Education-What works?

Slide 1

14.771, Fall 04

SOME FACTS AND QUeStions About education
There are enormous disparities in educational outcomes:

\rightarrow Around the world

Slide $2 \rightarrow$ Across regions in the same country
\rightarrow By gender within countries
\rightarrow By income levels
\rightarrow By urban/rural residence

Descriptive Evidence from India

Probe report: survey of schools and households in 234 villages in Bihar, Madhya Pradesh, rajasthan, UP, Himachal Pradesh: Northern Indian states.

Some striking facts from this report and other accumulated evidence
\rightarrow Very poor education performance
\rightarrow Fairly high motivation by parents
\rightarrow Child labor does not seem to be a big constraint
\rightarrow Direct cost are small but not negligible
\rightarrow School availability is not a constraint at the primary school level, may matter more at the post primary school
\rightarrow School quality is dismal (teacher absence:facilities

POSSIBLE INTERVENTIONS TO IMPROVE SCHOOL PARTICIPATION AND PERFORMANCE

\rightarrow Affecting the direct costs scholarship programs, vouchers, school construction.
\rightarrow Affecting the opportunity costs: child labor ban, mandatory schooling, conditional income transfers, school meals, incentives to learn
\rightarrow Affecting the returns by changing school quality textbooks, teacher training, teacher incentives, class size, remedial education, computer assisted learnings
\rightarrow Improving income levels: unconditional transfers.
\rightarrow No intervention specifically in education: foster economic growth to improve the returns to education; improve health.

School Construction: Indonesia: set up

The INPRES school construction program
Second five year plan (1974-79)-Oil shock.
\rightarrow A large program:
$\rightarrow 61,807$ primary schools constructed from to 1973/74 to 1978/79.
Number of schools multiplied by 2. 1 schools for every 500 children.
\rightarrow A change in policy: Before 1973, no construction, ban on recruiting for public service positions.
\rightarrow A program meant to favor low-enrollment regions.

Allocation rule: number of schools constructed in a district proportional to the number of children (ages 7 to 12) not enrolled in primary school.

DATA AND SOURCES OF VARIATION

SUPAS 95: A survey done in 1995: after the children educated in these schools have completed their schooling, and have

- 150,000 men born 1950-1972
- Variables: education, year and region of birth, wages.

CONTROL EXPERIMENT

We have a possibility to check that the assumption is not rejected in the available data.

Suppose we fill the same boxes, but we now compare the
Slide 9 "OLD" to the "VERY OLD". Neither of them benefited from the program: what do we expect to see if the assumption is satisfied? What do we expect to see if the assumption is not satisfied?

Table:what do we see?

Extending difference in differences

(1) Using all the regional variation

There are 280 districts in Indonesia, and we know how many schools each district has received: grouping the region into two groups is throwing away some information!
Slide 10 Before, we had 2 regional group, and 2 age group, we formed 4 age-region group. Now we have 280 regional group, 2 age group, how many groups can we form? What are these groups?
First, we form the average for each group. We will note $S_{Y j}$ the average education of the young in any region j, and $S_{O j}$ the average education of the young in any region j.

In general, suppose that for all ages k we run the regression:

$$
S_{j k}-S_{j 24}=\alpha_{k} P_{j}+v_{j k}
$$

For what values of k should we see a positive α_{k} ? (remember that children attend primary school until age 12). Should we see the coefficient be larger for younger children or older

Run the regressions in one operation:

$$
\begin{equation*}
S_{i j k}=c_{1}+\alpha_{1 j}+\beta_{1 k}+\sum_{l=2}^{23}\left(P_{j} * d_{i l}\right) \gamma_{1 l}+\sum_{l=2}^{23}\left(\mathbf{C}_{\mathbf{j}} * d_{i l}\right) \delta_{\mathbf{1}}+\epsilon_{i j k} \tag{2}
\end{equation*}
$$

Figure 2: Do the dots have the expected pattern?

Estimating returns to education

\rightarrow Do the same for wage : Same patterns

$$
\begin{equation*}
y_{i j k}=c_{1}+\alpha_{1 j}+\beta_{1 k}+\sum_{l=2}^{23}\left(P_{j} * d_{i l}\right) \gamma_{1 l}+\sum_{l=2}^{23}\left(\mathbf{C}_{\mathbf{j}} * d_{i l}\right) \delta_{11}+\epsilon_{i j k} \tag{3}
\end{equation*}
$$

Slide $14 \rightarrow$ What are the assumptions necessary to interpret this as the effect of education on wage?
\rightarrow Consider using the policy to construct instruments for an instrumental variables of the effect of education on wages.
\rightarrow What would be an IV estimate in the DD case?
\rightarrow What would be an IV estimate in the difference in age case?
\rightarrow What are candidates for the excluded instruments in equation ??.

ESTIMATING MARKET EQUILIBRIUM EFFECTS OF EDUCATION

\rightarrow Ideal experiment: randomly assign different levels of education to different entire markets.
\rightarrow The INPRES experiment does something that approximates this ideal experiment.
\rightarrow Consider the older people who leave in a regions where many schools were built
\rightarrow They did not directly benefit from the schools
\rightarrow However, as the newly educated cohorts enter the labor market, the average level of education in the labor market increases.
\rightarrow It increases more in schools where more schools were built.
\rightarrow First stage:

$$
\begin{equation*}
S_{j t}=\mu_{t}+\nu_{j}+\sum_{l=1987}^{1999}\left(\lambda_{l} * P_{j}\right) \gamma_{1 l}+\epsilon_{j t} \tag{5}
\end{equation*}
$$

where $\overline{S_{j t}}$ is the average education in district j in year t, other notation as before.
\rightarrow We seek to estimate the structural equation

$$
\begin{equation*}
\ln \left(w_{i j t}\right)=S_{i} b_{j t}+\alpha_{U} S_{j t}+\epsilon_{j t}+\mu_{t}+\nu_{j}+v_{i j t}, \tag{6}
\end{equation*}
$$

where i is the individual, S_{i} is individual education, and $b_{j t}$ are the returns to education in district j in year t.

Results

With many years of data, reduced form is written:

$$
\begin{equation*}
\overline{\ln w_{j t}}=\mu_{t}+\nu_{j}+\sum_{l=1987}^{1999}\left(\lambda_{l} * P_{j}\right) \gamma_{2 l}+\delta_{2 l}+\epsilon_{j t}, \tag{9}
\end{equation*}
$$

Slide 21
We can now estimate
$\overline{\ln \left(w_{i j t}\right)}=+S_{j t} \alpha \epsilon_{j t}+\mu_{t}+\nu_{j}+\overline{v_{i j t}}$,

OLS: positive effect. IV: negative effect, significant at 10% in rural areas.

Conclusion

\rightarrow Education has positive returns
Slide $22 \rightarrow$ No evidence of externalities.
\rightarrow There are no convincing studies finding positive externalities.
\rightarrow Why should government finance education?

