
Dynamic Programming

11

Dynamic programming is an optimization approach that transforms a complex problem into a sequence of
simpler problems; its essential characteristic is the multistage nature of the optimization procedure. More so
than the optimization techniques described previously, dynamic programming provides a general framework
for analyzing many problem types. Within this framework a variety of optimization techniques can be
employed to solve particular aspects of a more general formulation. Usually creativity is required before
we can recognize that a particular problem can be cast effectively as a dynamic program; and often subtle
insights are necessary to restructure the formulation so that it can be solved effectively.

We begin by providing a general insight into the dynamic programming approach by treating a simple
example in some detail. We then give a formal characterization of dynamic programming under certainty,
followed by an in-depth example dealing with optimal capacity expansion. Other topics covered in the
chapter include the discounting of future returns, the relationship between dynamic-programming problems
and shortest paths in networks, an example of a continuous-state-space problem, and an introduction to
dynamic programming under uncertainty.

11.1 AN ELEMENTARY EXAMPLE

In order to introduce the dynamic-programming approach to solving multistage problems, in this section we
analyze a simple example. Figure 11.1 represents a street map connecting homes and downtown parking
lots for a group of commuters in a model city. The arcs correspond to streets and the nodes correspond to
intersections. The network has been designed in a diamond pattern so that every commuter must traverse five
streets in driving from home to downtown. The design characteristics and traffic pattern are such that the total
time spent by any commuter between intersections is independent of the route taken. However, substantial
delays, are experienced by the commuters in the intersections. The lengths of these delays in minutes, are
indicated by the numbers within the nodes. We would like to minimize the total delay any commuter can
incur in the intersections while driving from his home to downtown. Figure 11.2 provides a compact tabular
representation for the problem that is convenient for discussing its solution by dynamic programming. In this
figure, boxes correspond to intersections in the network. In going from home to downtown, any commuter
must move from left to right through this diagram, moving at each stage only to an adjacent box in the next
column to the right. We will refer to the ‘‘stages to go," meaning the number of intersections left to traverse,
not counting the intersection that the commuter is currently in.

The most naive approach to solving the problem would be to enumerate all 150 paths through the diagram,
selecting the path that gives the smallest delay. Dynamic programming reduces the number of computations
by moving systematically from one side to the other, building the best solution as it goes.

Suppose that we move backward through the diagram from right to left. If we are in any intersection (box)
with no further intersections to go, we have no decision to make and simply incur the delay corresponding to
that intersection. The last column in Fig. 11.2 summarizes the delays with no (zero) intersections to go.

320

11.1 An Elementary Example 321

Figure 11.1 Street map with intersection delays.

Figure 11.2 Compact representation of the network.

322 Dynamic Programming 11.1

Our first decision (from right to left) occurs with one stage, or intersection, left to go. If for example, we
are in the intersection corresponding to the highlighted box in Fig. 11.2, we incur a delay of three minutes in
this intersection and a delay of eithereightor two minutes in the last intersection, depending upon whether
we move up or down. Therefore, the smallest possible delay, or optimal solution, in this intersection is
3+2 = 5 minutes. Similarly, we can consider each intersection (box) in this column in turn and compute the
smallest total delay as a result of being in each intersection. The solution is given by the bold-faced numbers
in Fig. 11.3. The arrows indicate the optimal decision, up or down, in any intersection with one stage, or one
intersection, to go.

Note that the numbers in bold-faced type in Fig. 11.3 completely summarize, for decision-making pur-
poses, the total delays over the last two columns. Although the original numbers in the last two columns
have been used to determine the bold-faced numbers, whenever we are making decisions to the left of these
columns we need only know the bold-faced numbers. In an intersection, say the topmost with one stage to
go, we know that our (optimal) remaining delay, including the delay in this intersection, is five minutes. The
bold-faced numbers summarize all delays from this point on. For decision-making to the left of the bold-faced
numbers, the last column can be ignored.

With this in mind, let us back up one more column, or stage, and compute the optimal solution in each
intersection with two intersections to go. For example, in the bottom-most intersection, which is highlighted
in Fig. 11.3, we incur a delay of two minutes in the intersection, plusfourorsixadditional minutes, depending
upon whether we move up or down. To minimize delay, we moveupand incur a total delay in this intersection
andall remaining intersectionsof 2 + 4 = 6 minutes. The remaining computations in this column are
summarized in Fig. 11.4, where the bold-faced numbers reflect the optimal total delays in each intersection
with two stages, or two intersections, to go.

Once we have computed the optimal delays in each intersection with two stages to go, we can again move
back one column and determine the optimal delays and the optimal decisions with three intersections to go.
In the same way, we can continue to move back one stage at a time, and compute the optimal delays and
decisions with four and five intersections to go, respectively. Figure 11.5 summarizes these calculations.

Figure 11.5(c) shows the optimal solution to the problem. The least possible delay through the network
is 18 minutes. To follow the least-cost route, a commuter has to start at the second intersection from the
bottom. According to the optimal decisions, or arrows, in the diagram, we see that he should next move down
to the bottom-most intersection in column 4. His following decisions should be up, down, up, down, arriving
finally at the bottom-most intersection in the last column.

Figure 11.3 Decisions and delays with one intersection to go.

11.1 An Elementary Example 323

Figure 11.4 Decisions and delays with two intersections to go.

However, the commuters are probably not free to arbitrarily choose the intersection they wish to start
from. We can assume that their homes are adjacent to only one of the leftmost intersections, and therefore
each commuter’s starting point is fixed. This assumption does not cause any difficulty since we have, in
fact, determined the routes of minimum delay from the downtown parking lots toall the commuter’s homes.
Note that this assumes that commuters do not care in which downtown lot they park. Instead of solving the
minimum-delay problem for only a particular commuter, we haveembeddedthe problem of the particular
commuter in the more general problem of finding the minimum-delay paths from all homes to the group
of downtown parking lots. For example, Fig. 11.5 also indicates that the commuter starting at the topmost
intersection incurs a delay of 22 minutes if he follows his optimal policy of down, up, up, down, and then
down. He presumably parks in a lot close to the second intersection from the top in the last column. Finally,
note that three of the intersections in the last column are not entered by any commuter. The analysis has
determined the minimum-delay paths from each of the commuter’s homes to the group of downtown parking
lots, not to each particular parking lot.

Using dynamic programming, we have solved this minimum-delay problem sequentially by keeping track
of how many intersections, or stages, there were to go. In dynamic-programming terminology, each point
where decisions are made is usually called astageof the decision-making process. At any stage, we need
only know which intersection we are in to be able to make subsequent decisions. Our subsequent decisions do
not depend upon how we arrived at the particular intersection. Information that summarizes the knowledge
required about the problem in order to make the current decisions, such as the intersection we are in at a
particular stage, is called astateof the decision-making process.

In terms of these notions, our solution to the minimum-delay problem involved the following intuitive
idea, usually referred to as theprinciple of optimality.

Any optimal policy has the property that, whatever the current state and decision, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the current decision.

To make this principle more concrete, we can define theoptimal-value functionin the context of the
minimum-delay problem.

vn(sn) = Optimal value (minimum delay) over the current and sub-
sequent stages (intersections), given that we are in statesn
(in a particular intersection) withn stages (intersections) to go.

The optimal-value function at each stage in the decision-making process is given by the appropriate column

324 Dynamic Programming 11.1

Figure 11.5 Charts of optimal delays and decisions.

11.1 An Elementary Example 325

of Fig. 11.5(c). We can write down arecursiverelationship for computing the optimal-value function by
recognizing that, at each stage, the decision in a particular state is determined simply by choosing the
minimum total delay. If we number the states at each stage assn = 1 (bottom intersection) up tosn = 6 (top
intersection), then

vn(sn) = Min {tn(sn) + vn−1(sn−1)} , (1)

subject to:

sn−1 =


sn + 1 if we choose up andn even,

sn − 1 if we choose down andn odd,

sn otherwise,

wheretn(sn) is the delay time in intersectionsn at stagen.
The columns of Fig. 11.5(c) are then determined by starting at the right with

v0(s0) = t0(s0) (s0 = 1, 2, . . . , 6), (2)

and successively applying Eq. (1). Corresponding to this optimal-value function is anoptimal-decision
function, which is simply a list giving the optimal decision for each state at every stage. For this example,
the optimal decisions are given by the arrows leaving each box in every column of Fig. 11.5(c).

The method of computation illustrated above is calledbackward induction, since it starts at the right and
moves back one stage at a time. Its analog,forward induction, which is also possible, starts at the left and
moves forward one stage at a time. The spirit of the calculations is identical but the interpretation is somewhat
different. The optimal-value function for forward induction is defined by:

un(sn) = Optimal value (minimum delay) over the current andcompleted
stages (intersections), given that we are in statesn
(in a particular intersection) withn stages (intersections) to go.

The recursive relationship for forward induction on the minimum-delay problem is

un−1(sn−1) = Min {un(sn) + tn−1(sn−1)} , (3)

subject to:

sn−1 =

 sn + 1 if we choose up andn even,
sn − 1 if we choose down andn odd,
sn otherwise,

where the stages are numbered in terms of intersections to go. The computations are carried out by setting

u5(s5) = t5(s5) (s5 = 1, 2, . . . , 6), (4)

and successively applying (3). The calculations for forward induction are given in Fig. 11.6. When performing
forward induction, the stages are usually numbered in terms of the number of stagescompleted(rather than
the number of stages to go). However, in order to make a comparison between the two approaches easier, we
have avoided using the ‘‘stages completed" numbering.

The columns of Fig. 11.6(f) give the optimal-value function at each stage for the minimum-delay problem,
computed by forward induction. This figure gives the minimum delays from each particular downtown parking
lot to thegroupof homes of the commuters. Therefore, this approach will only guarantee finding the minimum
delay path from the downtown parking lots tooneof the commuters’ homes. The method, in fact, finds the
minimum-delay path to a particular origin only if that origin may be reached from a downtown parking lot
by a backward sequence of arrows in Fig. 11.6(f).

If we select the minimum-delay path in Fig. 11.6(f), lasting 18 minutes, and follow the arrows backward,
we discover that this path leads to the intersection second from the bottom in the first column. This is the
same minimum-delay path determined by backward induction in Fig. 11.5(c).

326 Dynamic Programming 11.1

Figure 11.6 Solution by forward induction.

11.2 Formalizing the Dynamic-Programming Approach 327

Forward induction determined the minimum-delay paths from each individual parking lot to thegroup
of homes, while backward induction determined the minimum-delay paths from each individual home to the
group of downtown parking lots. The minimum-delay path between the two groups is guaranteed to be the
same in each case but, in general, the remaining paths determined may be different. Therefore, when using
dynamic programming, it is necessary to think about whether forward or backward induction is best suited
to the problem you want to solve.

11.2 FORMALIZING THE DYNAMIC-PROGRAMMING APPROACH

The elementary example presented in the previous section illustrates the three most important characteristics
of dynamic-programming problems:

Stages

The essential feature of the dynamic-programming approach is the structuring of optimization problems
into multiple stages, which are solved sequentially one stage at a time. Although each one-stage problem
is solved as an ordinary optimization problem, its solution helps to define the characteristics of the next
one-stage problem in the sequence.

Often, the stages represent different time periods in the problem’s planning horizon. For example, the
problem of determining the level of inventory of a single commodity can be stated as a dynamic program.
The decision variable is the amount to order at the beginning of each month; the objective is to minimize the
total ordering and inventory-carrying costs; the basic constraint requires that the demand for the product be
satisfied. If we can order only at the beginning of each month and we want an optimal ordering policy for
the coming year, we coulddecompose the problem into 12 stages, each representing the ordering decision at
the beginning of the corresponding month.

Sometimes the stages do not have time implications. For example, in the simple situation presented
in the preceding section, the problem of determining the routes of minimum delay from the homes of the
commuters to the downtown parking lots was formulated as a dynamic program. The decision variable was
whether to chooseupor downin any intersection, and the stages of the process were defined to be the number
of intersections to go. Problems that can be formulated as dynamic programs with stages that do not have
time implications are often difficult to recognize.

States

Associated with each stage of the optimization problem are thestatesof the process. The states reflect
the information required to fully assess the consequences that the current decision has upon future actions.
In the inventory problem given in this section, each stage has only one variable describing the state: the
inventory level on hand of the single commodity. The minimum-delay problem also has one state variable:
the intersection a commuter is in at a particular stage.

The specification of the states of the system is perhaps the most critical design parameter of the dynamic-
programming model. There are no set rules for doing this. In fact, for the most part, this is an art often
requiring creativity and subtle insight about the problem being studied. The essential properties that should
motivate the selection of states are:

i) The states should convey enough information to make future decisions without regard to how the process
reached the current state; and

ii) The number of state variables should be small, since the computational effort associated with the dynamic-
programming approach is prohibitively expensive when there are more than two, or possibly three, state
variables involved in the model formulation.

This last feature considerably limits the applicability of dynamic programming in practice.

328 Dynamic Programming 11.2

Recursive Optimization

The final general characteristic of the dynamic-programming approach is the development of arecursive
optimizationprocedure, which builds to a solution of the overallN-stage problem by first solving a one-stage
problem and sequentially including one stage at a time and solving one-stage problems until the overall
optimum has been found. This procedure can be based on abackward inductionprocess, where the first stage
to be analyzed is the final stage of the problem and problems are solved moving back one stage at a time until
all stages are included. Alternatively, the recursive procedure can be based on aforward inductionprocess,
where the first stage to be solved is the initial stage of the problem and problems are solved moving forward
one stage at a time, until all stages are included. In certain problem settings, only one of these induction
processes can be applied (e.g., only backward induction is allowed in most problems involving uncertainties).

The basis of the recursive optimization procedure is the so-calledprinciple of optimality, which has
already been stated: an optimal policy has the property that, whatever the current state and decision, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the current
decision.

General Discussion

In what follows, we will formalize the ideas presented thus far. Suppose we have a multistage decision
process where thereturn (or cost) for a particularstageis:

fn(dn, sn), (5)

wheredn is a permissibledecisionthat may be chosen from the setDn, andsn is thestateof the process with
n stages to go. Normally, the set of feasible decisions,Dn, available at a given stage depends upon the state
of the process at that stage,sn, and could be written formally asDn(sn). To simplify our presentation, we
will denote the set of feasible decisions simply asDn. Now, suppose that there are a total ofN stages in the
process and we continue to think ofn as the number of stagesremainingin the process. Necessarily, this
view implies a finite number of stages in the decision process and therefore a specific horizon for a problem
involving time. Further, we assume that the statesn of the system withn stages to go is a full description of
the system for decision-making purposes and that knowledge of prior states is unnecessary. The next state
of the process depends entirely on the current state of the process and the current decision taken. That is, we
can define atransition functionsuch that, givensn, the state of the process withn stages to go, the subsequent
state of the process with(n − 1) stages to go is given by

sn−1 = tn(dn, sn), (6)

wheredn is the decision chosen for the current stage and state. Note that there is no uncertainty as to what
the next state will be, once the current state and current decision are known. In Section 11.7, we will extend
these concepts to include uncertainty in the formulation.

Our multistage decision process can be described by the diagram given in Fig. 11.7. Given the current
statesn which is a complete description of the system for decision-making purposes withn stages to go, we
want to choose the decisiondn that will maximize the total return over the remaining stages. The decision
dn, which must be chosen from a setDn of permissible decisions, produces a return at this stage offn(dn, sn)

and results in a new statesn−1 with (n − 1) stages to go. The new state at the beginning of the next stage
is determined by the transition functionsn−1 = tn(dn, sn), and the new state is a complete description of the
system for decision-making purposes with(n − 1) stages to go. Note that the stage returns are independent
of one another.

In order to illustrate these rather abstract notions, consider a simple inventory example. In this case, the
statesn of the system is the inventory levelIn with n months to go in the planning horizon. The decisiondn
is the amountOn to order this month. The resulting inventory levelIn−1 with (n − 1) months to go is given
by the usual inventory-balance relationship:

In−1 = In + On − Rn,

11.2 Formalizing the Dynamic-Programming Approach 329

Figure 11.7 Multistage decision process.

whereRn is the demand requirement this month. Thus, formally, the transition function withn stages to go
is defined to be:

In−1 = tn(In, On) = In + On − Rn.

The objective to be minimized is the total ordering and inventory-carrying costs, which is the sum of the
one-stage costsCn(In, On).

For the general problem, our objective is to maximize the sum of the return functions (or minimize the
sum of cost functions) over all stages of the decision process; and our only constraints on this optimization are
that the decision chosen for each stage belong to some setDn of permissible decisions and that the transitions
from state to state be governed by Eq. (6). Hence, given that we are in statesn with n stages to go, our
optimization problem is to choose the decision variablesdn, dn−1, . . . , d0 to solve the following problems:

vn(sn) = Max
[

fn(dn, sn) + fn−1(dn−1, sn−1) + · · · + f0(d0, s0)
]
,

subject to:

sm−1 = tm(dm, sm) (m = 1, 2, . . . , n),
(7)

dm ∈ Dm (m = 0, 1, . . . , n).

We callvn(sn) theoptimal-value function, since it represents the maximum return possible over then stages
to go. Formally, we define:

vn(sn) = Optimal value of all subsequent decisions, given that we are in state
sn with n stages to go.

Now since fn(dn, sn) involves only the decision variabledn and not the decision variablesdn−1, . . . , d0,
we could first maximize over this latter group for every possibledn and then choosedn so as to maximize the
entire expression. Therefore, we can rewrite Eq. (7) as follows:

vn(sn) = Max
{

fn(dn, sn) + Max
[

fn−1(dn−1, sn−1) + · · · + f0(d0, s0)
]}

,

subject to: subject to:

sn−1 = tn(dn, sn) sm−1 = tm(dm, sm) (m = 1, 2, . . . , n − 1), (8)

dn ∈ Dn, dm ∈ Dm, (m = 0, 1, . . . , n − 1).

Note that the second part of Eq. (8) is simply the optimal-value function for the(n − 1)-stage dynamic-
programming problem defined by replacingn with (n − 1) in (7). We can therefore rewrite Eq. (8) as the
following recursive relationship:

vn(sn) = Max
[

fn(dn, sn) + vn−1(sn−1)
]
,

subject to:

sn−1 = tn(dn, sn), (9)

dn ∈ Dn.

330 Dynamic Programming 11.2

To emphasize that this is an optimization overdn, we can rewrite Eq. (9) equivalently as:

vn(sn) = Max{ fn(dn, sn) + vn−1[tn(dn, sn)]} , (10)

subject to:
dn ∈ Dn.

The relationship in either Eq. (9) or (10) is a formal statement of theprinciple of optimality. As we have
indicated, this principle says that an optimal sequence of decisions for a multistage problem has the property
that, regardless of the current decisiondn and current statesn, all subsequent decisions must be optimal, given
the statesn−1 resulting from the current decision.

Sincevn(sn) is defined recursively in terms ofvn−1(sn−1), in order to solve Eqs. (9) or (10) it is
necessary to initiate the computation by solving the ‘‘stage-zero" problem. The stage-zero problem is not
defined recursively, since there are no more stages after the final stage of the decision process. The stage-zero
problem is then the following:

v0(s0) = Max f0(d0, s0), (11)

subject to:
d0 ∈ D0.

Often thereis no stage-zero problem, asv0(s0) is identically zero for all final stages. In the simple example of
the previous section, where we were choosing the path of minimum delay through a sequence of intersections,
the stage-zero problem consisted of accepting the delay for the intersection corresponding to each final state.

In this discussion, we have derived the optimal-value function forbackward induction. We could easily
have derived the optimal-value function forforward induction, as illustrated in the previous section. However,
rather than develop the analogous result, we will only state it here. Assuming that we continue to number the
states ‘‘backwards," we can define the optimal-value function for forward induction as follows:

un(sn) = Optimal value of all prior decisions, given that we are in statesn
with n stages to go.

The optimal-value function is then given by:
un−1(sn−1) = Max[un(sn) + fn(dn, sn)] , (12)

subject to:

sn−1 = tn(dn, sn),

dn ∈ Dn,

where the computations are usually initialized by setting

un(sn) = 0,

or by solving some problem, external to the recursive relationship, that gives a value to being in a particular
initial state. Note that, for forward induction, you need to think of the problem as one of examining all the
combinations of current states and actions that produce a specific state at the next stage, and then choose
optimally among these combinations.

It should be pointed out that nothing has been said about the specific form of the stage-return functions
or the set of permissible decisions at each stage. Hence, what we have said so far holds regardless of whether
the decisions are discrete, continuous, or mixtures of the two. All that is necessary is that the recursive
relationship be solvable for the optimal solution at each stage, and then aglobal optimal solution to the
overall problem is determined. The optimization problem that is defined at each stage could lead to the
application of a wide variety of techniques, i.e., linear programming, network theory, integer programming,
and so forth, depending on the nature of the transition function, the constraint setDn, and the form of the
function to be optimized.

11.3 Optimal Capacity Expansion 331

It should also be pointed out that nowhere in developing the fundamental recursive relationship of dynamic
programming was any use made of the fact that there were a finite number of states at each stage. In fact,
Eqs. (9), (10), and (12) hold independent of the number of states. The recursive relationship merely needs to
be solved for all possible states of the system at each stage. If the state space, i.e., the set of possible states, is
continuous, and therefore an infinite number of states are possible at each stage, then the number of states is
usually made finite by making a discrete approximation of the set of possible states, and the same procedures
are used. An example of a dynamic-programming problem with a continuous state space is given in Section
11.6.

Finally, we have assumed certainty throughout out discussion so far; this assumption will be relaxed in
Section 11.7, and a very similar formal structure will be shown to hold.

11.3 OPTIMAL CAPACITY EXPANSION

In this section, we further illustrate the dynamic-programming approach by solving a problem of optimal
capacity expansion in the electric power industry.

A regional electric power company is planning a large investment in nuclear power plants over the next
few years. A total of eight nuclear power plants must be built over the next six years because of both increasing
demand in the region and the energy crisis, which has forced the closing of certain of their antiquated fossil-
fuel plants. Suppose that, for a first approximation, we assume that demand for electric power in the region is
known with certainty and that we must satisfy the minimum levels of cumulative demand indicated in Table
11.1. The demand here has been converted into equivalent numbers of nuclear power plants required by the
end of each year. Due to the extremely adverse public reaction and subsequent difficulties with the public
utilities commission, the power company has decided at least to meet this minimum-demand schedule.

The building of nuclear power plants takes approximately one year. In addition to a cost directly associated
with the construction of a plant, there is a common cost of $1.5 million incurred when any plants are
constructed in any year, independent of the number of plants constructed. This common cost results from
contract preparation and certification of the impact statement for the Environmental Protection Agency. In
any given year, at most three plants can be constructed. The cost of construction per plant is given in Table
11.1 for each year in the planning horizon. These costs are currently increasing due to the elimination of an
investment tax credit designed to speed investment in nuclear power. However, new technology should be
available by 1984, which will tend to bring the costs down, even given the elimination of the investment tax
credit.

We can structure this problem as a dynamic program by defining the state of the system in terms of
the cumulative capacity attained by the end of a particular year. Currently, we have no plants under con-
struction, and by the end of each year in the planning horizon we must have completed a number of plants
equal to or greater than the cumulative demand. Further, it is assumed that there is no need ever to con-
struct more than eight plants. Figure 11.8 provides a graph depicting the allowable capacity (states) over
time. Any node of this graph is completely described by the corresponding year number and level of
cumulative capacity, say the node(n, p). Note that we have chosen to measure time in terms ofyears to go
in the planning horizon. The cost of traversing any upward-sloping arc is the common cost of $1.5 million

Table 11.1 Demand and cost per plant ($×1000)

Cumulative demand Cost per plant
Year (in number of plants) ($ × 1000)

1981 1 5400
1982 2 5600
1983 4 5800
1984 6 5700
1985 7 5500
1986 8 5200

332 Dynamic Programming 11.3

Figure 11.8 Allowable capacity (states) for each tage

plus the plant costs, which depend upon the year of construction and whether 1, 2, or 3 plants are completed.
Measured in thousands of dollars, these costs are

1500+ cnxn,

wherecn is the cost per plant in the yearn andxn is the number of plants constructed. The cost for traversing
any horizontal arc is zero, since these arcs correspond to a situation in which no plant is constructed in the
current year.

Rather than simply developing the optimal-value function in equation form, as we have done previously,
we will perform the identical calculations in tableau form to highlight the dynamic-programming methodol-
ogy. To begin, we label the final state zero or, equivalently define the ‘‘stage-zero" optimal-value function to
be zero for all possible states at stage zero. We will define a state as the cumulative total number of plants
completed. Since the only permissible final state is to construct the entire cumulative demand of eight plants,
we haves0 = 8 and

v0(8) = 0.
Now we can proceed recursively to determine the optimal-value function with one stage remaining. Since the
demand data requires 7 plants by 1985, with one year to go the only permissible states are to have completed
7 or 8 plants. We can describe the situation by Tableau 1.

The dashes indicate that the particular combination of current state and decision results in a state that is
not permissible. In this table there are no choices, since, if we have not already completed eight plants, we
will construct one more to meet the demand. The cost of constructing the one additional plant is the $1500
common cost plus the $5200 cost per plant, for a total of $6700. (All costs are measured in thousands of
dollars.) The column headedd∗

1(s1) gives the optimal decision function, which specifies the optimal number
of plants to construct, given the current state of the system.

Now let us consider what action we should take with two years (stages) to go. Tableau 2 indicates the
possible costs of eachstate:

11.3 Optimal Capacity Expansion 333

Tableau 1

Tableau 2

If we have already completed eight plants with two years to go, then clearly we will not construct any
more. If we have already completed seven plants with two years to go, then we can either construct the one
plant we need this year or postpone its construction. Constructing the plant now costs $1500 in common
costs plus $5500 in variable costs, and results in state 8 with one year to go. Since the cost of state 8 with one
year to go is zero, the total cost over the last two years is $7000. On the other hand, delaying construction
costs zero this year and results in state 7 with one year to go. Since the cost of state 7 with one year to go is
$6700, the total cost over the last two years is $6700. If we arrive at the point where we have two years to go
and have completed seven plants, it pays to delay the production of the last plant needed. In a similar way,
we can determine that the optimal decision when in state 6 with two years to go is to construct two plants
during the next year.

To make sure that these ideas are firmly understood, we will determine the optimal-value function and
optimal decision with three years to go. Consider Tableau 3 for three years to go:

Tableau 3

Now suppose that, with three years to go, we have completed five plants. We need to construct at least
one plant this year in order to meet demand. In fact, we can construct either 1, 2, or 3 plants. If we construct
one plant, it costs $1500 in common costs plus $5700 in plant costs, and results in state 6 with two years to
go. Since the minimum cost following the optimal policy for the remaining two years is then $12,500, our
total cost for three years would be $19,700. If we construct two plants, it costs the $1500 in common costs
plus $11,400 in plant costs and results in state 7 with two years to go. Since the minimum cost following the
optimal policy for the remaining two years is then $6700, our total cost for three years would be $19,600.
Finally, if we construct three plants, it costs the $1500 in common costs plus $17,100 in plant costs and
results in state 8 with two years to go. Since the minimum cost following the optimal policy for the remaining

334 Dynamic Programming 11.4

Figure 11.9 Tableaus to complete power-plant example.

two years is then zero, our total cost for three years would be $18,600. Hence, the optimal decision, having
completed five plants (being in state 5) with three years (stages) to go, is to construct three plants this year.
The remaining tableaus for the entire dynamic-programming solution are determined in a similar manner (see
Fig. 11.9).

Since we start the construction process with no plants (i.e., in state 0) with six years (stages) to go, we
can proceed to determine the optimal sequence of decisions by considering the tableaus in the reverse order.
With six years to go it is optimal to construct three plants, resulting in state 3 with five years to go. It is then
optimal to construct three plants, resulting in state 6 with four years to go, and so forth. The optimal policy
is then shown in the tabulation below:

Years Resulting
to go Construct state

6 3 3
5 3 6
4 0 6
3 0 6
2 2 8
1 0 8

Hence, from Tableau 6, the total cost of the policy is $48.8 million.

11.4 DISCOUNTING FUTURE RETURNS

In the example on optimal capacity expansion presented in the previous section, a very legitimate objection
might be raised that thepresent value of moneyshould have been taken into account in finding the optimal
construction schedule. The issue here is simply that a dollar received today is clearly worth more than a

11.4 Discounting Future Returns 335

dollar received one year from now, since the dollar received today could be invested to yield some additional
return over the intervening year. It turns out that dynamic programmingis extremely well suited to take this
into account.

We will define, in the usual way, the one-perioddiscount factorβ as the present value of one dollar
receivedone period from now. In terms of interest rates, if the interest rate for the period werei , then one
dollar invested now would accumulate to(1 + i) at the end of one period. To see the relationship between
the discount factorβ and the interest ratei , we ask the question ‘‘How much must be invested now to yield
one dollar one period from now?" This amount is clearly the present value of a dollar received one period
from now, so thatβ(1 + i) = 1 determines the relationship betweenβ andi , namely,β = 1/(1 + i). If we
invest one dollar now forn periods at an interest rate per period ofi , then theaccumulated value at the end
of n periods, assuming the interest is compounded, is(1 + i)n. Therefore, the present value of one dollar
receivedn periods from now is 1/(1 + i)n or, equivalently,βn.

The concept of discounting can be incorporated into the dynamic-programming framework very easily
since we often have a return per period (stage) that we may wish to discount by the per-period discount factor.
If we have ann-stage dynamic-programming problem, the optimal-value function, including the appropriate
discounting of future returns, is given by

vn(sn) = Max [fn(dn, sn) +β fn−1(dn−1, sn−1) + β2 fn−2(dn−2, sn−2)

+ · · · + βn f0(d0, s0)],

subject to:
sm−1 = tm(dm, sm)(m = 1, 2, . . . , n),

(13)
dm ∈ Dm, (m = 0, 1, . . . , n),

where the stages (periods) are numbered in terms ofstages to go. Making the same argument as in Section
11.3 and factoring out theβ, we can rewrite Eq. (13) as:

vn(sn) = Max { fn(dn, sn) + β Max [fn−1(dn−1, sn−1) + β fn−2(dn−2, sn−2)

+ · · · + βn−1 f0(d0, s0)],

subject to: subject to:
sn−1 = tn(dn, sn) sm−1 = tm(dm, sm) (m = 1, 2, . . . , n − 1),

dn ∈ Dn dm ∈ Dm (m = 0, 1, . . . , n − 1).

(14)

Since the second part of Eq. (14) is simply the optimal-value function for the(n−1)-stage problem multiplied
by β, we can rewrite Eq. (14) as

vn(sn) = Max[fn(dn, sn) + βvn−1(sn−1)],

subject to:
sn−1 = tn(dn, sn), (15)

dn ∈ Dn,

which is simply the recursive statement of the optimal-value function for backward induction with discounting.
If β = 1, we have the case ofno discountingand Eq. (15) is identical to Eq. (9). Finally, if the discount rate
depends on the period,β can be replaced byβn and (15) still holds.

We can look at the impact of discounting future-stage returns by considering again the optimal capacity
expansion problem presented in the previous section. Suppose that the alternative uses of funds by the electric
power company result in a 15 percent return on investment. This corresponds to a yearly discount factor of
approximately 0.87. If we merely apply backward induction to the capacity expansion problem according to
Eq. (15), usingβ = 0.87, we obtain the optimal-value function for each stage as given in Fig. 11.10.

336 Dynamic Programming 11.4

Figure 11.10 Optimal-value and decision functions with discounting.

∗11.5 Shortest Paths in a Network 337

Given that the system is in state zero with six stages to go, we determine the optimal construction strategy
by considering the optimal decision functiond∗

n(sn) from stage 6 to stage 0. The optimal construction
sequence is then shown in the following tabulation:

Stages Resulting
to go Construct state

6 2 2
5 0 2
4 2 4
3 3 7
2 0 7
1 1 8

and the optimal value of the criterion function,present value of total future costs, is $37.8 million for this
strategy. Note that this optimal strategy is significantly different from that computed in the previous section
without discounting. The effect of the discounting of future costs is to delay construction in general, which
is what we would expect.

∗11.5 SHORTEST PATHS IN A NETWORK

Although we have not emphasized this fact, dynamic-programming and shortest-path problems are very
similar. In fact, as illustrated by Figs. 11.1 and 11.8, our previous examples of dynamic programming can
both be interpreted as shortest-path problems.

In Fig. 11.8, we wish to move through the network from the starting node (initial state) at stage 6, with
no plants yet constructed, to the end node (final state) at stage 0 with eight plants constructed. Every path in
the network specifies a strategy indicating how many new plants to construct each year.

Since the cost of a strategy sums the cost at each stage, the total cost corresponds to the ‘‘length" of a
path from the starting to ending nodes. The minimum-cost strategy then is just the shortest path.

Figure 11.11 illustrates a shortest-path network for the minimum-delay problem presented in Section
11.1. The numbers next to the arcs are delay times. An end node representing the group of downtown
parking lots has been added. This emphasizes the fact that we have assumed that the commuters do not care
in which lot they park. A start node has also been added to illustrate that the dynamic-programming solution
by backwardinduction finds the shortest path from the end node to the start node. In fact, it finds the shortest
paths from the end node toall nodes in the network, thereby solving the minimum-delay problem for each
commuter. On the other hand, the dynamic-programming solution byforward induction finds the shortest
path from the start node to the end node. Although theshortest pathwill be the same for both methods,
forward induction willnotsolve the minimum-delay problem forall commuters, since the commuters are not
indifferent to which home they arrive.

To complete the equivalence that we have suggested between dynamic programming and shortest paths,
we next show how shortest-path problems can be solved by dynamic programming. Actually, several different
dynamic-programming solutions can be given, depending upon the structure of the network under study. As
a general rule, the morestructuredthe network, the more efficient the algorithm that can be developed. To
illustrate this point we give two separate algorithms applicable to the following types of networks:

i) Acyclic networks.These networks contain no directed cycles. That is, we cannot start from any node and
follow the arcs in their given directions to return to the same node.

ii) Networks without negative cycles.These networks may contain cycles, but the distance around any cycle
(i.e., the sum of the lengths of its arcs) must be nonnegative.

In the first case, to take advantage of the acyclic structure of the network, we order the nodes so that, if the
network contains the arci – j , theni > j . To obtain such an ordering, begin with the terminal node, which can
be thought of as having only entering arcs, and number it ‘‘one." Then ignore that node and the incident arcs,
and number any node that has only incoming arcs as the next node. Since the network is acyclic, there must be

338 Dynamic Programming ∗11.5

Figure 11.11 Shortest-path network for minimum-delay problem.

such a node. (Otherwise, from any node, we can move along an arc to another node. Starting from any node
and continuing to move away from any node encountered, we eventually would revisit a node, determining
a cycle, contradicting the acyclic assumption.) By ignoring the numbered nodes and their incident arcs, the
procedure is continued until all nodes are numbered.

This procedure is applied, in Fig. 11.12, to the longest-path problem introduced as a critical-path schedul-
ing example in Section 8.1.

Figure 11.12 Finding the longest path in an acyclic network.

We can apply the dynamic-programming approach by viewing each node as a stage, using either backward
induction to consider the nodes in ascending order, or forward induction to consider the nodes in reverse order.
For backward induction,vn will be interpreted as the longest distance from noden to the end node. Setting
v1 = 0, dynamic programming determinesv2, v3, . . . , vN in order, by the recursion

vn = Max[dnj + v j], j < n,

wherednj is the given distance on arcn– j . The results of this procedure are given as node labels in Fig. 11.12
for the critical-path example.

For a shortest-path problem, we use minimization instead of maximization in this recursion. Note that
the algorithm finds the longest (shortest) paths from every node to the end node. If we want only the longest
path to the start node, we can terminate the procedure once the start node has been labeled. Finally, we could
have found the longest distances from the start node to all other nodes by labeling the nodes in the reverse
order, beginning with the start node.

∗11.5 Shortest Paths in a Network 339

Figure 11.13 Shortest paths in a network without negative cycles.

A more complicated algorithm must be given for the more general problem of finding the shortest path
between two nodes, say nodes 1 andN, in a network without negative cycles. In this case, we can devise a
dynamic-programming algorithm based upon a value function defined as follows:

vn(j) = Shortest distance from node 1 to nodej along paths using at
mostn intermediate nodes.

By definition, then,
v0(j) = d1 j for j = 2, 3, . . . , N,

the lengthd1 j of arc 1–j since no intermediate nodes are used. The dynamic-programming recursion is

vn(j) = Min {di j + vn−1(i)}, 1 ≤ j ≤ N, (16)

which uses the principle of optimality: that any path from node 1 to nodej , using at mostn intermediate
nodes, arrives at nodej from nodei along arci – j after using the shortest path with at most(n − 1) interme-
diate nodes from nodej to nodei . We allowi = j in the recursion and taked j j = 0, since the optimal path
using at mostn intermediate nodes may coincide with the optimal path with lengthvn−1(j) using at most
(n − 1) intermediate nodes.

The algorithm computes the shortest path from node 1 to every other node in the network. It terminates
whenvn(j) = vn−1(j) for every nodej , since computations in Eq. (16) will be repeated at every stage from
n on. Because no path (without cycles) uses any more than(N − 1) intermediate nodes, whereN is the total
number of nodes, the algorithm terminates after at most(N − 1) steps.

As an application of the method, we solve the shortest-path problem introduced in Chapter 8 and given
in Fig. 11.13.

Initially the valuesv0(j) are given by

v0(1) = 0, v0(2) = d12 = 5.1, v0(3) = d13 = 3.4,

and
v0(j) = ∞ for j = 4, 5, 6, 7, 8,

since these nodes are not connected to node 1 by an arc. The remaining steps are specified in Tableaus 7,
8, and 9. The computations are performed conveniently by maintaining a table of distancesdi j . If the list
v0(i) is placed to the left of this table, then recursion Eq. (14) states thatv1(j) is given by the smallest of the
comparisons:

v0(i) + di j for i = 1, 2, . . . , 8.

That is, place the columnv0(i) next to thej th column of thedi j table, add the corresponding elements, and
takev1(j) as the smallest of the values. Ifv1(j) is recorded below thej th column, the next iteration to find
v2(j) is initiated by replacing the columnv0(i) with the elementsv1(j) from below the distance table.

As the reader can verify, the next iteration givesv4(j) = v3(j) for all j . Consequently, the valuesv3(j)
recorded in Tableau 9 are the shortest distances from node 1 to each of the nodesj = 2, 3, . . . , 8.

340 Dynamic Programming 11.6

Tableau 7†

Node j

Node i v0(i) 1 2 3 4 5 6 7 8

1 0 0 5.1 3.4
2 5.1 0 .5 2
3 3.4 1 0 1.5 5
4 +∞ 0 2 3 4.2
5 +∞ 0 3 6
6 +∞ 2 0 .5 2.2
7 +∞ 2 0 2.4
8 +∞ 0

v1(j) = min {di j + v0(i)} 0 4.4 3.4 4.9 7.1 +∞ 8.4 +∞

Tableau 8†

Node j

Nodei v1(i) 1 2 3 4 5 6 7 8

1 0 0 5.1 3.4
2 4.4 0 .5 2
3 3.4 1 0 1.5 5
4 4.9 0 2 3 4.2
5 7.1 0 3 6
6 +∞ 2 0 .5 2.2
7 8.4 2 0 2.4
8 +∞ 0

v2(j) = min {di j + v1(i)} 0 4.4 3.4 4.9 6.4 7.9 8.4 10.8

Tableau 9†

Node j

Nodei v2(i) 1 2 3 4 5 6 7 8

1 0 0 5.1 3.4
2 4.4 0 .5 2
3 3.4 1 0 1.5 5
4 4.9 0 2 3 4.2
5 6.4 0 3 6
6 7.9 2 0 .5 2.2
7 8.4 2 0 2.4
8 10.8 0

v3(j) = min di j + v2(i) 0 4.4 3.4 4.9 6.4 7.9 8.4 10.1

† di j = +∞, if blank.

11.6 Continuous State-Space Problems 341

11.6 CONTINUOUS STATE-SPACE PROBLEMS

Until now we have dealt only with problems that have had a finite number of states associated with each
stage. Since we also have assumed a finite number of stages, these problems have been identical to finding
the shortest path through a network with special structure. Since the development, in Section 11.3, of the
fundamental recursive relationship of dynamic programming did not depend on having a finite number of
states at each stage, here we introduce an example that has a continuous state space and show that the same
procedures still apply.

Suppose that some governmental agency is attempting to perform cost/benefit analysis on its programs in
order to determine which programs should receive funding for the next fiscal year. The agency has managed to
put together the information in Table 11.2. The benefits of each program have been converted into equivalent
tax savings to the public, and the programs have been listed by decreasing benefit-to-cost ratio. The agency
has taken the position that there will be no partial funding of programs. Either a programwill be funded at
the indicated level or it willnotbe considered for this budget cycle. Suppose that the agency is fairly sure of
receiving a budget of $34 million from the state legislature if it makes a good case that the money is being
used effectively. Further, suppose that there is some possibility that the budget will be as high as $42 million.
How can the agency make the most effective use of its funds ateitherpossible budget level?

Table 11.2 Cost/benefit information by program.

Program Expected benefit Expected cost Benefit/Cost

A $ 59.2 M $ 2.8 M 21.1
B 31.4 1.7 18.4
C 15.7 1.0 15.7
D 30.0 3.2 9.4
E 105.1 15.2 6.9
F 11.6 2.4 4.8
G 67.3 16.0 4.2
H 2.3 .7 3.3
I 23.2 9.4 2.5
J 18.4 10.1 1.8

$364.2 M $62.5 M

We should point out that mathematically this problem is an integer program. Ifb j is the benefit of the
j th program andc j is the cost of that program, then an integer-programming formulation of the agency’s
budgeting problem is determined easily.
Letting

x j =

{
1 if program j is funded,

0 if program j is not funded,

the integer-programming formulation is:

Maximize
n∑

j =1

b j x j ,

subject to:
n∑

j =1

c j x j ≤ B,

x j = 0 or 1 (j = 1, 2, . . . , n),

342 Dynamic Programming 11.6

whereB is the total budget allocated. This cost/benefit example is merely a variation of the well-known
knapsack problem that was introduced in Chapter 9.We will ignore, for the moment, this integer-programming
formulation and proceed to develop a highly efficient solution procedure using dynamic programming.

In order to approach this problem via dynamic programming, we need to define the stages of the system,
the state space for each stage, and the optimal-value function.
Let

vk(B) = Maximum total benefit obtainable, choosing from the first
k programs, with budget limitationB.

With this definition of the optimal-value function, we are letting the firstk programs included be the number
of ‘‘stages to go" and the available budget at each stage be the state space. Since the possible budget might
take on any value, we are allowing for a continuous state space for each stage. In what follows the order of
the projects is immaterial although the order given in Table 11.2 may have some computational advantages.

Let us apply the dynamic-programming reasoning as before. It is clear that withk = 0 programs, the
total benefit must be zero regardless of the budget limitation. Therefore

v0(B0) = 0 for B0 ≥ 0.

If we now letk = 1, it is again clear that the optimal-value function can be determined easily since the budget
is either large enough to fund the first project, ornot. (See Tableau 10.)

Tableau 10

Now consider which programs to fund when the first two programs are available. The optimal-value
functionv2(B2) and optimal decision functiond∗

2(B2) are developed in Tableau 11.

Tableau 11

Here again the dash means that the current state and decision combination will result in a state that is not
permissible. Since this tableau is fairly simple, we will go on and develop the optimal-value functionv3(B3)

and optimal decision functiond∗

3(B3) when the first three programs are available (see Tableau 12).
For any budget level, for example, $4.0 M, we merely consider the two possible decisions: either funding

programC (x3 = 1) or not (x3 = 0). If we fund programC, then we obtain a benefit of $15.7 M while
consuming $1.0 M of our own budget. The remaining $3.0 M of our budget is then optimally allocated to the
remaining programs, producing a benefit of $59.2 M, which we obtain from the optimal-value function with
the first two programs included (Tableau 11). If we do not fund programC, then the entire amount of $4.0 M
is optimally allocated to the remaining two programs (Tableau 11), producing a benefit of $59.2. Hence, we
should clearly fund programC if our budget allocation is $4.0 M. Optimal decisions taken for other budget
levels are determined in a similar manner.

11.7 Dynamic Programming under Uncertainty 343

Tableau 12

Although it is straightforward to continue the recursive calculation of the optimal-value function for
succeeding stages, we will not do so since the number of ranges that need to be reported rapidly becomes
rather large. The general recursive relationship that determines the optimal-value function at each stage is
given by:

vn(Bn) = Max [cnxn + vn−1(Bn − cnxn)],

subject to:
xn = 0 or 1.

The calculation is initialized by observing that

v0(B0) = 0

for all possible values ofB0. Note that the state transition function is simply

Bn−1 = tn(xn, Bn) = Bn − cnxn.

We can again illustrate the usual principle of optimality: Given budgetBn at stagen, whatever decision is
made with regard to funding thenth program, the remaining budget must be allocated optimally among the
first (n − 1) programs. If these calculations were carried to completion, resulting inv10(B10) andd∗

10(B10),
then the problem would be solved for all possible budget levels, not just $3.4 M and $4.2 M.

Although this example has a continuous state space, a finite number of ranges can be constructed because
of the zero–one nature of the decision variables. In fact, all breaks in the range of the state space either are
the breaks from the previous stage, or they result from adding the cost of the new program to the breaks in
the previous range. This is not a general property of continuous state space problems, and in most cases
such ranges cannot be determined. Usually, what is done for continuous state space problems is that they
are converted into discrete state problems by defining an appropriate grid on the continuous state space. The
optimal-value function is then computed only for the points on the grid. For our cost/benefit example, the
total budget must be between zero and $62.5 M, which provides a range on the state space, although at any
stage a tighter upper limit on this range is determined by the sum of the budgets of the firstn programs. An
appropriate grid would consist of increments of $0.1 M over the limits of the range at each stage, since this
is the accuracy with which the program costs have been estimated. The difference between problems with
continuous state spaces and those with discrete state spaces essentially then disappears for computational
purposes.

11.7 DYNAMIC PROGRAMMING UNDER UNCERTAINTY

Up to this point we have considered exclusively problems with deterministic behavior. In a deterministic
dynamic-programming process, if the system is in statesn with n stages to go and decisiondn is selected
from the set of permissible decisions for this stage and state, then the stage returnfn(dn, sn) and the state of

344 Dynamic Programming 11.7

Figure 11.14 Decision tree for deterministic dynamic programming.

the system at the next stage, given bysn−1 = tn(dn, sn), are both known with certainty. This deterministic
process can be represented by means of the decision tree in Fig. 11.14. As one can observe, given the current
state, a specific decision leads with complete certainty to a particular state at the next stage. The stage returns
are also known with certainty and are associated with the branches of the tree.

When uncertainty is present in a dynamic-programming problem, a specific decision for a given state and
stage of the process does not, by itself, determine the state of the system at the next stage; this decision may
not even determine the return for the current stage. Rather, in dynamic programming under uncertainty, given
the state of the systemsn with n stages to go and the current decisiondn, an uncertain event occurs which is
determined by a random variableẽn whose outcomeen is not under the control of the decision maker. The
stage return function may depend on this random variable, that is,

fn(dn, sn, ẽn),

while the state of the systemsn−1 with (n − 1) stages to go invariably will depend on the random variable by

s̃n−1 = tn(dn, sn, ẽn).

The outcomes of the random variable are governed by a probability distribution,pn(en|dn, sn), which
may be the same for every stage or may be conditional on the stage, the state at the current stage, and even
the decision at the current stage.

Figure 11.15 depicts dynamic programming under uncertainty as adecision tree, where squares represent
states where decisions have to be made and circles represent uncertain events whose outcomes are not under
the control of the decision maker. These diagrams can be quite useful in analyzing decisions under uncertainty
if the number of possible states is not too large. The decision tree provides a pictorial representation of the
sequence of decisions, outcomes, and resulting states,in the order in whichthe decisions must be made and
the outcomes become known to the decision maker. Unlike deterministic dynamic programming wherein the

11.7 Dynamic Programming under Uncertainty 345

optimal decisions at each stage can be specified at the outset, in dynamic programming under uncertainty,
the optimal decision at each stage can be selected only after we know the outcome of the uncertain event at
the previous stage. At the outset, all that can be specified is a set of decisions that would be madecontingent
on the outcome of a sequence of uncertain events.

Figure 11.15 Decision tree for dynamic programming under uncertainty.

In dynamic programming under uncertainty, since the stage returns and resulting stage may both be
uncertain at each stage, we cannot simply optimize the sum of the stage-return functions. Rather, we must
optimize theexpected returnover the stages of the problem, taking into account the sequence in which
decisions can be made and the outcomes of uncertain events become known to the decision maker. In this
situation, backward induction can be applied to determine the optimal strategy, but forward induction cannot.
The difficulty with forward induction is that it is impossible to assign values to states at the next stage that
are independent of the uncertain evolution of the process from that future state on. With backward induction,
on the other hand, no such difficulties arise since the states with zero stages to go are evaluated first, and then
the states with one stage to go are evaluated by computing the expected value of any decision and choosing

346 Dynamic Programming 11.7

optimally.
We start the backward induction process by computing the optimal-value function at stage 0. This

amounts to determining the value of ending in each possible stage with 0 stages to go. This determination
may involve an optimization problem or the value of the assets held at the horizon. Next, we compute the
optimal-value function at the previous stage. To do this, we first compute the expected value of each uncertain
event, weighting the stage return plus the value of the resulting state for each outcome by the probability of
each outcome. Then, for each state at the previous stage, we select the decision that has the maximum (or
minimum) expected value. Once the optimal-value function for stage 1 has been determined, we continue in
a similar manner to determine the optimal-value functions at prior stages by backward induction.

The optimal-value function for dynamic programming under uncertainty is then defined in the following
recursive form:

vn(sn) = Max E
[

fn(dn, sn, ẽn) + vn−1(s̃n−1)
]
, (17)

subject to:
s̃n−1 = tn(dn, sn, ẽn),

dn ∈ Dn,

whereE[·] denotes the expected value of the quantity in brackets. To initiate the recursive calculations we
need to determine the optimal-value function with zero stages to go, which is given by:

v0(s0) = Max E
[

f0(d0, s0, ẽ0)
]
,

subject to:
d0 ∈ D0.

The optimization problems that determine the optimal-value function with zero stages to go are not determined
recursively, and therefore may be solved in a straight-forward manner. If the objective function is to maximize
the expected discounted costs, then Eq. (17) is modified as in Section 11.4 by multiplying the termvn−1(s̃n−1)

by βn, the discount factor for periodn.
We can make these ideas more concrete by considering a simple example. A manager is in charge of

the replenishment decisions during the next two months for the inventory of a fairly expensive item. The
production cost of the item is $1000/unit, and its selling price is $2000/unit. There is an inventory-carrying
cost of $100/unit per month on each unit left over at the end of the month. We assume there is no setup cost
associated with running a production order, and further that the production process has a short lead time;
therefore any amount produced during a given month is available to satisfy the demand during that month.
At the present time, there is no inventory on hand. Any inventory left at the end of the next two months has
to be disposed of at a salvage value of $500/unit.

The demand for the item is uncertain, but its probability distribution is identical for each of the coming
two months. The probability distribution of the demand is as follows:

Demand Probability

0 0.25
1 0.40
2 0.20
3 0.15

The issue to be resolved is how many units to produce during the first month and,depending on the actual
demand in the first month, how many units to produce during the second month. Since demand is uncertain,
the inventory at the end of each month is also uncertain. In fact, demand could exceed the available units
on hand in any month, in which case all excess demand results in lost sales. Consequently, our production
decision must find the proper balance between production costs, lost sales, and final inventory salvage value.

11.7 Dynamic Programming under Uncertainty 347

The states for this type of problem are usually represented by the inventory levelIn at the beginning of
each month. Moreover, the problem is characterized as a two-stage problem, since there are two months
involved in the inventory-replenishment decision. To determine the optimal-value function, let

vn(In) = Maximum contribution, given that we haveIn units of inventory
with n stages to go.

We initiate the backward induction procedure by determining the optimal-value function with 0 stages to
go. Since the salvagevalue is $500/unit, we have:

I0 v0(I0)

0 0
1 500
2 1000
3 1500

To compute the optimal-value function with one stage to go, we need to determine, for each inventory
level (state), the corresponding contribution associated with each possible production amount (decision) and
level of sales (outcome). For each inventory level, we select the production amount that maximizes the
expected contribution.

Table 11.3 provides all the necessary detailed computations to determine the optimal-value function with
one stage to go. Column 1 gives the state (inventory level) of the process with one stage to go. Column 2 gives
the possible decisions (amount to produce) for each state, and, since demand cannot be greater than three, the
amount produced is at most three. Column 3 gives the possible outcomes for the uncertain level of sales for
each decision and current state, and column 4 gives the probability of each of these possible outcomes. Note
that, in any period, it is impossible to sell more than the supply, which is the sum of the inventory currently
on hand plus the amount produced. Hence, the probability distribution of sales differs from that of demand
since, whenever demand exceeds supply, the entire supply is sold and the excess demand is lost. Column 5 is
the resulting state, given that we currently haveI1 on hand, produced1, and sells1. The transition function
in general is just:

Ĩn−1 = In + dn − s̃n,

where the tildes(∼) indicate that the level of sales is uncertain and, hence, the resulting state is also uncertain.
Columns 6, 7, and 8 reflect the revenue and costs for each state, decision, and sales level, and column 9 reflects
the value of being in the resulting state at the next stage. Column 10 merely weights the sum of columns
6 through 9 by the probability of their occurring, which is an intermediate calculation in determining the
expected value of making a particular decision, given the current state. Column 11 is then just this expected
value; and the asterisk indicates the optimal decision for each possible state.

348 Dynamic Programming 11.7

Table 11.3 Computation of optimal-value function with one stage to go.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Pro- Proba- Resulting Produc- Sales Inven- Proba- Expected

State duce Sell bility state tion rev- tory bility contri-
I1 d1 s1 (s̃1 = s1) Ĩ0 cost enue cost v0(I0) × $ bution

0 0 0 1. 0 0 0 0 0 0 0
1 0 .25 1 −1000 0 −100 500 −150

1 .75 0 −1000 2000 0 0 750

}
600∗

2 0 .25 2 −2000 0 −200 1000 −300
1 .40 1 −2000 2000 −100 500 160
2 .35 0 −2000 4000 0 0 700

 560

3 0 .25 3 −3000 0 −300 1500 −450
1 .40 2 −3000 2000 −200 1000 −80
2 .20 1 −3000 4000 −100 500 280
3 .15 0 −3000 6000 0 0 450

 200

1 0 0 .25 1 0 0 −100 500 100
1 .75 0 0 2000 0 0 1500

}
1600∗

1 0 .25 2 −1000 0 −200 1000 −50
1 .40 1 −1000 2000 −100 500 560
2 .35 0 −1000 4000 0 0 1050

 1560

2 0 .25 3 −2000 0 −300 1500 −200
1 .40 2 −2000 2000 −200 1000 320
2 .20 1 −2000 4000 −100 500 480
3 .15 0 −2000 6000 0 0 600

 1200

2 0 0 .25 2 0 0 −200 1000 200
1 .40 1 0 2000 −100 500 960
2 .35 0 0 4000 0 0 1400

 2560∗

1 0 .25 3 −1000 0 −300 1500 50
1 .40 2 −1000 2000 −200 1000 720
2 .20 1 −1000 4000 −100 500 680
3 .15 0 −1000 6000 0 0 750

 2200

3 0 0 .25 3 0 0 −300 1500 300
1 .40 2 0 2000 −200 1000 1120
2 .20 1 0 4000 −100 500 880
3 .15 0 0 6000 0 0 900

 3200∗

11.7 Dynamic Programming under Uncertainty 349

The resulting optimal-value function and the corresponding optimal-decision function are determined
directly from Table 11.3 and are the following:

I1 v1(I1) d∗
1(I1)

0 600 1
1 1600 0
2 2560 0
3 3200 0

Next we need to compute the optimal-value function with two stagesto go. However, since we have
assumed that there is no initial inventory on hand, it is not necessary to describe the optimal-value function
for every possible state, but only forI2 = 0. Table 11.4 is similar to Table 11.3 and gives the detailed
computations required to evaluate the optimal-value function for this case.

Table 11.4 Computation of optimal-value function with two stages to go,I2 = 0 only.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Pro- Proba- Result- Produc- Sales Inven- Proba- Expected

State duce Sell bility ing tion rev- tory bility contri-
I2 d2 s2 (s̃2 = s2) stateĨ1 cost enue cost v1(I1) × $ bution

0 0 0 1. 0 0 0 0 650. 650 650
1 0 .25 1 −1000 0 0 1600. 150

1 .75 0 −1000 2000 0 600. 1200

}
1350

2 0 .25 2 −2000 0 −200 2560. 90
1 .40 1 −2000 2000 −100 1600. 600
2 .35 0 −2000 4000 0 600 910

 1600.∗

3 0 .25 3 −3000 0 −300 3200. −25
1 .40 2 −3000 2000 −200 2560. 544
2 .20 1 −3000 4000 −100 1600. 500
3 .15 0 −3000 6000 0 600. 540

 1559

The optimal-value function and the corresponding decision function forI2 = 0 are taken directly from
Table 11.4 and are the following:

I2 v2(I2) d∗
2(I2)

0 1600 2

The optimal strategy can be summarized by the decision tree given in Fig. 11.16. The expected contri-
bution determined by the dynamic-programming solution corresponds to weighting the contribution of every
path in this tree by theprobability that this path occurs. The decision tree in Fig. 11.16 emphasizes the
contingent nature of the optimal strategy determined by dynamic programming under uncertainty.

350 Dynamic Programming 11.7

Exercises 351

EXERCISES
Solutions to exercises marked with an asterisk (∗) involve extensive computations. Formulate these problems as dynamic
programs and provide representative computations to indicate the nature of the dynamic programming recursions; solve
to completion only if a computer system is available.

1. In solving the minimum-delay routing problem in Section 11.1, we assumed the same delay along each street (arc)
in the network. Suppose, instead, that the delay when moving along any arc upward in the network is 2 units greater
than the delay when moving along any arc downward. The delay at the intersections is still given by the data in
Fig. 11.1. Solve for the minimum-delay route by both forward and backward induction.

2. Decatron Mills has contracted to deliver 20 tons of a special coarsely ground wheat flour at the end of the current
month, and 140 tons at the end of the next month. The production cost, based on which the Sales Department has
bargained with prospective customers, isc1(x1) = 7500+ (x1 − 50)2 per ton for the first month, andc2(x2) =

7500+ (x2 − 40)2 per ton for the second month;x1 andx2 are the number of tons of the flour produced in the
first and second months, respectively. If the company chooses to produce more than 20 tons in the first month, any
excess production can be carried to the second month at a storage cost of $3 per ton.

Assuming that there is no initial inventory and that the contracted demands must be satisfied in each month
(that is, no back-ordering is allowed), derive the production plan that minimizes total cost. Solve by both backward
and forward induction. Considerx1 andx2 as continuous variables, since any fraction of a ton may be produced in
either month.

3. A construction company has four projects in progress. According to the current allocation of manpower, equipment,
and materials, the four projects can be completed in 15, 20, 18, and 25 weeks. Management wants to reduce the
completion times and has decided to allocate an additional $35,000 to all four projects. The new completion times
as functions of the additional funds allocated to each projects are given in Table E11.1.

How should the $35,000 be allocated among the projects to achieve the largest total reduction in completion
times? Assume that the additional funds can be allocated only in blocks of $5000.

Table E11.1 Completion times (in weeks)

Additional funds
(×1000 dollars) Project 1 Project 2 Project 3 Project 4

0 15 20 18 25
5 12 16 15 21

10 10 13 12 18
15 8 11 10 16
20 7 9 9 14
25 6 8 8 12
30 5 7 7 11
35 4 7 6 10

4. The following table specifies the unit weights and values of five products held in storage. The quantity of each item
is unlimited.

Product Weight(Wi) Value(Vi)

1 7 9
2 5 4
3 4 3
4 3 2
5 1 1

2

352 Dynamic Programming

A plane with a capacity of 13 weight units is to be used to transport the products. How should the plane be
loaded to maximize the value of goods shipped? (Formulate the problem as an integer program and solve by dynamic
programming.)

5. Any linear-programming problem withn decision variables andm constraints can be converted into ann-stage
dynamic-programming problem withm state parameters.

Set up a dynamic-programming formulation for the following linear program:

Minimize
n∑

j =1

c j x j ,

subject to:
n∑

j =1

ai j x j ≤ bi (i = 1, 2, . . . , m),

x j ≥ 0 (j = 1, 2, . . . , n).

Why is it generally true that the simplex method rather than dynamic programming is recommended for solving
linear programs?

6. Rambling Roger, a veteran of the hitchhiking corps, has decided to leave the cold of a Boston winter and head for
the sunshine of Miami. His vast experience has given him an indication of the expected time in hours it takes to
hitchhike over certain segments of the highways. Knowing he will be breaking the law in several states and wishing
to reach the warm weather quickly, Roger wants to know the least-time route to take. He summarized his expected
travel times on the map in Fig. E11.1. Find his shortest time route.

7. J. J. Jefferson has decided to move from the West Coast, where he lives, to a mid-western town, where he intends
to buy a small farm and lead a quiet life. Since J. J. is single and has accumulated little furniture, he decides to
rent a small truck for $200 a week or fraction of a week (one-way, no mileage charge) and move his belongings
by himself. Studying the map, he figures that his trip will require four stages, regardless of the particular routing.
Each node shown in Fig. E11.2 corresponds to a town where J. J. has either friends or relatives and where he plans
to spend one day resting and visiting if he travels through the town. The numbers in brackets in Fig. E11.2 specify
the travel time in days between nodes. (The position of each node in the network is not necessarily related to its
geographical position on the map.) As he will travel through different states, motel rates, tolls, and gas prices vary
significantly; Fig. E11.2 also shows the cost in dollars for traveling (excluding truck rental charges) between every
two nodes. Find J. J.’s cheapest route between towns 1 and 10, including the truck rental charges.

8. At THE CASINO in Las Vegas, a customer can bet only in dollar increments. Betting a certain amount is called
‘‘playing a round.’’ Associated with each dollar bet on a round, the customer has a 40% chance to win another dollar
and a 60% chance to lose his, or her, dollar. If the customer starts with $4 and wants to maximize the chances of
finishing with at least $7 after two rounds, how much should be bet on each round? [Hint. Consider the number
of dollars available at the beginning of each round as the state variable.]

∗9. In a youth contest, Joe will shoot a total of ten shots at four different targets. The contest has been designed so that
Joe will not know whether or not he hits any target until after he has made all ten shots. He obtains 6 points if any
shot hits target 1, 4 points for hitting target 2, 10 points for hitting target 3, and 7 points for hitting target 4. At each
shot there is an 80% chance that he will miss target 1, a 60% chance of missing target 2, a 90% chance of missing
target 3, and a 50% chance of missing target 4, given that he aims at the appropriate target.

If Joe wants to maximize his expected number of points, how many shots should he aim at each target?

10. A monitoring device is assembled from five different components. Proper functioning of the device depends upon
its total weightq so that, among other tests, the device is weighted; it is accepted only ifr1 ≤ q ≤ r2, where the
two limits r1 andr2 have been prespecified.

The weightq j (j = 1, 2, . . . , 5) of each component varies somewhat from unit to unit in accordance with a
normal distribution with meanµ j and varianceσ 2

j . As q1, q2, . . . , q5 are independent, the total weightq will also

be a normal variable with meanµ =
∑5

j =1 µ j and varianceσ 2
=

∑5
j =1 σ 2

j .

Exercises 353

Figure E11.1 Travel times to highways.

Figure E11.2 Routing times and costs.

354 Dynamic Programming

Clearly, even ifµ can be adjusted to fall within the interval [r1, r2], the rejection rate will depend uponσ 2; in
this case, the rejection rate can be made as small as desired by making the varianceσ 2 sufficiently small. The design
department has decided thatσ 2

= 5 is the largest variance that would make the rejection rate of the monitoring
device acceptable. The cost of manufacturing componentj is c j = 1/σ 2

j .

Determine values for the design parametersσ 2
j for j = 1, 2, . . . , 5 that would minimize the manufacturing cost

of the components while ensuring an acceptable rejection rate. [Hint. Each component is a stage; the state variable
is that portion of the total varianceσ 2 not yet distributed. Considerσ 2

j ’s as continuous variables.]

∗11. A scientific expedition to Death Valley is being organized. In addition to the scientific equipment, the expedition
also has to carry a stock of spare parts, which are likely to fail under the extreme heat conditions prevailing in that
area. The estimated number of times that the six critical parts, those sensitive to the heat conditions, will fail during
the expedition are shown below in the form of probability distributions.

Part 1

of Failures Probability

0 0.5
1 0.3
2 0.2

Part 2

of Failures Probability

0 0.4
1 0.3
2 0.2
3 0.1

Part 3

of Failures Probability

0 0.7
1 0.2
2 0.1

Part 4

of Failures Probability

0 0.9
1 0.1

Part 5

of Failures Probability

0 0.8
1 0.1
2 0.1

Part 6

of Failures Probability

0 0.8
1 0.2

The spare-park kit should not weight more than 30 pounds. If one part is needed and it is not available in the
spare-park kit, it may be ordered by radio and shipped by helicopter at unit costs as specified in Table E11.2, which
also gives the weight of each part.

Table E11.2 Spare-Part Data

Weight Shipping cost
Part (pounds/unit) ($/unit)

1 4 100
2 3 70
3 2 90
4 5 80
5 3 60
6 2 50

Determine the composition of the spare-park kit to minimize total expected ordering costs.

∗12. After a hard day at work I frequently wish to return home as quickly as possible. I must choose from several alternate
routes (see Fig. E11.3); the travel time on any road is uncertain and depends upon the congestion at the nearest major

Exercises 355

Table E11.3 Travel time on the road

Travel-time distribution

Congestion at initial Travel time

Road i–j intersection(i) (minutes) Probability

5–4 Heavy 4 1
4

6 1
2

10 1
4

Light 2 1
3

3 1
3

5 1
3

5–3 Heavy 5 1
2

12 1
2

Light 3 1
2

6 1
2

4–2 Heavy 7 1
3

14 2
3

Light 4 1
2

6 1
2

3–2 Heavy 5 1
4

11 3
4

Light 3 1
3

5 1
3

7 1
3

3–1 Heavy 3 1
2

5 1
2

Light 2 1
2

3 1
2

2–1 Heavy 2 1
2

4 1
2

Light 1 1
2

2 1
2

intersection preceding that route. Using the data in Table E11.3, determine my best route, given that the congestion
at my starting point is heavy.

Assume that if I am at intersectioni with heavy congestion and I take roadi–j, then

Prob (intersectionj is heavy)= 0.8.

If the congestion is light at intersectioni and I take roadi–j, then

Prob (intersectionj is heavy)= 0.3.

356 Dynamic Programming

Figure E11.3

13. Find the shortest path from node 1 to every other node in the network given in Fig. E11.4, using the shortest-route
algorithm for acyclic networks. The number next to each arc is the ‘‘length’’ of that arc.

Figure E11.4

14. Find the shortest path from node 1 to every other node in the network given in Fig. E11.5.

Figure E11.5

15. a) Give a dynamic-programming recursion for finding the shortest path from every node to a particular node, node
k, in a network without negative cycles.

b) Apply the recursion from part (a) to find the shortest path from every node to node 6 in the network specified in
the previous exercise.

16. A state’s legislature hasR representatives. The state is sectioned intos districts, where Districtj has a population
p j ands < R. Under strictly proportional representation. Districtj would receiveRpj /(

∑s
j =1 p j) = r j represen-

tatives; this allocation is not feasible, however, becauser j may not be integer-valued. The objective is to allocatey j

representatives to Districtj for j = 1, 2, . . . , s, so as to minimize, over all the districts, the maximum difference
betweeny j andr j ; that is, minimize [maximum(|y1 − r1|, |y2 − r2|, . . . , |ys − rs|)].

a) Formulate the model in terms of a dynamic-programming recursion.
b) Apply your method to the dataR = 4, s = 3, andr1 = 0.4, r2 = 2.4, andr3 = 1.2.
c) Discuss whether the solution seems reasonable, given the context of the problem.

17. In a textile plant, cloth is manufactured in rolls of lengthL. Defects sometimes occur along the length of the cloth.
Consider a specific roll with(N − 1) defects appearing at distancesy1, y2, . . . , yN−1 from the start of the roll
(yi +1 > yi for all i). Denote the start of the roll byy0, the end byyN .

Exercises 357

The roll is cut into pieces for sale. The value of a piece depends on its length and the number of defects. Let

v(x, m) = Value of a piece of lengthx havingm defects.

Assume that all cuts are madethroughdefects and that such cutting removes the defect.

Specify how to determine where to cut the cloth to maximize total value.

18. A manufacturing company, receiving an order for a special product, has worked out a production plan for the next 5
months. All components will be manufactured internally except for one electronic part that must be purchased. The
purchasing manager in charge of buying the electronic part must meet the requirements schedule established by the
production department. After negotiating with several suppliers, the purchasing manager has determined the best
possible price for the electronic part for each of the five months in the planning horizon. Table E11.4 summarizes
the requirement schedule and purchase price information.

Table E11.4 Requirements schedule and
purchasing prices

Requirements Purchasing price

Month (thousands) ($/thousand pieces)

1 5 10
2 10 11
3 6 13
4 9 10
5 4 12

The storage capacity for this item is limited to 12,000 units; there is no initial stock, and after the five-month
period the item will no longer be needed. Assume that the orders for the electronic part are placed once every
month (at the beginning of each month) and that the delivery lead time is very short (delivery is made practically
instantaneously). No back-ordering is permitted.

a) Derive the monthly purchasing schedule if total purchasing cost is to be minimized.
b) Assume that a storage charge of $250 is incurred for each 1000 units found in inventory at the end of a month.

What purchasing schedule would minimize the purchasing and storage costs?

Table E11.5 Profits in response to advertising

Additional
investment Profits(in $100,000)

in advertising Product Product Product Product Product
(in $100,000) A B C D E

0 0 0 0 0 0
1 0.20 0.18 0.23 0.15 0.25
2 0.35 0.30 0.43 0.30 0.45
3 0.50 0.42 0.60 0.45 0.65
4 0.63 0.54 0.75 0.58 0.80
5 0.75 0.64 0.80 0.70 0.90
6 0.83 0.74 0.92 0.81 0.95
7 0.90 0.84 0.98 0.91 0.98
8 0.95 0.92 1.02 1.00 1.01
9 0.98 1.00 1.05 1.04 1.02

10 0.98 1.05 1.06 1.07 1.03

19. Rebron, Inc., a cosmetics manufacturer, markets five different skin lotions and creams: A, B, C, D, E. The company
has decided to increase the advertising budget allocated to this group of products by 1 million dollars for next year.
The marketing department has conducted a research program to establish how advertising affects the sales levels

358 Dynamic Programming

of these products. Table E11.5 shows the increase in each product’s contribution to net profits as a function of the
additional advertisement expenditures.

Given that maximization of net profits is sought, what is the optimal allocation of the additional advertising
budget among the five products? Assume, for simplicity, that advertising funds must be allocated in blocks of
$100,000.

∗20. A machine tool manufacturer is planning an expansion program. Up to 10 workers can be hired and assigned to
the five divisions of the company. Since the manufacturer is currently operating with idle machine capacity, no new
equipment has to be purchased.

Hiring new workers adds $250/day to the indirect costs of the company. On the other hand, new workers add
value to the company’s output (i.e., sales revenues in excess of direct costs) as indicated in Table E11.6. Note that
the value added depends upon both the number of workers hired and the division to which they are assigned.

Table E11.6 Value added by new workers

New Increase in contribution to overhead($/day)

workers Division Division Division Division Division
(xn) 1 2 3 4 5

0 0 0 0 0 0
1 30 25 35 32 28
2 55 50 65 60 53
3 78 72 90 88 73
4 97 90 110 113 91
5 115 108 120 133 109
6 131 124 128 146 127
7 144 138 135 153 145
8 154 140 140 158 160
9 160 150 144 161 170

10 163 154 145 162 172

The company wishes to hire workers so that the value that they add exceeds the $250/day in indirect costs.
What is the minimum number of workers the company should hire and how should they be allocated among the five
divisions?

21. A retailer wishes to plan the purchase of a certain item for the next five months. Suppose that the demand in these
months is known and given by:

Month Demand(units)

1 10
2 20
3 30
4 30
5 20

The retailer orders at the beginning of each month. Initially he has no units of the item. Any units left at the end of
a month will be transferred to the next month, but at a cost of 10 c/ per unit. It costs $20 to place an order. Assume
that the retailer can order only in lots of 10, 20, . . . units and that the maximum amount he can order each month is
60 units. Further assume that he receives the order immediately (no lead time) and that the demand occurs just after
he receives the order. He attempts to stock whatever remains but cannot stock more than 40 units—units in excess
of 40 are discarded at no additional cost and with no salvage value. How many units should the retailer order each
month?

∗22. Suppose that the retailer of the previous exercise does not know demand with certainty. All assumptions are as in
Exercise 21 except as noted below. The demand for the item is the same for each month and is given by the following
distribution:

Exercises 359

Demand Probability

10 0.2
30 0.5
30 0.3

Each unit costs $1. Each unit demanded in excess of the units on hand is lost, with a penalty of $2 per unit. How
many units should be ordered each month to minimize total expected costs over the planning horizon? Outline a
dynamic-programming formulation and complete the calculations for the last two stages only.

∗23. The owner of a hardware store is surprised to find that he is completely out of stock of ‘‘Safe-t-lock,’’ an extremely
popular hardened-steel safety lock for bicycles. Fortunately, he became aware of this situation before anybody asked
for one of the locks; otherwise he would have lost $2 in profits for each unit demanded but not available. He decides
to use his pickup truck and immediately obtain some of the locks from a nearby warehouse.

Although the demand for locks is uncertain, the probability distribution for demand is known; it is the same in
each month and is given by:

Demand Probability

0 0.1
100 0.3
200 0.4
300 0.2

The storage capacity is 400 units, and the carrying cost is $1 per unit per month, charged to the month’saverage
inventory[i.e., (initial + ending)/2]. Assume that the withdrawal rate is uniform over the month. The lock is
replenished monthly, at the beginning of the month, in lots of one hundred.

What is the replenishment strategy that minimizes the expected costs (storage and shortage costs) over a planning
horizon of four months? No specific inventory level is required for the end of the planning horizon.

∗24. In anticipation of the Olympic games, Julius, a famous Danish pastry cook, has opened a coffee-and-pastry shop not
far from the Olympic Village. He has signed a contract to sell the shop for $50,000 after operating it for 5 months.

Julius has several secret recipes that have proved very popular with consumers during the last Olympic season,
but now that the games are to be held on another continent, variations in tastes and habits cast a note of uncertainty
over his chances of renewed success.

The pastry cook plans to sell all types of common pastries and to use his specialties to attract large crowds
to his shop. He realizes that the popularity of his shop will depend upon how well his specialties are received;
consequently, he may alter the offerings of these pastries from month to month when he feels that he can improve
business. When his shop is not popular, he may determine what type of specialties to offer by running two-day
market surveys. Additionally, Julius can advertise in theOlympic Herald Dailyand other local newspapers to attract
new customers.

The shop’s popularity may change from month to month. These transitions are uncertain and depend upon
advertising and market-survey strategies. Table E11.7 summarizes the various possibilities. The profit figures in
this table include advertising expenditures and market-survey costs.

Note that Julius has decided either to advertise or to run the market survey whenever the shop is not popular.
Assume that, during his first month of operation, Julius passively waits to see how popular his shop will be.

What is the optimal strategy for him to follow in succeeding months to maximize his expected profits?

25. A particular city contains six significant points of interest. Figure E11.6 depicts the network of major two-way
avenues connecting the points; the figure also shows travel time (in both directions) along each avenue. Other
streets, having travel times exceeding those along the major avenues, link the points but have been dropped from
this analysis.

In an attempt to reduce congestion of traffic in the city, the city council is considering converting some two-way
avenues to one-way avenues.

The city council is considering two alternative planning objectives:

360 Dynamic Programming

Table E11.7 Profit possibilities (p = probability;E = expected profit)

Popular next month Not popular next month

Popular this month,
no advertising p =

6
10, E = $6000 p =

4
10, E = $2000

Popular this month,
advertising p =

3
4, E = $4000 p =

1
10, E = $3000

Not popular this month,
market survey p =

1
3, E = $3000 p =

2
3, E = −$2000

Not popular this month,
advertising p =

6
10, E = $1000 p =

4
10, E = −$5000

a) Given that point (1) is the tourist information center for the city, from which most visitors depart, which avenues
should be made one-way so as to minimize the travel times from point (1) to every other point?

b) If the travel times from each point to every other point were to be minimized, which avenues would be converted
to one-way?

In both cases, assume that the travel times shown in Fig E11.6 would not be affected by the conversion. If the
total conversion cost is proportional to the number of avenues converted to one-way, which of the above solutions
has the lowest cost?

∗26. Consider the following one-period problem: a certain item is produced centrally in a factory and distributed to four
warehouses. The factory can produce up to 12 thousand pieces of the item. The transportation cost from the factory
to warehousen is tn dollars per thousand pieces.

From historical data, it is known that the demand per period from warehousen for the item is governed by a
Poisson distribution† with meanλn (in thousands of pieces). If demand exceeds available stock a penalty ofπn

dollars per thousand units out of stock is charged at warehousen.
The current inventory on hand at warehousen is qn thousand units.

a) Formulate a dynamic program for determining the amount to be produced and the optimal allocation to each
warehouse, in order to minimize transportation and expected stockout costs.

b) Solve the problem for a four-warehouse system with the data given in Table E11.8.

† The Poisson distribution is given by Prob.(k̃ = k) =
λke−λ

k!
.

Figure E11.6

Exercises 361

Table E11.8

Demand Inventory Transportation cost Stockout penalty

λn qn
Warehouse (thousand (thousand tn πn

(n) units) units) ($ per 1000 units) ($ per 1000 units)

1 3 1 100 1500
2 4 2 300 2000
3 5 1 250 1700
4 2 0 200 2200

∗27. Precision Equipment, Inc., has won a government contract to supply 4 pieces of a high precision part that is used
in the fuel throttle-valve of an orbital module. The factory has three different machines capable of producing the
item. They differ in terms of setup cost, variable production cost, and the chance that every single item will meet
the high-quality standards (see Table E11.9).

Table E11.9

Setup cost Variable cost Probability of
Machine ($) ($/unit) meeting standards

A 100 20 0.50
B 300 40 0.80
C 500 60 0.90

After the parts are produced, they are sent to the engine assembly plant where they are tested. There is no way
to recondition a rejected item. Any parts in excess of four, even if good, must be scrapped. If less than 4 parts are
good, the manufacturer has to pay a penalty of $200 for each undelivered item.

How many items should be produced on each machine in order to minimize total expected cost? [Hint. Consider
each machine as a stage and define the state variable as the number of acceptable parts still to be produced.]

∗28. One of the systems of a communications satellite consists of five electronic devices connected in series; the system as
a whole would fail if any one of these devices were to fail. A common engineering design to increase the reliability
of the system is to connect several devices of the same type in parallel, as shown in Fig E11.7. The parallel devices
in each group are controlled by a monitoring system, so that, if one device fails, another one immediately becomes
operative.

The total weight of the system may not exceed 20 pounds. Table E11.10 shows the weight in pounds and the
probability of failure for each device in groupj of the system design. How many devices should be connected in

Figure E11.7

parallel in each group so as to maximize the reliability of the overall system?

∗29. The production manager of a manufacturing company has to devise a production plan for item AK102 for the

362 Dynamic Programming

Table E11.10

Weight Probability of failure
Group (lbs./device) for each device

1 1 0.20
2 2 0.10
3 1 0.30
4 2 0.15
5 3 0.05

next four months. The item is to be produced at most once monthly; because of capacity limitations the monthly
production may not exceed 10 units. The cost of one setup for any positive level of production in any month is $10.

The demand for this item is uncertain and varies from month to month; from past experience, however, the
manager concludes that the demand in each month can be approximated by a Poisson distribution with parameter
λn (n shows the month to which the distribution refers).

Inventory is counted at the end of each month and a holding cost of $10 is charged for each unit; if there are
stockouts, a penalty of $20 is charged for every unit out of stock. There is no initial inventory and no outstanding
back-orders; no inventory is required at the end of the planning period. Assume that the production lead time is
short so that the amount released for production in one month can be used to satisfy demand within the same month.

What is the optimal production plan, assuming that the optimality criterion is the minimum expected cost?
Assume thatλ1 = 3, λ2 = 5, λ3 = 2, λ4 = 4 units.

∗30. Just before the Christmas season, Bribham of New England, Inc., has signed a large contract to buy four varieties
of Swiss chocolate from a local importer. As it was already late, the distributor could arrange for only a limited
transportation of 20 tons of Swiss chocolate to be delivered in time for Christmas.

Chocolate is transported in containers; the weight and the transportation cost per container are given in Table
E11.11.

Table E11.11

Weight Transportation Shortage cost λn
Variety (tons/container) ($/container) ($/container) (tons)

1 2 50 500 3
2 3 100 300 4
3 4 150 800 2
4 4 200 1000 1

A marketing consulting firm has conducted a study and has estimated the demand for the upcoming holiday
season as a Poisson distribution with parameterλn(n = 1, 2, 3, 4 indicates the variety of the chocolate). Bribham
loses contribution (i.e., shortage cost) for each container that can be sold (i.e., is demanded) but is not available.

How many containers of each variety should the company make available for Christmas in order to minimize
total expected cost (transportation and shortage costs)?

ACKNOWLEDGMENTS

The example in Section 11.6 is taken from the State Department of Public Health case by Richard F. Meyer.
Exercise 10 is based on Section 10.6 ofNonlinear and Dynamic Programming, Addison-Wesley, 1962, by
George Hadley.
Exercise 24 is inspired byDynamic Programming and Markov Processes, John Wiley & Sons, 1960, by
Ronald A. Howard.

