Routing in Data Networks

Eytan Modiano

Packet Switched Networks

Routing

- Must choose routes for various origin destination pairs (O/D pairs) or for various sessions
- Datagram routing: route chosen on a packet by packet basis

Using datagram routing is an easy way to split paths

- Virtual circuit routing: route chosen a session by session basis
- Static routing: route chosen in a prearranged way based on O/D pairs

Broadcast Routing

- Route a packet from a source to all nodes in the network
- Possible solutions:
- Flooding: Each node sends packet on all outgoing links

Discard packets received a second time

- Spanning Tree Routing: Send packet along a tree that includes all of the nodes in the network

Graphs

- A graph $G=(N, A)$ is a finite nonempty set of nodes and a set of node pairs A called arcs (or links or edges)

$$
\begin{aligned}
N & =\{1,2,3\} \\
A & =\{(1,2)\}
\end{aligned}
$$

Walks and paths

- A walk is a sequence of nodes ($\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nk}$) in which each adjacent node pair is an arc.
- A path is a walk with no repeated nodes.

Walk (1,2,3,4,2)

Path (1,2,3,4)

Cycles

- A cycle is a walk ($\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nk}$) with $\mathrm{n} 1=n k, k>3$, and with no repeated nodes except $\mathbf{n 1}=\mathbf{n k}$

Connected graph

- A graph is connected if a path exists between each pair of nodes.

Connected

Unconnected

- An unconnected graph can be separated into two or more connected components.

Acyclic graphs and trees

- An acyclic graph is a graph with no cycles.
- A tree is an acyclic connected graph.

- The number of arcs in a tree is always one less than the number of nodes
- Proof: start with arbitrary node and each time you add an arc you add a node $=>\mathbf{N}$ nodes and N -1 links. If you add an arc without adding a node, the arc must go to a node already in the tree and hence form a cycle

Subgraphs

- $G^{\prime}=\left(N^{\prime}, A^{\prime}\right)$ is a subgraph of $G=(N, A)$ if
- 1) G^{\prime} is a graph
- 2) N^{\prime} is a subset of N
- 3) A^{\prime} is a subset of A
- One obtains a subgraph by deleting nodes and arcs from a graph
- Note: arcs adjacent to a deleted node must also be deleted

- Graph G Subgraph G' of G

Spanning trees

- $T=\left(N^{\prime}, A^{\prime}\right)$ is a spanning tree of $G=(N, A)$ if
- \quad is a subgraph of G with $N^{\prime}=N$ and T is a tree

Graph G

Spanning tree of G

Spanning trees

- Spanning trees are useful for disseminating and collecting control information in networks; they are sometimes useful for routing
- To disseminate data from Node n :
- Node n broadcasts data on all adjacent tree arcs
- Other nodes relay data on other adjacent tree arcs
- To collect data at node n :
- All leaves of tree (other than n) send data
- Other nodes (other than n) wait to receive data on all but one adjacent arc, and then send received plus local data on remaining arc

General construction of a spanning tree

- Algorithm to construct a spanning tree for a connected graph $G=(N, A)$:

1) Select any node \mathbf{n} in $\mathbf{N} ; \mathbf{N}^{\prime}=\{n\} ; A^{\prime}=\{ \}$
2) If $N^{\prime}=N$, then stop ($T=\left(N^{\prime}, A^{\prime}\right)$ is a spanning tree)
3) Choose (i,j) $\in A, i \in N^{\prime}, j \notin N^{\prime}$
$\mathbf{N}^{\prime}:=\mathbf{N}^{\prime} \cup\{j\} ; A^{\prime}:=A^{\prime} \cup\{(\mathbf{i}, \mathrm{j})\} ;$ go to step 2

- Connectedness of G assures that an arc can be chosen in step 3 as long as $\mathbf{N}^{\prime} \neq \mathbf{N}$
- Is spanning tree unique?
- What makes for a good spanning tree?

Minimum Weight Spanning Tree (MST)

- Generic MST algorithm steps:
- Given a collection of subtrees of an MST (called fragments) add a minimum weight outgoing edge to some fragment
- Prim-Dijkstra: Start with an arbitrary single node as a fragment
- Add minimum weight outgoing edge
- Kruskal: Start with each node as a fragment;
- Add the minimum weight outgoing edge, minimized over all fragments

Prim-Dijkstra Algorithm

Kruskal's Algorithm Example

Fragment

- Suppose the arcs of weight 1 and 3 are a fragment
- Consider any spanning tree using those arcs and the arc of weight 4, say, which is an outgoing arc from the fragment.
- Suppose that spanning tree does not use the arc of weight 2.
- Removing the arc of weight 4 and adding the arc of weight 2 yields another tree of smaller weight.
- Thus an outgoing arc of min weight from fragment must be in MST.

