Aircraft Performance

Prof. Dava Newman

Sr. Lecturer Pete Young

16.00: Introduction to Aerospace & Design

12 February 2004

Massachusetts Institute of Technology

Lecture Outline

- Performance Parameters
 - Aircraft components and examples
- Equations of Motion
- Thrust-Velocity Curves
 - Stall
 - Lift-to-Drag Ratio
- Endurance & Range
- V-n Diagrams

Performance

- Note: Book errata pdf file
- Speed: minimum and maximum?
- Range: How far?
- Endurance: How long?
 - Flight dynamics

Aircraft Components

Massachusetts Institute of Technology

Aircraft Performance/Design Elements

- First example:
 - Semi-scale Mustang "Reno Racer"
 - ~ 750 cm span, 450 grams weight

Massachusetts Institute of Technolog

Aircraft Performance/Design Elements

- Second example: "Omega" high performance motor-glider
- \sim 1.8 m span, 300 grams weight

Discussion Topic

- What are the differing aerodynamic design features providing the desired performance for each aircraft?
- Common features:
 - Aero controls: elevator, ailerons, rudder
 - Electric motor: identical
 - Radio receiver and servo motors: identical

Desired performance

- Reno Racer: high speed aerobatics and racing
 - 20-25 m/s velocity in level flight
 - "High g" turns and rolls

• Omega: steep rapid climbs to altitude; efficient power-off glides for extended duration

Design Elements

- Aspect Ratio (b²/S)
 - Low or high? Why?
- Drag reduction: how attained?
- Airfoils: low or high camber? Why?
- Tail moment arm (horizontal stab area x tail length): high or low? Why?
- Wing loading (wing area/weight) high or low? What effect on flight?
- Any other differing design features?

Equations of Motion

- 2-D model of aircraft
- Lift, Drag, Weight and Thrust
- Velocity, v
- Flight path, θ or γ
 - Velocity & horizontal
- Pitch angle
 - Nose & horizontal

Thrust-Velocity Curves

- The relationship between the required thrust and the velocity can be calculated for any aircraft.
 - 1. Determine the air density ρ_∞ from the Standard Atmosphere for a given altitude \hbar .
 - 2. Calculate the lift coefficient C_{L} for a given velocity v, by recalling the definition of dynamic pressure $q = (1/2)\rho_{w}v^{2}$:

$$C_L = \frac{2W}{\rho_w v^2 S} \tag{4.17}$$

- 3. Calculate the drag coefficient from the drag polar for the aircraft.
- 4. Calculate the thrust required for steady level flight using

$$T = \frac{W}{(C_L/C_D)} = \frac{mg}{L/D}$$
(4.16)

Massachusetts Institute of Technology

Thrust-Velocity Simulation

- Simulations https://web.mit.edu/16.00/www/3/03/index.html
- Foil Sim http://www.lerc.nasa.gov/WWW/K-12/airplane/foil2.html
- Air Density Simulator http://www.flyers.org/simulators/atmospheric.htm
- Stall
- Maximum Lift/Drag

$$\left(\frac{L}{D}\right)_{\max} = \frac{C_L}{(2C_L^2)/(\pi eAR)} = \frac{\pi eAR}{2C_{L,(L/D)_{\max}}}$$

Table 4.1 [Typical Values of the Maximum Lift-to-Drag

Type of Aircraft	$(L/D)_{max}$
Modern sailplanes	25-40
Civil jet airliners	12-20
Supersonic fighter aircraft	4-9

Massachusetts Institute of Technology

Range & Endurance (Breguet)

- Aerodynamics & Engines (propeller, jets)

 - $m_o = a/c$, kg $m_f = mass$ of fuel, kg $m_f = fuel mass$ flow rate, kg/s

$$m = m_o + m_f$$

- Range: total distance on a tank of fuel
 - $(C_{\rm L}^{1/2}/C_{\rm D})_{\rm max}$ or v(L/D) $-(L/D)_{max}$
- Endurance: total time a/c can stay aloft on a tank of fuel

$$- (C_{\rm L}^{3/2}/C_{\rm D})_{\rm max}$$
 (L/D)_{max}

Шii **Massachusetts Institute of Technology**

Range & Endurance Table 4.2 Aircraft Range Comparison

Attaining Maximum Range	Boeing 747	Voyager
(1) Large fuel mass∕empty mass ratio	≈ 0.7	≈8
(2) Large L/D	≈ 20	≈ 40
(3) Large η	≈ 0.8	≈ 0.85
(4) Low μ Low c , specific fuel COT	$\mu = 1.5 x 10^{-4} s^{-1}$	low c

Table 4.3 Designing for a large mass ratio.

Mass ratio, $m_{ m fuel}/{ m m}_{0}$	Boeing 747	Voyager
Efficient structure	redundant for safety	not redundant
Advanced materials	aluminum	graphite-epoxy (5x stronger and stiffer for given cut)
High aspect ratio	10	40
Smooth surface	riveted aluminum	molded
Fuselage, tail, etc.	large	small

A large L/D ratio is similarly obtained through the design parameters in Table 4.4

Pliī **Massachusetts Institute of Technology**

V-n Diagrams (Flight Envelope)

- Operational Velocity-Load (in g's, denoted by 'n') envelope
- Aerodynamic
- Structural
- Simulator
 - Stall limit: aerodynamic
 - Corner Velocity or Maneuver point

- Structural limit
$$v^* = \sqrt{\frac{2n_{\max}}{\rho C_{L,\max}}} \frac{W}{S}$$
 (4.78)

Massachusetts Institute of Technology

Examples

- Example 4.6, pg. 90, V-n Simulation
- Problem 4.6 Calculate the thrust required for an aircraft, modeled after a Canadair Challenger Business Jet, to maintain steady level flight of 350 knots at an altitude of 6500 meters. Assume the following characteristics for the aircraft: Weight = 16,350 kg, Wing area = 48.31, Wing span = 19.61 m, Parasite drag = $C_{Do} = 0.02$, Oswald efficiency factor = e = 0.8

Questions?

• Mud Cards

