15.561A: Information Systems: From Technology Infrastructure to the Networked Corporation

15.566: Information Technology as an Integrating Force in Manufacturing

Class #15: TECHNOLOGIES
FOR ELECTRONIC COMMERCE:
SECURITY, ENCRYPTION
AND PRIVACY

Spring 1998 Sloan School of Management Massachusetts Institute of Technology

Yannis Bakos E53-329 Tel. (617) 253-7097; Fax (617) 258-7579 Email: bakos@mit.edu Web: http://web.mit.edu/bakos

SECURITY

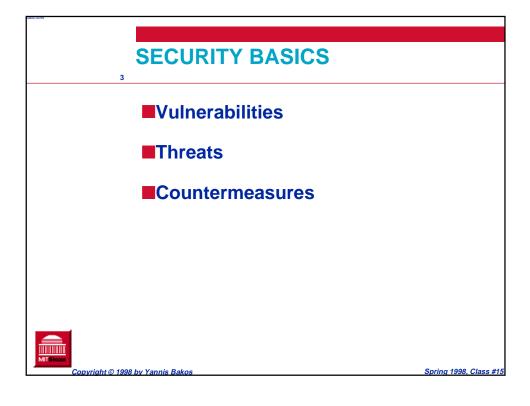
2

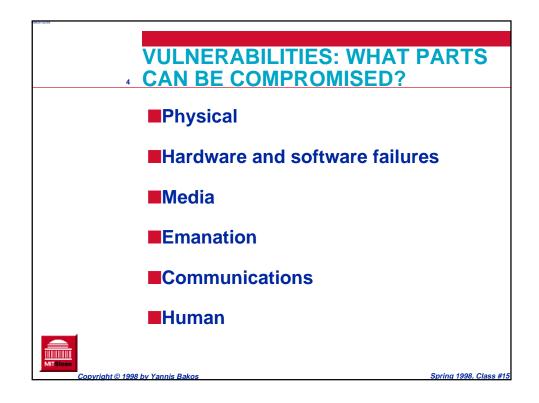
What is it?

■ Secrecy

ensure that only authorized users have access to computer and data resources

Availability


 ensure the computer services remain available to users in the face of partial failures


■ Accuracy

-ensure that multi-user access and system crashes leave data in an accurate state

Copyright © 1998 by Yannis Bakos

THREATS: WHAT CAN BREACH SECURITY

- ■Natural physical disasters
- **■**Unintentional human activity
- ■Intentional human activity
 - -Foreign agents
 - -Terrorists
 - -Criminals
 - -Corporate competitors
 - -Crackers

Copyright © 1998 by Yannis Bakos

Spring 1998 Class #1

COUNTERMEASURES

6

- Access controls
 - -Protects information in computers
- **■**Encryption
 - Protects communications and compromised data
- ■Emanation shielding, physical locks, etc.
 - -Protects physical access to computers

Copyright © 1998 by Yannis Bakos

ACCESS CONTROL TECHNIQUES

7

- **■**Something you have
- **■**Something you know
- **■**Something you are

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1

VIRUSES AND OTHER CRITTERS

8

- Programs that run on machines where they're not wanted
- ■Transmitted through I/O channels
- ■Disguise themselves –How?
- ■Often don't act right away -Why not?
- ■Why hasn't anyone written a definitive virus eliminator?

Copyright © 1998 by Yannis Bakos

SPOOFS

9

- ■Pretending to be someone else
- ■Hard to login without someone's password
- ■But can send out communications with someone else's name on it
 - -email
 - -Dartmouth 1993: a message was sent saying midterm exam was cancelled
 - -Message appeared to come from Professor!
 - -world wide web
 - -can spoof the entire Web!

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1:

WHY BOTHER WITH ENCRYPTION?

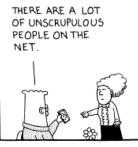
- **■**Security of Telecommunications
 - -Cyberspace is replacing face to face
 - -Encrypted "secure channels" over insecure communication media
- **■**Supply Chain Integration
- **■Electronic commerce**
 - -transactions: contracting, payment
 - -delivery of information goods

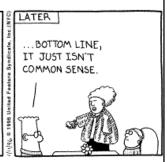
Copyright © 1998 by Yannis Bakos

RISKS

11

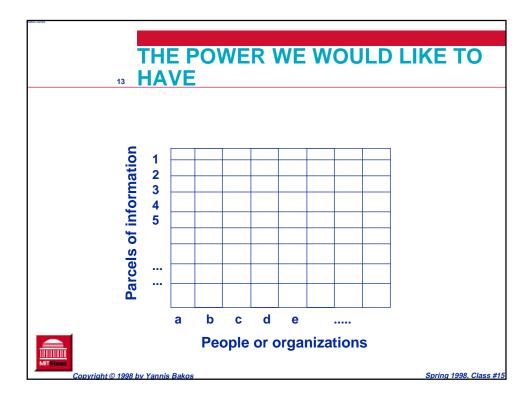
- ■Abuse of information by dishonest people
 - -Theft
 - -Fraud
 - -Invasion of Privacy
 - -Cyber-Terrorism & vandalism
- ■Misuse by holders of private information
 - -Buying habits
 - -Medical history
 - -With whom you communicate



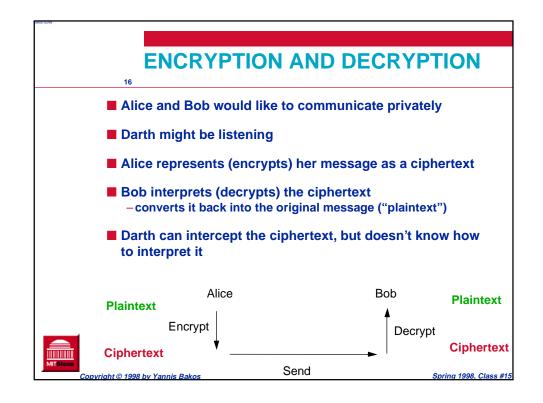

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #15

SECURITY: Internet vs. the Real World



Copyright 3 1996 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited



Copyright © 1998 by Yannis Bakos

ONE SOLUTION: A 15 CRYPTOSYSTEM decryptor encryptor cyphertext cleartext message Hi message Ηi xZ\$q*2#zYannis! Yannis! Encryption and decryption machines typically use mathematical functions to convert between cleartext and cyphertext based on a "key" ■A good cryptosystem depends *only* on secrecy of Two parties can use cryptosystem to establish a secure channel over an insecure network

SECRET KEY CRYPTOSYSTEMS

17

- First agree on a shared secret key, used for both encryption and decryption
 - -Example: add "x" to each letter, where 'a'=1, 'b'=2, 'c'=3...
 - -a key: x = 13
- ■System is good if:
 - -All possible keys must be tried to read (or forge) messages - no "trap door"
 - -Trying all keys takes "forever"
 - If a message decrypts properly, sender's identity is authenticated
- **■** Good systems are:

hard to designharder to verify

Copyright © 1998 by Yannis Bakos

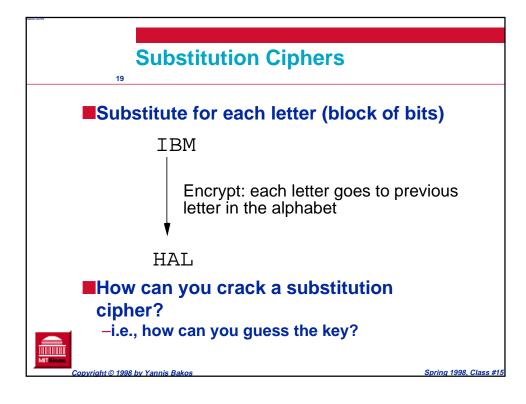
Spring 1998, Class #1

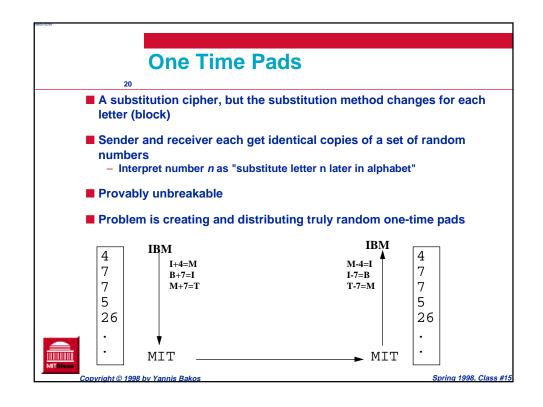
Transposition Ciphers

18

■Don't change any of the bits, just rearrange them

FOURSCORE AND SEVEN YEARS AGO


Get rid of spaces and arrange in three columns


FOU
RSC
ORE
AND
SEV
ENY
EAR
SAG
O
Read down the columns
instead of across

MITStoan

FROASEESOOSRNENAAUCEDVYRG

Copyright © 1998 by Yannis Bakos

EXAMPLE: 21 SECRET KEY SYSTEMS IN USE

■ Data Encryption Standard (DES)

- -IBM & NSA in 1975
 - -widely used, not proprietary
- -56 bit keys
 - -256 = 7*1016 keys to pick from
 - -Is this a large number?
- -Triple DES: 112 bit key

■Skipjack

- -used in Clipper system (key escrow)
- -80 bit key
- Plus, lots of (mostly bad) proprietary systems

Copyright © 1998 by Yannis Bakos

Spring 1998 Class #1

More on the DES algorithm

22

■DES = Data Encryption Standard

- Developed by IBM in 1970s, with input from NSA
- Official standard for non-classified government communications
- De facto standard for financial transactions

■Private key system

- Same key used for encryption and decryption
- Key determines a sequence of permutations and substitutions
- Process implemented in hardware; only keys are variables

■Some argue that NSA deliberately made DES weak

- Keys are 56-bits long
- IBM had another algorithm available that used 128-bit keys
- But no one has publicly proven it's breakable

Copyright © 1998 by Yannis Bakos

PROBLEM: KEY MANAGEMENT IS HARD

- ■Need to exchange secret key in advance
 - -same problem all over again
- **■Okay for:**
 - -small scale communication
 - -own files
- ■Doesn't work as well for:
 - -secure interorganizational email
 - -encrypted phone/fax
 - -electronic commerce
 - -authentication with people you don't trust

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1

PUBLIC KEY CRYPTOSYSTEMS

24

- ■Use a pair of keys: one encrypts, one decrypts
- ■Users publish one key, and keep other secret
 - -Look up recipient's public key, encrypt and send message
- ■Whole new ball game
 - -No prior arrangement needed
 - -If compromised, just publish new key!

Copyright © 1998 by Yannis Bakos

Public Keys: Diffie-Hellman, RSA

25

- ■Each person has a pair of keys e for encryption and d for decryption
- ■Make e publicly available
- ■Alice uses Bob's e_B to send him a private message M^{e_B}
- ■Bob decrypts with d_B : $\left(M^{e_B}\right)^{d_B} = M$ No one else knows d_B
- **■**Works as long as
 - d is really kept secret
 - Hard to compute d from e
 - Can get the correct e from some trusted source

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #15

EXAMPLE: PUBLIC KEY SYSTEMS IN USE

■RSA System

- -Rivest, Shamir & Adleman at MIT in 1978
- -Based on factoring really large numbers
- -Very slow
 - -runs easily on PC cards
 - -usually used in combination with secret key
 - -example: RSA (for key) + DES (for message)
- -Challenge based on 129 bit key broken last year
 - -How? 5-6 months with internetworked computers
 - -Counter: add 3 bits to key & double factoring time!

■ Other Systems:

- -Diffie-Hellman key exchange protocol
- -U.S. Digital Signature Standard

Copyright © 1998 by Yannis Bakos

Message Authentication

27

- ■Make sure Bob gets the message unaltered
- ■Don't let Alice deny sending the message

■Don't care about eavesdropper Darth, unless Darth changes the message

■How can cryptography help?

Copyright © 1998 by Yannis Bakos

Spring 1998 Class #1

DIGITAL SIGNATURES

28

Run public key system in reverse

- Only your private key can be used to write messages that will be decrypted by your public key
- Messages are not (necessarily) secret, but
 - -know who sent them
 - -know they haven't been altered
- **■** Generic use
 - -unalterable, authenticated documents
 - -critical counterweight to ease of digital editing
 - -may even include time stamps
 - -better than handwritten signature?

Copyright © 1998 by Yannis Bakos

KEY MANAGEMENT WITH 29 PUBLIC KEY ENCRYPTION

- ■Bob can send public key over insecure communication channel
- ■But how do you know Darth didn't send you his key instead?

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1

KEY MANAGEMENT IS STILL HARD

30

■ Still need to distribute public keys

- -Ask recipient?
 - -Bad guys could intercept message and give her a bogus key
- -Publish public key list in New York Times
 - -Bad guys could forge a New York Times, just for you
- -Rely on a trusted network

■ More complications

- -what if you don't know recipient?
- -what if sender and receiver are computers?

■ No escaping need for trust

- -Rely on institutions, not technology
- -But at least now only need ONE trusted party

Copyright © 1998 by Yannis Bakos

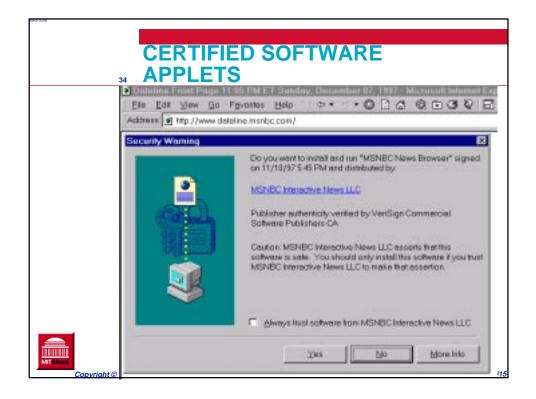
A CENTRAL KEY DISTRIBUTOR

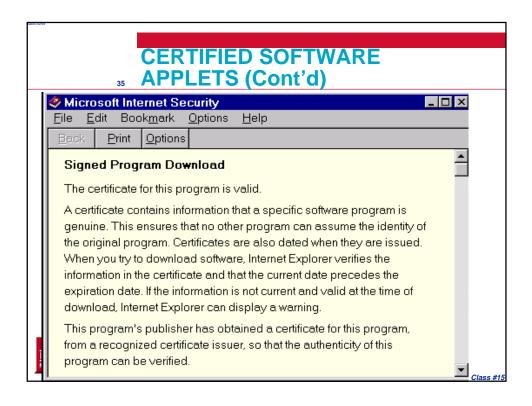
31

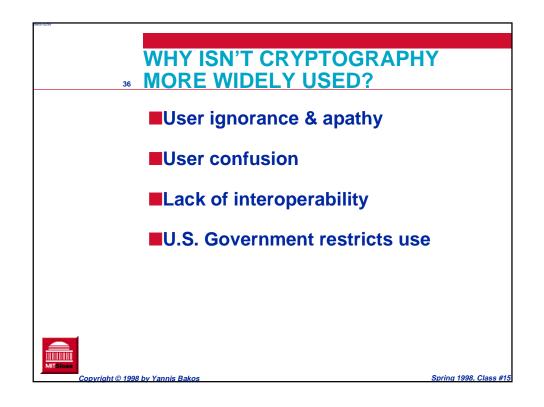
- ■Alice asks the distributor for Bob's public key
- ■Distributor sends key to Alice and "digitally signs" it
- ■Alice knows the key came from the distributor
 - Now just have to be sure that the distributor is honest and got Bob's key from Bob, not Darth
- Requires one secure communication per user
 - Bob sends public key to distributor when he joins the system
- ■Secret keys require secure communication between every pair of users

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1:


KEY ESCROW AND KEY RECOVERY


- ■What if key(s) are lost?
- What if an employee is away, gets fired, leaves for a competitor?
- ■What if the government wants to listen in?
 - -legal wiretaps
 - -espionage
- Key Escrow and Recovery Systems allow to access encrypted information without the proper key
 - -like a Master key or a locksmith
 - -encryption only as secure as the escrow/recovery procedures



Copyright © 1998 by Yannis Bakos

APPLICATIONS OF 33 CRYPTOGRAPHY ■ Secure EDI ■ Electronic Cash -verifiable, yet anonymous -smart cards or net cash ■ Secure communications -email -telephones & faxes **■** Tamper-proof documents -driver's licenses -designs & plans -checks & contracts MITSION right © 1998 by Yannis Bakos Spring 1998, Class #1

ISSUES

37

Strong encryption does not equal security!

- -Subtle flaws on homegrown systems (& implementations)
- -Non-random keys
- -The weak link (just ask Kevin Mitnick or the NSA)
- Is a world of perfect privacy a good idea?

Copyright © 1998 by Yannis Bakos

Spring 1998 Class #1

APPLICATION #1: NETWORK SECURITY

■Client/server computing

- User has client program running on one machine
- -Client program requests services that may be running on other machines

■Why control access to services?

- Can allow open access to network, but not to all services
- Different privileges to users of one service
- -Billing: usage based pricing

Copyright © 1998 by Yannis Bakos

NETWORK ACCESS CONTROL 39 TECHNIQUES

None

- -Local machine verifies user identity at login
- -Works when all local machines are secure

■Host verification

- -Service verifies that host has authority to allow logins
- -Can separate out secure from unsecured machines

■User verification

- -Service verifies user's identity
 - -Don't trust the host to check user's identity

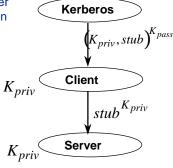
-Doesn't require secure local machines

KERBEROS IDEA

40

■User verification

- ■Kerberos knows user's password; servers (e.g., file servers) don't
- ■But don't send passwords over network
 - -Not even encrypted passwords
 - -If bad guys capture encrypted password, they can replay it
- ■Kerberos creates a "ticket" that's unusable unless the user types his password (locally)



Copyright © 1998 by Yannis Bakos

Kerberos Details

41

- 1. Kerberos sends encrypted ticket to client
- 2. User types password to client so client can decrypt the ticket
 - Ticket has two parts
 - a. A private key for talking to the file server
 - b. A ticket stub that only the file server can decrypt
- 3. User sends a file request to the server
 - Request encrypted with the new key
 - Accompanied by stub
- 4. File server decrypts stub
 - Inside is another copy of the new key
 - File server decrypts the request

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1

APPLICATION #2: 2 ELECTRONIC PAYMENTS

■Model 1: encrypted credit card numbers

- -Actual payment is not electronic
 - -vendor collects from credit card company
- **-Used by Netscape**

■Model 2: credit-debit instruments

- -Electronic signature on electronic check
 - -Vendor sends check to on-line bank
 - -Bank verifies account
 - Bank transfers money from customer account to vendor account
- –NetBill (CMU); NetCheque (USC)

Conversat & 1000 by Vennia Bakes

APPLICATION #2: 43 ELECTRONIC PAYMENTS

■Model 3: electronic cash

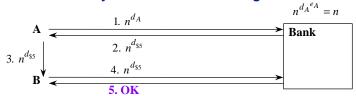
- -User pays bank for "digitally signed" notes in advance
- -User transfers note to vendor
- -Vendor can cash it in at the bank

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #1

EXAMPLE: DIGICASH

44


- A withdraws \$5 and stores it on her "smart-card"
 - -A picks a large integer n, sends it (signed) to Bank
 - -Bank sends back n, signed with its \$5 signature
 - -Anyone can verify this signature

■A gives the \$5 to B

-B verifies signature and asks Bank if money already spent

■ Problems

- -Privacy: bank knows where and when A spent her money
- -Availability of bank for acknowledgment

22

Example: Untraceable Currency

45

- Trick is to use "blind signatures"
 - Only note numbers n in a limited range are legitimate
- Alice multiplies note number n by a random factor r, unknown to bank
- Bank gets note back without random factor, so can't match with withdrawal

■ Problems 5. OK

- May be easy to forge $n^{d_{\$5}}$ for some n in the right range, even if you can't forge for particular n
- Still need to check with bank to prevent double spending

Copyright © 1998 by Yannis Bakos

Spring 1998, Class #

Detecting Duplicate Spending

46

- ■Don't require immediate clearance from bank
- ■B asks A a question before accepting money
 - A can't answer without knowing r, the blinding factor
 - A's answer does not reveal r
 - Answering two such questions does reveal r
 - Mechanism too complicated for us, but it works!
- ■No one but A can spend the money A withdrew from the bank
- ■If A spends it more than once, she reveals her identity, and the bank can track her down

Copyright © 1998 by Yannis Bakos