TESTING HOUSEHOLD MODELS

TEsting household models

\rightarrow Is the household unitary?

TEsting household models

\rightarrow Is the household unitary?
\rightarrow Tests of Effic iency:

TEsting household models

\rightarrow Is the household unitary?
\rightarrow Tests of Effic iency:
\rightarrow Proportionality tests

TEsting household models

\rightarrow Is the household unitary?
\rightarrow Tests of Effic iency:
\rightarrow Proportionality tests
\rightarrow Production efficiency

TEsting household models

\rightarrow Is the household unitary?
\rightarrow Tests of Effic iency:
\rightarrow Proportionality tests
\rightarrow Production efficiency
\rightarrow Income shocks not associated with μ.

IS THE HOUSEHOLD UNITARY?

Do determinants of the weight μ enters in the consumption decisions, ordo they determine outcomes?

IS THE HOUSEHOLD UNITARY?

Do determinants of the weight μ enters in the consumption decisions, or do they determine outcomes?

What does μ depend on?

IS THE HOUSEHOLD UNITARY?

Do determinants of the weight μ enters in the consumption decisions, or do they determine outcomes?

What does μ depend on?
\rightarrow Regulatory framework. Divorce laws. Chiappori, Fortin, Lacroix.

IS THE HOUSEHOLD UNITARY?

Do determinants of the weight μ enters in the consumption decisions, or do they determine outcomes?

What does μ depend on?
\rightarrow Regulatory framework. Divorce laws. Chiappori, Fortin, Lacroix.
\rightarrow Mamiage markets:
Angrist (2002) looks at sex ratio in the US. Early immigrants flow determine sex ratio (ratio male/female). This in tum affect ma riage probability of female in the second generation, and la bor market participation (higher sex ratio \rightarrow more ma miage, lowerfemale labor participation, more co-residence with female relatives).

IS THE HOUSEHOLD UNITARY?

Do determinants of the weight μ enters in the consumption decisions, or do they determine outcomes?

What does μ depend on?
\rightarrow Regulatory framework. Divorce laws. Chiappori, Fortin, Lacroix.
\rightarrow Marriage markets:
Angrist (2002) looks at sex ratio in the US. Early immigrants flow determine sex ratio (ratio male/female). This in tum affect ma miage probability of female in the second generation, and la bor market participation (higher sex ratio \rightarrow more ma riage, lowerfemale labor participation, more co-residence with female relatives).
\rightarrow Income.

IS THE HOUSEHOLD UNITARY?

Do determinants of the weight μ enters in the consumption decisions, or do they determine outcomes?

What does μ depend on?
\rightarrow Regulatory framework. Divorce laws. Chiappori, Fortin, Lacroix.
\rightarrow Marriage markets:
Angrist (2002) looks at sex ratio in the US. Ea rly immigrants flow determine sex ratio (ratio male/female). This in tum affect ma miage probability of female in the second generation, and labor market participation (higher sex ratio \rightarrow more marriage, lowerfemale labor participation, more co-residence with female relatives).
\rightarrow Income.
Most attention has been focused on (2), which is not necessarily fortunate.

TEsting FOR Income Pooung

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income eamed by the wife affect the final expenditures. Altematively. Does father's income enters with the same coefficient as mother's income.

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income ea med by the wife affect the final expenditures. Altematively. Does father's income enters with the same coeffic ient as mother's income.

Nice examples: Dunc an Thomas ("like father like sons..." and Intrahousehold allocation, and inferential approach).

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income ea med by the wife affect the final expenditures. Altematively. Does father's inc ome enters with the same coeffic ient as mother's income.

Nice examples: Dunc an Thomas ("like father like sons..." and Intrahousehold allocation, and inferential approach).

Diffic ulties:

DUNCAN THOMAS

"Intrahrusehold ellocatia: an inferential approach"

$$
3 ?
$$

Table 2
Effect of Mother's and Father's Unearned Income on Housetiold and Child Health

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income ea med by the wife affect the final expenditures. Altematively. Does father's income enters with the same coeffic ient as mother's income.

Nice examples: Dunc an Thomas ("like father like sons..." and Intrahousehold allocation, and inferential approach).

Diffic ulties:
\rightarrow Laborincome:

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income ea med by the wife affect the final expenditures. Altematively. Does father's income enters with the same coeffic ient as mother's income.

Nice examples: Dunc an Thomas ("like father like sons..." and Intrahousehold allocation, and inferential approach).

Diffic ulties:
\rightarrow Laborincome:
\rightarrow Separability.
\rightarrow Endogeneity

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income ea med by the wife affect the final expenditures. Altematively. Does father's income enters with the same c oeffic ient as mother's income.

Nice examples: Dunc an Thomas ("like father like sons..." and Intrahousehold allocation, and inferential approach).

Diffic ulties:
\rightarrow Laborincome:
\rightarrow Separability.
\rightarrow Endogeneity
\rightarrow Non-laborincome, assets.

TESTING FOR INCOME POOUNG

Once I control for total income, does the share of income eamed by the wife affect the final expenditures.
Altematively. Does father's income enters with the same coefficient as mother's income.

Nice examples: Dunc an Thomas("like father like sons..." and Intrahousehold allocation, and inferential approach).

Diffic ulties:
\rightarrow Laborincome:
\rightarrow Separability.
\rightarrow Endogeneity
\rightarrow Non-laborincome, assets.
\rightarrow Unobserved differences between households
\rightarrow Marriage market

THE MARRIAGE MARKET:

Imagine that once the match is formed, the household is dictatorial (the man decides)

THE MARRIAGE MARKET:

Imagine that once the match is formed, the household is dictatorial (the man decides)

Antic ipating this, for a given assets level of a man, a woman always preferto mamy a male with preferences more aligned to hers.

THE MARRIAGE MARKET:

Imagine that once the match is formed, the household is dictatorial (the man decides)

Antic ipating this, for a given assets level of a man, a woman always preferto mamy a male with preferences more aligned to hers.

Men always prefer women with more assets, so that a woman with more assets will have more choices, and will select a match that is better aligned to her preferences.

THE MARRIAGE MARKET:

Imagine that once the match is formed, the household is dictatorial (the man decides)

Anticipating this, for a given assets level of a man, a woman always preferto mamy a male with preferences more aligned to hers.

Men always prefer women with more assets, so that a woman with more assets will have more choices, and will select a match that is better aligned to her preferences.

Therefore, c ontrolling for the total assets level, the higher a woman's assets at the time of ma miage, the better the allocation will reflect women's preference, despite the fact that the household, once formed, is dictatorial, a nd not collective.

IDEAL EXPERIMENT

IDEAL EXPERIMENT

Randomly give an income transfer to women orto men, and check whether it has the same impact on expenditure depending on who gets it. We don't have such an experiment... (PROG RESA, in Mexico is random transfer, but it went only to women!).

IDEAL EXPERIMENT

Randomly give an income transfer to women orto men, and check whether it has the same impact on expenditure depending on who gets it. We don't have such an experiment... (PROG RESA, in Mexico is random transfer, but it went only to women!).
\rightarrow Lundberg, Pollak and Wales (UK). Child support was tra nsferred from the "wallet to the purse". DD on aggregate data. Did expenditures on women's (men's) clothing differentially change for fa milies with children (relative to fa milies with no children) afterand before the change in policy?

IDEAL EXPERIMENT

Randomly give an income transfer to women orto men, and check whether it has the same impact on expenditure depending on who gets it. We don't have such an experiment... (PROG RESA, in Mexico is random transfer, but it went only to women!).
\rightarrow Lundberg, Pollak and Wales (UK). Child support was tra nsferred from the "wallet to the purse". DD on aggregate data. Did expenditures on women's (men's) clothing differentially change for fa milies with children (relative to families with no children) after and before the change in policy?
\rightarrow Duflo (2000). Pension in South Africa.

Grandmothers and G randdaug hters

Grandmothers and G randdaug hiers

\rightarrow Starting in 1991, govemment expanded coverage and benefits of the pension for Blacks.

Grandmothers and G randdaug hiers

\rightarrow Starting in 1991, govemment expanded coverage and benefits of the pension for Blacks.
\rightarrow All women above 60, Men above 65 are eligible, subject to a very loosely a pplied means test (irrespective of work history). 85% of eligible people are getting it.

Grandmothers and G randdaug hiers

\rightarrow Starting in 1991, govemment expanded coverage and benefits of the pension for Blacks.
\rightarrow All women above 60, Men above 65 are eligible, subject to a very loosely a pplied means test (irrespective of work history). 85% of eligible people are getting it.
\rightarrow Many pension recipients live in 3-generation households and many ($1 / 3$) children live with a pension recipient.

Grandmothers and G randdaug hiers

\rightarrow Starting in 1991, govemment expanded coverage and benefits of the pension for Blacks.
\rightarrow All women above 60, Men above 65 are eligible, subject to a very loosely a pplied means test (irrespective of work history). 85% of eligible people are getting it.
\rightarrow Many pension recipients live in 3-generation households and many ($1 / 3$) children live with a pension recipient.
\rightarrow Permanent income shock; gender of recipient vary.

Grandmothers and Granddaug hters

\rightarrow Starting in 1991, govemment expanded coverage and benefits of the pension for Blacks.
\rightarrow All women above 60, Men above 65 are eligible, subject to a very loosely a pplied means test (irrespective of work history). 85% of eligible people are getting it.
\rightarrow Many pension recipients live in 3-generation households and many (1/3) children live with a pension recipient.
\rightarrow Permanent income shock; gender of recipient vary.
\rightarrow Eligible families are poorer (extended families, more likely to be rural, poor), therefore children in these families would have been in worst shape without the pension.

Weig ht for Heig ht

Weight for Height

Weight for height is a flow measure of nutrition, will respond fast.

Weight for Height

Weight for height is a flow measure of nutrition, will respond fast.
Idea: compare children who live in 3 generations households (with an elderly), where nobody is eligible yet, to children who live in 3 generation households where a man, or a woman, is eligible.

Table 1: Probability of receiving the pension, and fraction of children, by age and gender

	Percentage receiving pension (1993)	\% children living with
	(1)	(2)
PANEL A: Men		
Age in 1993		
50-54	2.8	9.77
55-59	4.7	7.62
60-64	22	5.5
65 and above	60	8.02
PANEL B: Women		
Age in 1993		
50-54	13.6	8.24
55-59	16.4	10.86
60 and above	77	21.4

Weight for Height

Weight for height is a flow measure of nutrition, will respond fast.
Idea: compare children who live in 3 generations households (with an elderly), where nobody is eligible yet, to children who live in 3 generation households where a man, or a woman, is eligible.
Hope: households who have a woman above 60 not so different from household who have a woman between 55 and 60 , yet they are much more likely to receive the pension (22\% vs 78\%)

Weig ht for Height

Weight for height is a flow measure of nutrition, will respond fast.
Idea: compare children who live in 3 generations households (with an elderly), where nobody is eligible yet, to children who live in 3 generation households where a man, or a woman, is eligible.
Hope: households who have a woman above 60 not so different from household who have a woman between 55 and 60 , yet they are much more likely to receive the pension (22\% vs 78\%)

$$
\begin{equation*}
w_{i f k}=\pi_{w} E_{f}+\pi_{m} E_{m}+\sum_{j=1}^{4} \gamma_{j} 1_{(j=k)}+W_{i f k} \lambda+X_{i f k} \delta+\epsilon_{i f k}, \tag{1}
\end{equation*}
$$

Table 3: Effect of the program on weight for height
OLS and 2SLS regressions

	Dependent variable: Weight for Height Z-score							
	(1)	(2)	(3)		(4)	(5)	(6)	2SLS

Panel A: GIRLS

Eligible household	0.14	0.35^{*}	0.34^{*}
	(0.12)	(0.17)	(0.17)

Woman eligible (in col. 7: woman receives pension)		(0.17)	(0.17)	$\begin{aligned} & 0.24^{*} \\ & (0.12) \end{aligned}$	$\begin{aligned} & 0.61^{*} \\ & (0.19) \end{aligned}$	$\begin{aligned} & 0.61^{*} \\ & (0.19) \end{aligned}$	$\begin{aligned} & 1.19^{*} \\ & (0.41) \end{aligned}$
Man eligible (in col. 7: man receives pension)				$\begin{gathered} -0.011 \\ (0.22) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.28) \end{gathered}$	$\begin{aligned} & 0.056 \\ & (0.19) \end{aligned}$	$\begin{gathered} -0.097 \\ (0.74) \end{gathered}$
N. Obs	1574	1574	1533	1574	1574	1533	1533

Panel B: Boys

Eligible household	0.0012	0.022	0.030
	(0.13)	(0.22)	(0.24)

Woman eligible		0.066	0.28	0.31	0.58	
(in col. 7: woman receives pension)			(0.14)	(0.28)	(0.28)	(0.53)
Man eligible			-0.059	-0.25	-0.25	-0.69
(in col. 7: man receives pension)			(0.22)	(0.34)	(0.35)	(0.91)
N. Obs	1670	1670	1627	1670	1670	1627

Presence of older members	No	Yes	Yes	No	Yes	Yes	Yes
Family background variables	No	No	Yes	No	No	Yes	Yes
Child Age dummies	Yes						

Notes: Standard errors (robust to correlation of residuals within households and heteroscedasticity) in parentheses. Indicator for presence of old men and women: presence of a woman above 50, a man above 50, a woman above 56, a man above 56, a man above 61
Family background variables: father's age and education, mother's age and education and rural or metro residence.
Member age variables: family size, number of members aged 0 to 5,6 to 15,15 to 24, 24 to 49
Age dummies: Dummies for whether the child is born in 1991, 1990, or 1989.
The instruments in column (7) are woman eligible and man eligible (the first stage is in table A).

Weig ht for Height

Weight for height is a flow measure of nutrition, will respond fast.
Idea: compare children who live in 3 generations households (with an elderly), where nobody is eligible yet, to children who live in 3 generation households where a man, or a woman, is eligible.
Hope: households who have a woman above 60 not so different from household who have a woman between 55 and 60 , yet they are much more likely to receive the pension (22\% vs 78\%)

$$
\begin{equation*}
w_{i f k}=\pi_{w} E_{f}+\pi_{m} E_{m}+\sum_{j=1}^{4} \gamma_{j} 1_{(j=k)}+W_{i f k} \lambda+X_{i f k} \delta+\epsilon_{i f k}, \tag{1}
\end{equation*}
$$

Results: grandmothers feed girls.

Table 4: Effect of eligibility by gender of the intermediate generation. OLS regressions

	GIRLS	BOYS
	(1)	(2)
Mother's mother	0.48^{*}	0.099
eligible	(0.21)	(0.27)
Father's mother	0.15	0.29
eligible	(0.25)	(0.30)
Mother's father	0.097	(0.43)
eligible	(0.34)	
		0.25
Father's father	0.22	(0.44)
eligible	(0.48)	
Control variables:		Yes
Presence of older members	Yes	Yes
Family background variables	Yes	Yes
Age dummies	1457	1552
N. Obs.		

Notes: Standard errors (robust to correlation of residuals within households and heteroscedasticity) in parentheses.
Family background variables: father's age and education, mother's age and education and rural or metro residence. family size, number of members aged 0 to 5,6 to 15,15 to 24,24 to 49 , Age dummies: Dummies for whether the child is born in 1991, 1990, or 1989. Presence of older members: Dummies for whether there is a woman above 50, a man above 50, a woman above 55, a man above 55, a man above 60 .

Height for age

Potential problems

Height for Age

Potential problems

\rightarrow Differencesbetween householdswhich are not captured

Height for age

Potential problems

\rightarrow Differences between householdswhich are not captured
\rightarrow Endogenous family recomposition

Height for Age

Potential problems

\rightarrow Differencesbetween householdswhich are not captured
\rightarrow Endogenous fa mily recomposition
Height for age is a stock measure of nutrition, will respond slowly. Difference in difference-type estimate, with older children serving as control group : they have been exposed to better nutrition a sma ller fraction of their lives than younger children.

Figure 1: Height for age of children living with eligible womenn, eligible men, no eligible member

Heig HT FOR AGE

Potential problems
\rightarrow Differencesbetween householdswhich are not captured
\rightarrow Endogenous family recomposition
Height for age is a stock measure of nutrition, will respond slowly. Difference in difference-type estimate, with older children serving as control group : they have been exposed to better nutrition a sma ller fraction of their lives than younger children.

$$
\begin{align*}
h_{i f k}= & \pi_{w}\left(Y O U N G * E_{f}\right)+\pi_{m}\left(Y O U N G * E_{m}\right)+\beta_{w} E_{f}+\beta_{m} E_{f}(\text { (2) } \\
& \sum_{j=1}^{4} \gamma_{j} 1_{(j=k)}+X_{i f k} \delta+\sum_{j=1}^{4} 1_{(k=j)} * X_{i f k} \lambda_{j}+\epsilon_{i f k} \tag{3}
\end{align*}
$$

Table 5: Effect of eligibility on height for age.
OLS regressions

	Pension Variable			

Notes: Standard errors (robust to correlation of residuals within households and heteroscedasticity) in parentheses.
Family background variables: father's age and education, mother's age and education and rural or metro residence, family size, number of members aged 0 to 5,6 to 15,15 to 24,24 to 49 , above 50 Age dummies: Dummies for whether the child is born in 1991, 1990, or 1989.

Heig HT FOR AGE

Potential problems
\rightarrow Differencesbetween householdswhich are not captured
\rightarrow Endogenous family recomposition
Height for age is a stock measure of nutrition, will respond slowly. Difference in difference-type estimate, with older children serving as control group : they have been exposed to better nutrition a sma ller fraction of their lives than younger children.

$$
\begin{align*}
h_{i f k}= & \pi_{w}\left(Y O U N G * E_{f}\right)+\pi_{m}\left(Y O U N G * E_{m}\right)+\beta_{w} E_{f}+\beta_{m} E_{f}(\text { Z }) \\
& \sum_{j=1}^{4} \gamma_{j} 1_{(j=k)}+X_{i f k} \delta+\sum_{j=1}^{4} 1_{(k=j)} * X_{i f k} \lambda_{j}+\epsilon_{i f k} \tag{3}
\end{align*}
$$

Results: Same as weight for height

Effciency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass.

Emflency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lec hene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Emfiency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-La croix:Divorce laws and sex ratio

Emfiency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-La c roix:Divorce laws a nd sex ratio

- PSID data, State level sex ratio. State level divorce law.

Emfiency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-Lacroix:Divorce laws a nd sex ratio

- PSID data, State level sex ratio. State level divorce law.
- Divorce lawsthat are more favorable to women leadsto lower female labor supply, higher male labor supply.

Emflency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-Lacroix:Divorce laws a nd sex ratio

- PSID data, State level sex ratio. State level divorce law.
- Divorce lawsthat are more favorable to women leadsto lower female labor supply, higher male labor supply.
- Sexratio have the same effects.

TABLE 2
GMM PARAMETER Estimates
Hours/ 1000

Notes: - Asymptotic standard errors in parentheses.

- Instruments: Second order polynomial in age and education (M-F), Father Education (M-F), White (M-F),Spanish (M-F), City size (3 dummies),

North-East, North-Central, West, Protestant (M-F), Jewish (M-F), Catholic (M-F),Sex ratio, Divorce Laws.

- The parameters of the sharing rule are divided by 1,000 (except the one associated with nonlabor income).
- Each regression includes three region dummies (North East, North Central and West).

Emflency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-Lacroix:Divorce laws a nd sex ratio

- PSID data, State level sex ratio. State level divorce law.
- Divorce lawsthat are more favorable to women leadsto lower female labor supply, higher male labor supply.
- Sex ratio have the same effects.
- Test: ratio of the coefficient of sex ratio and divorce law should be the same formen and for women.

TABLE 2
GMM PARAMETER Estimates
Hours/ 1000

Notes: - Asymptotic standard errors in parentheses.

- Instruments: Second order polynomial in age and education (M-F), Father Education (M-F), White (M-F),Spanish (M-F), City size (3 dummies),

North-East, North-Central, West, Protestant (M-F), Jewish (M-F), Catholic (M-F),Sex ratio, Divorce Laws.

- The parameters of the sharing rule are divided by 1,000 (except the one associated with nonlabor income).
- Each regression includes three region dummies (North East, North Central and West).

Emfiency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-Lacroix:Divorce laws a nd sex ratio

- PSID data, State level sex ratio. State level divorce law.
- Divorce lawsthat are more favorable to women leadsto lower female labor supply, higher male la bor supply.
- Sexratio have the same effects.
- Test: ratio of the coefficient of sex ratio and divorce law should be the same formen and for women.
- Test does not reject equality of ratio.

Emflency: Ratios

Browning and Chia ppori (1998), Bourguignon, Chia ppori and Lechene (1993). Test generally pass. Specific ation problems are the same as those encountered above.

Chia ppori-Fortin-Lacroix:Divorce laws a nd sex ratio

- PSID data, State level sex ratio. State level divorce law.
- Divorce lawsthat are more favorable to women leadsto lower female labor supply, higher male la bor supply.
- Sexratio have the same effects.
- Test: ratio of the coefficient of sex ratio and divorce law should be the same formen and for women.
- Test does not reject equality of ratio.
- Specific ation check for Singles: no simila reffects.

TABLE 3
Parameter Estimates - Singles
Hours/1000

	OLS		GMM	
	Wowen	Men	Wowen	Men
$\log \omega$	-0.036	-0.040	-0.177	0.171
	(0.049)	(0.048)	(0.253)	(0.207)
Nonlabor Income (/1000)	-0.001	-0.001	-0.001	-0.003
	(0.001)	(0.001)	(0.004)	(0.002)
Sex Ratio	4.187	1.121	5.857	0.695
	(2.569)	(2.070)	(2.819)	(2.488)
Divorce Laws Index	-0.018	0.015	-0.152	-0.025
	(0.039)	(0.034)	(0.160)	(0.118)
Intercept	-0.374	1.186	-0.739	1.405
	(1.243)	(1.020)	(1.294)	(1.137)
Education	0.077	0.038	0.095	0.000
	(0.020)	(0.021)	(0.035)	(0.045)
Age	0.052	-0.015	0.079	-0.047
	(0.038)	(0.030)	(0.062)	(0.036)
White	0.123	0.182	0.111	0.206
	(0.111)	(0.089)	(0.166)	(0.110)
North East	-0.083	-0.052	-0.094	-0.114
	(0.104)	(0.082)	(0.123)	(0.111)
North Central	-0.202	0.038	-0.193	0.015
	(0.078)	(0.075)	(0.081)	(0.080)
West	-0.243	-0.166	-0.184	-0.146
	(0.101)	(0.092)	(0.121)	(0.117)
		4.470	9.591	
Value of Function			572	498
Number of Observations	572	498		

Production Emfliency: UdRy

Idea: Investment should not be affected by bargaining power. An effic ient household should first maximize the total size of the pie, a nd then divide the pie according to bargaining power.

PRODUCTION EmCIENCY: UDRY

Idea: Investment should not be affected by bargaining power. An effic ient household should first maximize the total size of the pie, a nd then divide the pie according to bargaining power.

Setting: Burkina-Fa so. Very poor, semi-a rid a rea. There is on average 1.8 wives for each head of the household. Important characteristic: Women and men each control their own plots.

Production Emciency: Udry

Idea: Investment should not be affected by bargaining power. An efficient household should first maximize the total size of the pie, and then divide the pie according to bargaining power.

Setting: Burkina-Faso. Very poor, semi-a rid area. There is on average 1.8 wives for each head of the household. Important characteristic: Women and men each control their own plots.

Test: for a given year, household and crop, is the yield (and potentially the inputs) a function of the gender of the person who owns the plot?

$$
Q_{h t c i}=X_{h t c i} \beta+\gamma G_{h t c i}+\lambda_{h t c}+\epsilon_{h t c i}
$$

Where h: household, t: time, c: crop, i: plot
$Q_{h t c i}$: yield on plot
$X_{h t c i}$: control variable on plot
$\lambda_{h t c}$: household-time-crop fixed effect.
Test: is γ equal to zero?

TABLE 3
1
OLS Fixed-Effect Estimates of the Determinants of Plot Yield and Ln(Plot Outpui) ($\times 1,000$ FCFA)
Dependent Variable: Value of Plot Ouipur/Hectare

TABLE 6
Least-Squares Tobit Fixed-Effect Estimates of the Determinants of Plot Ifput Intensities

$\begin{aligned} & \sim \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Gender (1 = female)			Female Labor per Hectare (2)		Child Labor per Hectare (3)		Nonhousehold Labor per Hectare (4)		Manure (1,000 kg per Hectare) (5)			
				-16.33	(-2.54)								
		-668.47	(-9.60)			70.23	(1.53)	-195.46	(-2.34)		(.43)	24.79	(2.42)
	Plot size:	1,209.72	(2.53)	1,462.21	(5.71)	740.80	(1.17)	193.35 487.39	(1.28)	7.99	(.96)		
	1 st decile	+1,217.18	(3.25)	1,131.01	(5.82)	143.12	53)	689.39	(1.27)	2.58	(.48)		
	2d decile	245.94	(2.74)	799.12	(6.72)	133.15	(68)	378.18	(1.07)	-6.18	(-1.12)		
	3d decile	96.53	(1.71)	407.87	(5.02)	-72.15	(-.98)	57.48	(.80)	-2.14	(-.33)		
	4th decile	-. 55	(-.01)	-69.25	(-1.36)	-72.15 -59.53	(-..60)	65.51	(.64)	-11.08	(-1.54)		
	6 6h decile		(-2.97)	-306.51	(-5.96)	-59.53 -184.61	(-1.61)	-43.81	(-.30)	-11.01	(-1.61)		
	7th decile	-153.12	(-6.23)	-386.78	(-6.61)	-184.61	(-1.61) (-1.83)	-255.15	(-.87)	-11.64	(-1.80)		
	8 th decile	-413.36	(-6.79)	-373.57	(-5.16) (-6.08)	-269.99 -219.27	(-1.83) (-1.86)	- 220.64	(-1.07)	-16.41	(-2.45)		
	9 th decile	-490.11	(-7.72)	-418.06	(-6.08)	-219.27	(-1.86)						
	10th decile *			-192				20.20	(.12)	$\begin{array}{r}-9.22 \\ \hline 26\end{array}$	$\begin{array}{r} (-.62) \\ (.02) \end{array}$		
	Toposequence:	41.62	(.35)	-1.92	$(-.02)$	-55.52 35.15	$(.38)$	144.02	(.83)	.26 1.14			
	Uppermost Top of slope	29.36	(.30)	91.02 .57	(1.07) $(.01)$	35.15 .10	$(.00)$	-15.45	(-.11)	1.14 2.88	(.27)		
	Top of slope Mid-slope	36.08	\bigcirc (.38)	.57 75.94	$(.01)$ (86)	-98.03	(-1.05)	23.27	(.17)	2.88	(27)		
	Near bottom	16.42	- (.18)	75.94									

	Soil Types:			-31.68	(-.23)	235.74	(.86)	175.29	(.50)	-11.80	(-1.18)
	3	103.49	(.60)	-31.68	(-.23)	21.88	(.44)	66.04	(.47)	-. 07	(-.01)
	7	-65.79	$(-.85)$	-30.39 -52.06	$(-.28)$	21.88 -778.86	(-4.36)	262.71	(.70)	$-.70$	$(-.08)$
	11	$\begin{array}{r}-28.77 \\ \hline 05198\end{array}$	$(-.09)$ (82)	-52.06	(-.34)	-62.36	(.44)	368.47	(1.13)	16.32	(1.48)
	12	1,051.98	(182)	367.34 -38.50	(-.29)			-187.07	(-.89)		
	13	274.48	(1.33) $(.95)$	-38.50	(-.49)	-42.87	(-.35)	37.73	(.27)	2.86	(.18)
	21	196.37	(.95)	-43.41	(-.92)	205.90	(2.29)	115.56	(1.00)	6.43	(1.29)
	31	83.16	(1.59)	68.24 -10.36	(-.15)	173.14	(1.07)	-51.08	(-.44)	. 73	(.12)
	32	24.77	(.50)	-10.36 163.76	$(-.15)$ (1.36)	206.68	(.78)	-113.92	(-.37)	17.28	(1.61)
	33	250.40	(2.57)	163.76 303.86	(1.36) (1.90)	248.38	(2.60)	195.14	(.58)	-12.75	(-.94)
	35	179.46	(1.50)	303.86 50.84	(1.90) $(.30)$	114.53	(1.19)	31.14	(.20)	8.34	(1.44)
	37	82.49	(.70)	-8.83	(-.10)	79.85	(1.02)	41.90	(.25)	8.00	(1.83)
	45	78.13 187	(1.34) (-184)	-8.33 141.73	$\left(\begin{array}{r}\text { (} \\ (8.76)\end{array}\right.$	42.70	(1.09)	223.23	(1.27)	-15.45	$(-.79)$
	46	-187.14	(-1.84)	141.73	(-33)	2.93	(.05)	126.70	(1.05)	. 80	(.17)
	51	95.73	(1.83)	-27.01	(-.33)	2.93	(.05)				
	Location:					- 18.82	(-.31)	-162.88	(-1.38)	. 99	(.24)
-	Compound -	35.35	(.78)	37.16 12.18	(.90) (.45)	- 42.92	(.93)	25.80	(.30)	5.86	(1.60)
CO	Village	19.69	$9^{(.70)}$	466.18		85.55202.88		84.88		$\begin{aligned} & 1.70 \\ & 7.78 \end{aligned}$	
-	Mean of dependent variable	427.39		517.17				213.11			

This is the least-squares implementation of Honore's (1992) fxed-effect Tobit estimator. f-ratios are in parentheses.

$$
Q_{h t c i}=X_{h t c i} \beta+\gamma G_{h t c i}+\lambda_{h t c}+\epsilon_{h t c i}
$$

Where h: household, t: time, c: crop, i: plot
$Q_{h t c i}$: yield on plot
$X_{h t c i}$: control variable on plot
$\lambda_{h t c}$: household-time-crop fixed effect.
Test: is γ equal to zero?
Estimation of a production function suggests that 5.8% ga in in production could be obtained just by reallocating inputs across plots (NB: doing the same exercise in the village would lead to a 13% increase in production).

Fig. 2.-Regression of yield on area with household-year-crop effects
TABLE 6
Least-Squares Tobit Fixed-Effect Estimates of the Determinants of Plot Input Intensities

	Household-Year-Crop Effects									
	Male Labor per Hectare (1)		Female Labor per Hectare (2)		Child Labor per Hectare (3)		Nonhousehold Labor per Hectare (4)		Manure (1,000 kg per Hectare) (5)	
Gender (1 = female)	-668.47	(-9.60)	70.23	(1.53)	- 195.46	(-2.34)	-428.41	(-1.70)	- 16.33	(-2.54)
Plot size:										
1st decile	1,209.72	(2.53)	1,462.21	(5.71)	740.80	(1.17)	193.35	(.43)	24.79	(2.42)
2 d decile	417.18	(3.25)	1,131.01	(5.82)	143.12	(1.11)	487.39	(1.28)	7.99	(.96)
3d decile	245.94	(2.74)	799.12	(6.72)	133.16	(1.53)	689.39	(1.27)	2.58	(.48)
4th decile	96.53	(1.71)	407.87	(5.02)	72.51	(.68)	378.18	(1.07)	-6.18	(-1.12)
6 th decile	-. 55	(-.01)	-69.25	(-1.36)	-72.15	(-.98)	57.48	(.80)	-2.14	(-.33)
7th decile	- 153.12	(-2.97)	-306.51	(-5.96)	-59.53	(-.60)	65.51	(.64)	- 11.08	(-1.54)
8th decile	-375.53	(-6.23)	- 386.78	(-6.61)	- 184.61	(-1.61)	-43.81	(-.30)	- 11.01	(-1.61)
9 th decile	-413.36	(-6.79)	-373.57	(-5.16)	-269.99	(-1.83)	-255.15	(-.87)	-11.64	(-1.80)
10th decile	-490.11	(-7.72)	-418.06	(-6.08)	-219.27	(-1.86)	-220.64	(-1.07)	- 16.41	(-2.45)
Toposequence:										
Uppermost	41.62	(.35)	-1.92	(-.02)	-55.52	(-.51)	20.20	(.12)	-9.22	(-.62)
Top of slope	29.36	(.30)	91.02	(1.07)	35.15	(.38)	144.02	(.83)	. 26	(.02)
Mid-slope	36.08	(.38)	. 57	(.01)	. 10	(.00)	-15.45	(-.11)	1.14	(.11)
Near bottom	16.42	(.18)	75.94	(.86)	-98.03	(-1.05)	23.27	(.17)	2.88	(.27)

\rightarrow Can we reconcile these results with efficiency?
\rightarrow Can we reconcile these results with effic iency? \rightarrow Women do other activities (child rearing): No
\rightarrow Can we reconcile these results with effic iency?
\rightarrow Women do other activities (child rearing): No
\rightarrow Unobserved differences between plots: probably not
\rightarrow Can we reconcile these results with effic iency?
\rightarrow Women do other activities (child rearing): No
\rightarrow Unobserved differences between plots: probably not
\rightarrow Non convex production technologies: No
\rightarrow Can we reconcile these results with effic iency?
\rightarrow Women do other activities (child rearing): No
\rightarrow Unobserved differences between plots: probably not
\rightarrow Non convex production technologies: No
\rightarrow Why is the household not pa reto effic ient?
\rightarrow Can we reconcile these results with effic iency?
\rightarrow Women do other activities (child rearing): No
\rightarrow Unobserved differences between plots: probably not
\rightarrow Non convex production technologies: No
\rightarrow Why is the household not pa reto effic ient?
\rightarrow Maherand Wells argument: production on plot determines bargaining power ex-post. So incentives are not to maximize effic iency, but to maximize individual welfare. If land could be redistributed from women to men this would improve effic iency, but the husband would need to commit to compensate her.
\rightarrow Can we reconcile these results with effic iency?
\rightarrow Women do other activities (child rearing): No
\rightarrow Unobserved differences between plots: probably not
\rightarrow Non convex production technologies: No
\rightarrow Why is the household not pa reto effic ient?
\rightarrow Maherand Wells argument: production on plot determines bargaining power ex-post. So incentives are not to maximize effic iency, but to maximize individual welfare. If land could be redistributed from women to men this would improve effic iency, but the husband would need to commit to compensate her.
\rightarrow The "labor market" within the household is not perfect, because of a lack of secure property rights on the land. Men have more labor, but women don't want men to work on their plots because they fear that the plots will then be confiscated by the husband.

Short term inc ome rluctuation

\rightarrow Udry and Duflo (2001) look at Cote d'Ivoire, where women and men grow different crop on different plot.

Short term inc ome rluctuation

\rightarrow Udry and Duflo (2001) look at Cote d'Ivoire, where women and men grow different crop on different plot.
\rightarrow Crops are differently affected by (the same) wheather. These are short run income fluctuation, that a re perfectly observed.

Short term inc ome rluctuation

\rightarrow Udry and Duflo (2001) look at Cote d'Ivoire, where women and men grow different crop on different plot.
\rightarrow Cropsare differently affected by (the same) wheather. These are short run income fluctuation, that are perfectly observed.
\rightarrow Income variation predicted by rainfall variation should not have effect on bargaining power (there should be short term insurance).

SHORTTERM INCOME RLUCTUATION

\rightarrow Udry and Duflo (2001) look at Cote d'Ivoire, where women and men grow different crop on different plot.
\rightarrow Cropsare differently affected by (the same) wheather. These are short run income fluctuation, that are perfectly observed.
\rightarrow Income variation predicted by rainfall variation should not have effect on bargaining power (there should be short term insurance).
\rightarrow Therefore, controlling for changes in total expenditures, we should not see an impact on predicted female income variation and female income variation on changes in expenditures on particulargoods.

SHORTTERM INCOME RLUCTUATION

\rightarrow Udry and Duflo (2001) look at Cote d'Ivoire, where women and men grow different crop on different plot.
\rightarrow Crops are differently affected by (the same) wheather. These are short run income fluctuation, that are perfectly observed.
\rightarrow Income variation predicted by rainfall variation should not have effect on bargaining power (there should be short term insurance).
\rightarrow Therefore, controlling for changes in total expenditures, we should not see an impact on predicted female income variation and female income variation on changes in expenditures on particulargoods.
\rightarrow One third player: yams(!!)

Food				
consumption	Adult goods	Clothing	Prestige goods Education	
	(1)	(2)	(3)	(4)

PANEL A: RESTRICTED EXCLUSION RESTRICTION TEST: SEMI PARAMETRIC FORMULATION

Prediced male non-yam	-0.037	0.178	0.112	0.550
income	(0.029)	(0.464)	(0.267)	(0.233)
Predicted yam	0.047	-0.705	0.094	-0.491
income	(0.032)	(0.588)	(0.282)	(0.155)
Predicted female	-0.006	0.845	0.214	0.534
income	(0.034)	(0.623)	(0.370)	(0.192)
F tests (pvalue) :	1.147	0.837	0.203	7.057
Predicted income variables	(0.339)	(0.479)	(0.894)	(0.000)
jointly significant				
Predicted income variables	1.711	1.252	0.041	10.584
significantly different	(0.190)	(0.294)	(0.960)	(0.000)
Coefficient of female crops	1.268	2.501	0.054	17.596
and yam income equal.	(0.265)	(0.120)	(0.818)	(0.000)

Table 4: Restricted exlusion restriction tests

| Staples | Meat | Vegetables | Processed
 foods | Purchased
 foods | Food
 consumed at
 home |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PANEL A: RESTRICTED EXCLUSION RESTRICTION TEST: SEMI PARAMETRIC FORMULATION

Prediced male non-yam	0.015	-0.053	-0.054	0.004	-0.176	0.068
income	(0.077)	(0.090)	(0.142)	(0.131)	(0.090)	(0.133)
Predicted yam	0.142	-0.093	-0.167	-0.005	-0.018	0.100
income	(0.061)	(0.073)	(0.097)	(0.110)	(0.071)	(0.073)
Predicted female	-0.117	0.195	0.574	0.266	0.127	-0.013
income	(0.080)	(0.103)	(0.144)	(0.164)	(0.135)	(0.104)
F tests (pvalue) :	2.696	2.880	5.640	1.014	1.803	0.952
Predicted income variables	(0.055)	(0.044)	(0.002)	(0.393)	(0.157)	(0.422)
jointly significant						
Predicted income variables	3.871	4.280	8.229	1.055	1.790	0.630
significantly different	(0.027)	(0.019)	(0.001)	(0.355)	(0.177)	(0.537)
Coefficient of female crops	7.066	8.440	15.467	2.092	1.180	0.996
and yam income equal.	(0.010)	(0.005)	(0.000)	(0.154)	(0.282)	(0.323)

SHORTTERM INCOME RLUCTUATION

\rightarrow Udry and Duflo (2001) look at Cote d'Ivoire, where women and men grow different crop on different plot.
\rightarrow Cropsare differently affected by (the same) wheather. These are short run income fluctuation, that are perfectly observed.
\rightarrow Income variation predicted by rainfall variation should not have effect on bargaining power (there should be short term insurance).
\rightarrow Therefore, controlling for changes in total expenditures, we should not see an impact on predicted female income variation and female income variation on changes in expenditures on particulargoods.
\rightarrow One third player: yams(!!)
\rightarrow Results: male and female income affect private "prestige" goods, presumably investment in bargaining power (pagnes and jewelry). female income affect food purchase. Yam associated with only good things.

