16.070: Introduction to Computers and Programming

Style Guide

Above all, remember: clever code is unreadable code.
Save your cleverness for algorithms and document them well.

Key:

» YOU MUST follow this rule

We recommend you follow this rule

Syntax Specific Guidelines

IF
>

>

IFs with ELSE IF clauses should always include an ELSE block even if it's only an error message.

IFs with AND conditions should only use fully elaborated Boolean expressions, and not rely on
ordering for implicit conditions.

IFs with ELSE IF clauses should form an exhaustive set of alternatives

IFs that serve only to guard a block of statements (i.e. test only one condition) and have no
alternatives (ELSE IF blocks) do not necessarily require an ELSE block

Nested IFs contain implicit AND conditions, making them hard to maintain. Be very careful when
you use them.

ELSE statements should be followed by a comment that explains the conditional to which it is
attached.

Combine multiple IF/ELSE IF alternatives that execute the same code. Duplicated code requires
more effort to maintain.

It is preferred that all if statements, even those with only one line, use braces.

BOOLEAN EXPRESSIONS

» Short-circuiting should not be used, because the order in which multiple expressions in a single if
are evaluated is not always defined. Use nested Ifs to avoid runtime errors. Comment these
cases to warn other programmers that a potential problem exists.

» Conditional expressions should not have side effects.

Use parenthesis wherever possible. Avoid relying on evaluation order.
ARRAYS
» Use constants to define your array bounds. It makes writing loop code more scalable.
FOR

» When traversing arrays, use attributes of the array definition to define the bounds of iteration.

Don't use for loops for tasks other than iterating. For loops are designed for iteration and imply
the presence of iteration. If not iterating, use a while loop.

WHILE

» Use flags and/or sentinels to exit loops when necessary. Do not use multiple returns. A return
should come at the end of a function. Do not use break or continue.

Try to express the conditional as a positive rather than simply using a logical NOT

SWITCH / CASE
» Include a default condition even if you think it will never be reached during normal operation.

General Guidelines

NAMING

» Try to avoid generic names like X, Y, |, etc. Exceptions to this rule include FOR loop variables,
which often use |, J, K, etc. to clearly identify nesting.

» Name constants using all capitals and variables using mostly lowercase.

» Global variables should be named in some way to indicate their special scope, e.g. having a 'g' as
the first character of the variable's name.

» Pointer variable names should begin with p or with p_ .
Try to avoid uncommon abbreviations. Elaborate abbreviations fully in comments at declaration.

Descriptive but concise variable names help more to make code readable than any other facet of
the programming, including comments.

Function names should be as descriptive of their purpose as possible.
FUNCTION DECLARATIONS

» Banner comments should include:
0 The function name and a description of its function. Be sure to include any caveats or
limitations.
A list of its dependencies
All inputs and outputs
very long argument list should be split over several lines
use ANSI style argument declarations, not K & R

OO0 oo

Clearly demarcate where each function begins and ends. A short comment after the ending '}' is
useful.

WHITESPACE
» Make opening braces the last character on their line or else on a line alone.

» Put the closing braces of functions on their own lines.
Place a space between comma separated elements.

Insert a blank line between functionally different blocks of code, and before any control flow
construct.

Don’t separate comments that describe a piece of code from the code by a blank line.

Very long lines of code should be broken over several lines

COMMENTS
» When programming in C (as you will be in 16.070), always use c-style comments.

» Banner comments at the top of the file are important. They should include:

0 The author's name and contact information (i.e. e-mail address)
History of recent modification with dates
A list of any other modules and/or external data that the file depends upon
(Not required but often helpful) A list of any modules that depend on the file
A description of the file's functionality.

o 00O

» Comment closing braces with a reference to their opening braces when they are not within a few

lines of each other.
» Comment control flow structures. Especially explain exit condition for sentinel loops

More comments are better. Your comments should explain the general flow of your code,
however you need not explain every line, especially when the function of the line is obvious.

When possible, comment expected ranges/states next to variable declarations.

INDENTATION

» Always indent at the beginning of each new block or control structure. This applies to one-line

blocks as well.
» Ensure that your indentations always line up.
» A minimum of two spaces and maximum of five should be used for your indent.

GENERAL DON'TS
» Don't use goto.

» Don'tuse ++ or -- unless it's on a line by itself orina for statement.

Don't use the comma operator (if you know don't know what that is the don't worry)
Don't use the ternary conditional operator (<boolexp>?<exp>:<exp>)

Use pointers only when necessary.

ADDITIONAL STYLE GUIDES AND RESOURCES
The Indian Hill Style Guide (a quasi-standard):
o http://www.cs.umd.edu/users/cml/cstyle/indhill-cstyle.html

The Ten Commandments for C Programmers
0 http://www.cs.umd.edu/users/cml/cstyle/ten-commandments.html

C. M. Lott's index of C and C++ Style Guides
o http://www.cs.umd.edu/users/cml/cstyle/

Your problem set solutions provide many examples of well written code.

