
16.070: Introduction to Computers and Programming

Style Guide

Above all, remember: clever code is unreadable code.
Save your cleverness for algorithms and document them well.

Key:

Syntax Specific Guidelines

IF

Ø IFs with ELSE IF clauses should always include an ELSE block even if it’s only an error message.

Ø IFs with AND conditions should only use fully elaborated Boolean expressions, and not rely on
ordering for implicit conditions.

Ø IFs with ELSE IF clauses should form an exhaustive set of alternatives

• IFs that serve only to guard a block of statements (i.e. test only one condition) and have no

alternatives (ELSE IF blocks) do not necessarily require an ELSE block

• Nested IFs contain implicit AND conditions, making them hard to maintain. Be very careful when
you use them.

• ELSE statements should be followed by a comment that explains the conditional to which it is

attached.

• Combine multiple IF/ELSE IF alternatives that execute the same code. Duplicated code requires
more effort to maintain.

• It is preferred that all if statements, even those with only one line, use braces.

BOOLEAN EXPRESSIONS

Ø Short-circuiting should not be used, because the order in which multiple expressions in a single if
are evaluated is not always defined. Use nested Ifs to avoid runtime errors. Comment these
cases to warn other programmers that a potential problem exists.

Ø Conditional expressions should not have side effects.

• Use parenthesis wherever possible. Avoid relying on evaluation order.

ARRAYS

Ø Use constants to define your array bounds. It makes writing loop code more scalable.

FOR

Ø When traversing arrays, use attributes of the array definition to define the bounds of iteration.

• Don't use for loops for tasks other than iterating. For loops are designed for iteration and imply
the presence of iteration. If not iterating, use a while loop.

Ø YOU MUST follow this rule

• We recommend you follow this rule

WHILE

Ø Use flags and/or sentinels to exit loops when necessary. Do not use multiple returns. A return
should come at the end of a function. Do not use break or continue.

• Try to express the conditional as a positive rather than simply using a logical NOT

SWITCH / CASE

Ø Include a default condition even if you think it will never be reached during normal operation.

General Guidelines

NAMING

Ø Try to avoid generic names like X, Y, I, etc. Exceptions to this rule include FOR loop variables,
which often use I, J, K, etc. to clearly identify nesting.

Ø Name constants using all capitals and variables using mostly lowercase.

Ø Global variables should be named in some way to indicate their special scope, e.g. having a 'g' as

the first character of the variable's name.

Ø Pointer variable names should begin with p or with p_ .

• Try to avoid uncommon abbreviations. Elaborate abbreviations fully in comments at declaration.

• Descriptive but concise variable names help more to make code readable than any other facet of
the programming, including comments.

• Function names should be as descriptive of their purpose as possible.

FUNCTION DECLARATIONS

Ø Banner comments should include:
o The function name and a description of its function. Be sure to include any caveats or

limitations.
o A list of its dependencies
o All inputs and outputs
o very long argument list should be split over several lines
o use ANSI style argument declarations, not K & R

• Clearly demarcate where each function begins and ends. A short comment after the ending '}' is

useful.

WHITESPACE

Ø Make opening braces the last character on their line or else on a line alone.

Ø Put the closing braces of functions on their own lines.

• Place a space between comma separated elements.

• Insert a blank line between functionally different blocks of code, and before any control flow
construct.

• Don’t separate comments that describe a piece of code from the code by a blank line.

• Very long lines of code should be broken over several lines

COMMENTS

Ø When programming in C (as you will be in 16.070), always use c-style comments.

Ø Banner comments at the top of the file are important. They should include:
o The author's name and contact information (i.e. e-mail address)
o History of recent modification with dates
o A list of any other modules and/or external data that the file depends upon
o (Not required but often helpful) A list of any modules that depend on the file
o A description of the file's functionality.

Ø Comment closing braces with a reference to their opening braces when they are not within a few

lines of each other.

Ø Comment control flow structures. Especially explain exit condition for sentinel loops

• More comments are better. Your comments should explain the general flow of your code,
however you need not explain every line, especially when the function of the line is obvious.

• When possible, comment expected ranges/states next to variable declarations.

INDENTATION

Ø Always indent at the beginning of each new block or control structure. This applies to one-line
blocks as well.

Ø Ensure that your indentations always line up.

Ø A minimum of two spaces and maximum of five should be used for your indent.

GENERAL DON’TS

Ø Don't use goto.

Ø Don't use ++ or -- unless it’s on a line by itself or in a for statement.

• Don't use the comma operator (if you know don't know what that is the don't worry)

• Don't use the ternary conditional operator (<boolexp>?<exp>:<exp>)

• Use pointers only when necessary.

ADDITIONAL STYLE GUIDES AND RESOURCES

• The Indian Hill Style Guide (a quasi-standard):
o http://www.cs.umd.edu/users/cml/cstyle/indhill-cstyle.html

• The Ten Commandments for C Programmers

o http://www.cs.umd.edu/users/cml/cstyle/ten-commandments.html

• C. M. Lott's index of C and C++ Style Guides
o http://www.cs.umd.edu/users/cml/cstyle/

• Your problem set solutions provide many examples of well written code.

