
TTC® > TTC® > TTC®. All these inequalities accord with intuition.® On
the basis of the results in Table 1, one can compute the ratio of total travel

%The inequality SDC® > SDCF is not so obvious. Total schedule delay costs are minimized
when the schedule delay cost of the first and last individuals to arrive at work are equal. In the
no-toll equilibrium, this condition is satisfied since the first and last individuals to arrive incur
no travel time, and to have equal trip costs must have the same schedule delay costs.

With the optimal coarse toll and y > a, no one departs at tg-, implying that C(13) < C(13,).
Since C(¢5) equals the schedule delay cost of the first person to arrive and C (g-) the schedule
delay cost of the last person to arrive, the schedule delay cost of the first person to arrive is less
than that of the last. Hence, SDC® > SDC®. This argument also explains why application of
the optimal coarse toll postpones both the beginning and the end of the rush hour (see Fig. 3).
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time costs to aggregate schedule delay costs, the social savings from
applications of the toll, the proportionate savings, and so on.

V. AN EXAMPLE

To get some idea of magnitudes, we consider an example. The rush hour
lasts for 2 hours and is centered around 8.5 AM (i.e, t* = 8.5 with time
indicated in decimal form). The shadow values of travel time, early arrival
time, and late arrival time (a, 8, and y) are $6.40/hour, $3.90 /hour, and
$15.21 /hour, respectively; these shadow values are chosen on the basis of
Small [32]. Since y > @, the case treated in the text for the coarse toll
applies; thus, from (14), p° = 3.10, 1, =697, t"="17.77, and "= 8.68. The
cumulative departures and arrivals for the no-toll equilibrium and for the
optimal coarse toll are shown in Fig. 3. Application of the coarse toll causes
the rush hour to start slightly later, which is explained in footnote 8.

The results for the aggregates in per capita terms are given in Table 2.
Imposition of the optimal coarse toll from 7.77 to 8.68 AM causes travel
time costs to fall by an average of $1.70, while average schedule delay costs
rise by $.02. Thus, imposition of the toll causes travel costs to fall by $1.68
per person. Application of the optimal fine toll, meanwhile, causes travel
costs to fall by $3.10 per person. Thus, the optimal coarse toll in this
example is 54.2% efficient, where the efficiency of a coarse toll is defined
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TABLE 2
Example: Per-capita Aggregates, Capacity Fixed

Case SDC/N TTC/N TC/N
No-toll equilibrium $3.10 $3.10 $6.21
Social

optimum $3.10 0 $3.10
Optimum coarse

toll $3.12 $1.40 $4.53

naturally as

. TCc - TC*
eff® = TEe 7o - (18)
It is of interest to compare the social savings from congestion tolling
using our model with the figures obtained from other papers. To our
knowledge, all previous papers, except several by Small {33, e.g],’ which
have estimated the efficiency gains from congestion tolling have employed
the naive flow model of congestion. They differ significantly from one
another in other respects, however. Limitation of space precludes a detailed
description of each paper. We can, however, outline their main features.
The papers are usefully distinguished according to which margins conges-
tion tolls affect. First, Arnott and MacKinnon [5] and Segal and Steinmeier
[31] examined the effects of congestion tolling in a simple monocentric city
model with a fixed CBD and fixed trip frequency. The congestion toll
affected only lot size choice. The papers obtained efficiency gains of 0.07
and 0.08% of average household income, respectively. (Since some papers
report efficiency gains as a proportion of transport costs, and others as a
proportion of income, we shall make the approximation that transport costs
are 10% of income and subsequently present efficiency gains as a percentage
of transport costs.) Second, Sullivan [36] employed a more sophisticated
monocentric city model with a CBD whose size is determined endoge-
nously. As a result of this extra margin, he obtained efficiency gains equal
to 8%. Third, Kraus ef al. [25] estimated the efficiency gains on a freeway of

Small {33} examines congestion on a transport corridor served by both bus and car. The
number of trips is fixed and car and bus travel are congested by a bottleneck. The departure
rate is assumed fixed over the rush hour, as a result of which the queue builds up linearly.
Imposition of an optimal toll on car travel causes just enough modal switching to completely
eliminate the bottleneck. Small obtains social savings of the same magpitude as we do, but
these are due to modal switching rather than a change in the time pattern of departures.
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optimal capacity from imposing optimal differential peak and off-peak tolls
compared to the situation where an optimal uniform toll is applied.
Depending on parameter values (including price elasticities) they obtained a
range of estimates for the efficiency gains, varying from 0.1 to 1%. The
margin of adjustment was the number of trips in the two periods. Fourth,
Mohring [30] examined the effects of alternative policies on the modal split
between bus and car, when overall travel demand is fixed, and found (his
Table 6.3) that with volume-to-capacity ratios and without reserved bus
lanes, the peak-hour efficiency gain from marginal social cost pricing both
modes is almost 50% of travel costs in the equilibrium in which no car toll
is charged and the bus fare is set at zero. Fifth, Kraus [24], in the richest
model of all those discussed, which made endogenous both the frequency of
non-work trips and modal choice in a monocentric city, obtained maximum
welfare gains of about 8%. Combining the results of Small [33] and the
above papers suggests that the lion’s share of the efficiency gains from
congestion tolls derive from their effect on modal choice.

In our bottleneck model, the congestion toll affects only the pattern of
departure times, a margin that is ignored in all the above papers. With the
optimal fine toll, efficiency gains are 50% of total variable transport costs.
The monetary implications of such proportional savings are remarkable.
Suppose, in the example above, that 200,000 individuals travel in the
morning rush hour for 200 days a year, and that the discount rate is 5%.
The present value of the (gross) social saving from applying the optimal
coarse toll during the morning rush hour would be $1,344,000,000 (36720
per car). Even after the costs of toll collection (administration, equipment,
and congestion caused by the toll collection) are subtracted, the net social
saving might still be impressive.

Our model is extremely simple. Not only does it ignore all the other
margins of adjustment noted above, but it also assumes that everyone is
identical and has the same desired arrival time. In fact, one expects firms to
respond to congestion by choosing a distribution of work start times and
introducing flextime, and individuals to spread themselves out over the rush
hour so that those with low shadow values of travel time journey at the
peak of the rush hour while those with high values travel at the tails. These
effects would normally reduce the efficiency loss due to congestion and
hence the potential efficiency gains from imposing congestion tolls. Contrar-
ily, our model ignores another beneficial effect of tolls, the lengthening of
the rush hour they induce, which Henderson [17] discusses. On balance, the
above figure for the gross efficiency gain from imposing an optimal coarse
toll seems too high, though not out of line with the figures mentioned in
Vickrey [37]. Nevertheless, the model does suggest that technologically
advanced schemes for urban traffic toll implementation deserve more seri-
ous attention than they have received to date.
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TABLE 3
Optimal Capacity
No toll Social optimum Optimal coarse toll
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V1. COST-BENEFIT ANALYSIS AND OPTIMAL CAPACITY

Since our model assumes a fixed demand for trips, the optimal capacity,
$§, minimizes the sum of total travel costs and amortized construction costs,

K(s), i.e,
§ = argmin(TC(s) + K(s)). (19)

To simplify the analysis, we assume that there are constant costs to capacity
expansion, i.e., K(s) = ks. The expressions for optimal capacity under the
three toll régimes are presented in Table 3.

The following inequalities hold:

§¢>§°> §°. (20)

The finer the toll, the less the congestion, the lower the marginal benefit
from road expansion,'® and the smaller optimal capacity.

The example of the previous section is now extended to treat capacity. It
is assumed that, with actual capacity chosen to minimize total travel costs
plus amortized construction costs in the no-toll equilibrium, the rush hour
is 2 hours long. From Table 3, this implies that k = 12.42. With this value
of k and the parameter values assumed previously, the results shown in

197 the analysis of the optimal capacity of a point-input, point-output road of constant
width and subject to naive flow congestion, there are two offsetting effects determining whether
second-best (i.c., subject to the toll being zero or suboptimal) road width is larger or smaller
than the first-best (see Wheaton [39] and Wilson [40]). On the one hand, pricing travel below
marginal social cost causes too many individuals to travel on the road. To counteract this, the
road should be narrower than in the first best. On the other hand, widening the road may
speed up the traffic so much that even though the number of cars may increase, the excess
burden associated with unpriced congestion may fall. Which effect dominates depends on the
trip demand function and the congestion technology. The effects here are analogous, and since
auto travel demand is assumed to be completely inelastic, only the latter effect is operative.
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TABLE 4
Example: Per Capita Aggregates, Capacity Optimal

Case X rc LS} TC+ ks
N N | N N
No-toll equilibrium 0.500 $6.21 $6.21 $12.42
Social
optimum 0.354 $4.39 $4.39 $8.78
Optimum coarse
toll 0.427 $5.30 $5.30 $10.60 -

Table 4 are obtained. We note three features of interest: First, since the
optimal length of the rush hour is the reciprocal of optimal capacity per
individual, the rush hour is longest at the social optimum and shortest in
the no-toll equilibrium. Second, whatever the toll régime, since TC is
homogeneous of degree minus one in s (see Table 1) the first-order
condition for optimal capacity, TC'(§) + k = 0, implies —TC/§ + k=0
or TC = k§—with optimal capacity, capacity construction costs equal total
travel costs. Third, the social saving from application of the coarse toll is
again significant, about $1.82 per trip, and the optimal coarse toll is about
49.7% efficient, where the efficiency of the coarse toll here is

eire = (IC+K)" = (TC = k)" -
(TC + k$)" — (TC — k$)

VII. CONCLUDING COMMENTS

This paper examined the economics of congestion at a single bottleneck.
It extended previous work by examining a coarse toll and optimal capacity
under various toll régimes. One interesting result was that the efficiency
gains from application of an optimal toll, arising from the change in the
frequency distribution of departure times it causes, can be substantially
greater than the efficiency gains that have been computed employing the
more familiar naive flow model of congestion. Furthermore, in our model a
significant fraction of the gains from a fully optimal toll can be achieved by
applying a single-step function toll—the optimal coarse toll—which should
be implementable at significantly lower cost that the more complex time-de-
pendent toll. It therefore appears that technologically sophisticated tolling
systems, of the sort that have been proposed by Vickrey, may be cost-effi-
cient and merit serious study.

Another interesting result is that total schedule delay costs are of the
same order of magnitude as total variable travel time costs. Thus, current
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cost-benefit practice, which typically ignores schedule delay costs, may yield
seriously erroneous conclusions.

While the model of bottleneck congestion described in the paper provides
a simplified description of both travel demand and the congestion technol-
ogy, we believe that, appropriately extended, it can provide a rich descrip-
tion of urban rush-hour traffic flow. Desirable extensions include:

(a) Heterogeneity of Drivers

Drivers order themselves in a systematic way over the rush hour (de
Palma et al. [11]). “Factory workers” —those with a relatively low shadow
value of travel time and high schedule delay costs (low a/ B and low a/Y)
—tend to travel at the peak of the rush hour, while “ professionals” —those
with a relatively high shadow value of time and more flexible working hours
(high a/B and high a /y)—tend to travel in the tails. In cost-benefit
practice, some average shadow value of time is employed in measuring the
benefits of a capacity expansion. However, since drivers tend to order
themselves over the rush hour so that those with a lower shadow value of
time have greater travel time, the use of an average shadow value of time
may introduce a bias in the direction of overinvestment in roads. It is also
necessary to treat driver heterogeneity in determining the distributional
effects of transport policies.

(b) Stochastic Capacity and Demand

Variability in the number of cars travelling over the rush hour can be
considerable, as can be the variability in road capacity, at least in countries
such as Canada with harsh winters. How are the equilibria in the various
toll régimes, as well as optimal capacities, affected by such variability? The
answer clearly depends on the knowledge commuters have concerning the
state of the system, when deciding whether and when to leave for work. De
Vany and Saving [14] have investigated this issue for the case of naive flow
congestion, stochastic demand, and uninformed commuters (viz., com-
muters know only the probability density of demand). In cost-benefit
practice, the stochastic nature of capacity and demand is treated crudely by
choosing capacity on the basis of travel time saved under ideal conditions
for, say, the 60th busiest hour of the year (Highway Research Board [21]).

(c) A Road Network

Extension to treat a road network with multiple origins and destinations
and multiple routes between any origin and destination is necessary before
the theory can be empirically implemented. Any change in the transport
system will affect the pattern of rush-hour travel over the entire network.
Preliminary results have been derived by Mahmassani and Herman [27] and
de Palma er al. [12, 13]. It will be particularly interesting to see to what
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extent the benefits from tolls are reduced when tolls can be applied on some
roads but not on others.

(d) Hypercongestion

When flow is plotted against velocity at a given point on a road for
different times, they tend to be negatively correlated in less busy periods,
but positively correlated in at least the peak of the rush hour in major cities.
The latter phenomenon is termed hypercongestion,!’ and corresponds to
traffic jams, gridlock, and stop-start travel. We guess that in major cities
most of the efficiency loss due to congestion occurs when traffic is hyper-
congested. For this reason, it is very important to provide a persuasive
treatment of hypercongestion. While our model does not treat hyperconges-
tion, it can be modified to do so.

(e) Variability in Working Hours

In our model, all firms have the same desired arrival time. In fact,
however, different firms choose different working hours, and some firms
give their workers a choice as to working hours (flextime). In deciding on its
employees’ work schedules, a firm should realize that workers are willing to
pay (in the form of lower wages) not to travel in peak periods. Firms will
weigh this saving against the loss that derives from their employees working
at different times and at times that may be inconvenient to suppliers and
customers. Hendrickson and Kocur [18] and Henderson [17] have examined

how traffic flow over the rush hour is altered when employees have different
working hours.

(f) Disequilibrium

We solved for the equilibrium distribution of departure times on the
assumption that drivers are fully informed. In fact, however, because
drivers have imperfect knowledge concerning traffic conditions which vary
in a complex and largely unpredictable way, they can be expected to
experiment with alternative departure time strategies and to learn only
gradually which strategy is best. De Palma er al. [12] and Ben-Akiva e al.
[6, 7, 8] have constructed computer models which simulate this adaptive
behavior, and are continuing their work.

The model also needs to be extended to treat modal choice and elastic
travel demand.

While the model developed was for morning-rush-hour road congestion,
it can be modified to treat any congested facility subject to peak-load

"For an introduction to traffic flow models which permit hypercongestion, such as the
kinetic theory of traffic flow or car-following theory, see, e.g., Institute of Traffic Engineers
{23], Lindsey [25], and Herman [20}].
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demand. One potential application is telephone usage. Demands for differ-
ent periods are interdependent, and this interdependence can be captured
by modeling the telephone user as facing a tradeoff between the analog to
travel time—the time spent waiting for a free line—and the analog to
schedule delay—the cost of placing a call at an inconvenient time.12
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