Routing in Data Networks

Eytan Modiano

Packet Switched Networks

Routing

- Must choose routes for various origin destination pairs (O/D pairs) or for various sessions
 - Datagram routing: route chosen on a packet by packet basis

Using datagram routing is an easy way to split paths

- Virtual circuit routing: route chosen a session by session basis
- Static routing: route chosen in a prearranged way based on O/D pairs

Broadcast Routing

- Route a packet from a source to all nodes in the network
- Possible solutions:
 - Flooding: Each node sends packet on all outgoing links
 Discard packets received a second time
 - Spanning Tree Routing: Send packet along a tree that includes all of the nodes in the network

Graphs

 A graph G = (N,A) is a finite nonempty set of nodes and a set of node pairs A called arcs (or links or edges)

Walks and paths

- A walk is a sequence of nodes (n1, n2, ...,nk) in which each adjacent node pair is an arc.
- A path is a walk with no repeated nodes.

 A cycle is a walk (n1, n2,...,nk) with n1 = nk, k>3, and with no repeated nodes except n1 = nk

Connected graph

• A graph is connected if a path exists between each pair of nodes.

• An unconnected graph can be separated into two or more connected components.

Acyclic graphs and trees

- An acyclic graph is a graph with no cycles.
- A tree is an acyclic connected graph.

- The number of arcs in a tree is always one less than the number of nodes
 - Proof: start with arbitrary node and each time you add an arc you add a node => N nodes and N-1 links. If you add an arc without adding a node, the arc must go to a node already in the tree and hence form a cycle

Subgraphs

- G' = (N',A') is a subgraph of G = (N,A) if
 - 1) G' is a graph
 - 2) N' is a subset of N
 - 3) A' is a subset of A
- One obtains a subgraph by deleting nodes and arcs from a graph
 - Note: arcs adjacent to a deleted node must also be deleted

– Graph G

Subgraph G' of G

- T = (N',A') is a spanning tree of G = (N,A) if
 - T is a subgraph of G with N' = N and T is a tree

5

Spanning trees

- Spanning trees are useful for disseminating and collecting control information in networks; they are sometimes useful for routing
- To disseminate data from Node n:
 - Node n broadcasts data on all adjacent tree arcs
 - Other nodes relay data on other adjacent tree arcs
- To collect data at node n:
 - All leaves of tree (other than n) send data
 - Other nodes (other than n) wait to receive data on all but one adjacent arc, and then send received plus local data on remaining arc

General construction of a spanning tree

- Algorithm to construct a spanning tree for a connected graph G = (N,A):
 - 1) Select any node n in N; N' = {n}; A' = { }
 - 2) If N' = N, then stop (T=(N',A') is a spanning tree)
 - 3) Choose (i,j) \in A, i \in N', j \notin N'
 - $N' := N' \cup \{j\}; A' := A' \cup \{(i,j)\}; go to step 2$
- Connectedness of G assures that an arc can be chosen in step 3 as long as $N' \neq N$
- Is spanning tree unique?
- What makes for a good spanning tree?

Minimum Weight Spanning Tree (MST)

- Generic MST algorithm steps:
 - Given a collection of subtrees of an MST (called fragments) add a minimum weight outgoing edge to some fragment
- Prim-Dijkstra: Start with an arbitrary single node as a fragment
 - Add minimum weight outgoing edge
- Kruskal: Start with each node as a fragment;
 - Add the minimum weight outgoing edge, minimized over all fragments

Prim-Dijkstra Algorithm

Kruskal's Algorithm Example

- Suppose the arcs of weight 1 and 3 are a fragment
 - Consider any spanning tree using those arcs and the arc of weight 4, say, which is an outgoing arc from the fragment.
 - Suppose that spanning tree does not use the arc of weight 2.
 - Removing the arc of weight 4 and adding the arc of weight 2 yields another tree of smaller weight.
 - Thus an outgoing arc of min weight from fragment must be in MST.