Problem Solving as State Space Search

Brian C. Williams 16.070 April 15th, 2003

Slides adapted from: 6.034 Tomas Lozano Perez, Russell and Norvig AIMA

Self-Diagnosing Explorers

courtesy of JPL

In Space The Exception is the Rule

APOLLO

- Quintuple fault occurs (three shorts, tank-line and pressure jacket burst, panel flies off).
- Power limitations too severe to perform new mission..
- Novel reconfiguration identified, exploiting LEM batteries for power.
- Swaggert & Lovell work on Apollo 13 emergency rig lithium hydroxide unit.

Complex missions must carefully:

- Plan complex sequences of actions
- Schedule tight resources
- Monitor and diagnose behavior
- Repair or reconfigure hardware.

- \Rightarrow Most Autonomy problems, search through a space of options.
- ⇒ We formulate as state spacevisearchu3

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search

Can the astronaut get its produce safely across the Martian canal?

Astronaut Goose Grain Fox Rover

- Astronaut + 1 item allowed in the rover.
- Goose alone eats Grain
- Fox alone eats Goose

Early AI: What are the universal problem solving methods?

Brian Williams, Spring 03

Problem Solving as State Space Search

- Formulate Goal
- Formulate Problem
 - States
 - Operators
- Generate Solution
 - Sequence of states

Problem Solving as State Space Search

- Formulate Goal
 - Astronaut, Fox, Goose & Grain across river
- Formulate Problem
 - States
 - Location of Astronaut, Fox, Goose & Grain at top or bottom river bank
 - Operators
 - Move rover with astronaut & 1 or 0 items to other bank.

Example: 8-Puzzle

Goal

- States: integer location for each tile AND ...
- Operators: move empty square up, down, left, right
- Goal Test: goal state as given

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search

Problem Formulation: A Graph

Directed Graph (one-way streets) R

Undirected Graph (two-way streets)

Examples of Graphs

Α

A Solution is a State Sequence: Problem Solving Searches Paths

Represent searched paths using a tree.

A Solution is a State Sequence: Problem Solving Searches Paths

Represent searched paths using a tree.

A Solution is a State Sequence: Problem Solving Searches Paths

Represent searched paths using a tree.

Search Trees

Search Trees

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search
 - Depth first in lecture
 - Breadth first at home

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First	until the goal is found.
	Iterative-Deepening	
Heuristic	Hill-Climbing	Uses heuristic measure of goodness
	Best-First	of a node, e.g. estimated distance to.
	Beam	goal.
Optimal	Branch&Bound	Uses path "length" measure. Finds
	A*	"shortest" path. A* also uses heuristic

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First	until the goal is found.
	Iterative-Deepening	

Depth First Search (DFS)

Idea:

- •Explore descendants before siblings
- •Explore siblings left to right

Breadth First Search (BFS)

Idea:

•Explore relatives at same level before their children

•Explore relatives left to right

Elements of Algorithm Design

Description:

stylized pseudo code, sufficient to analyze and implement the algorithm.

Analysis:

- Soundness:
 - is a solution returned by the algorithm guaranteed to be correct?
- Completeness:
 - is the algorithm guaranteed to find a solution when there is one?
- Optimality:
 - is the algorithm guaranteed to find a best solution when there is one?
- Time complexity:
 - how long does it take to find a solution?
- Space complexity:
 - how much memory does it need to perform search?

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search
 - A generic search algorithm
 - Depth-first search example
 - Handling cycles
 - Breadth-first search example (do at home)

Simple Search Algorithm

How do we maintain the Search State?

- A set of partial paths explored thus far.
- An ordering on which partial path to expand next (called a queue Q).

- Search repeatedly:
 - Selects next partial path
 - Expands it.
- Terminates when goal found.

Simple Search Algorithm

- •Let S denote the start node and G a goal node.
- A partial path is a path from S to some node D,
 - e.g., (D A S)

- The head of a partial path is the most recent node of the path,
 - e.g., D.
- The Q is a list of partial paths,
 - e.g. ((D A S) (C A S) ...).

Simple Search Algorithm

Let Q be a list of partial paths, Let S be the start node and Let G be the Goal node.

- 1. Initialize Q with partial path (S)
- 2. If Q is empty, fail. Else, pick a partial path N from Q
- 3. If head(N) = G, return N
- 4. Else:
 - a) Remove N from Q
 - b) Find all children of head(N) and create all the one-step extensions of N to each child.
 - c) Add all extended paths to Q
 - d) Go to step 2.

(goal reached!)

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search
 - A generic search algorithm
 - Depth-first search example
 - Handling cycles
 - Breadth-first search example (do at home)

Depth First Search (DFS)

Depth-first:

Add path extensions to front of Q

Pick first element of Q

For each search type, where do we place the children on the queue?

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	
3	
4	
5	

Pick first element of Q; Add path extensions to front of Q

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Pick first element of Q; Add path extensions to front of Q

Pick first element of Q; Add path extensions to front of Q

Pick first element of Q; Add path extensions to front of Q

Pick first element of Q; Add path extensions to front of Q

Pick first element of Q; Add path extensions to front of Q

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search
 - A generic search algorithm
 - Depth-first search example
 - Handling cycles
 - Breadth-first search example (do at home)

Issue: Starting at S and moving top to bottom, will depth-first search ever reach G?

Can effort be wasted in more mild cases?

Pick first element of Q; Add path extensions to front of Q

- C visited multiple times
- Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?

How Do We Avoid Repeat Visits?

Idea:

- Keep track of nodes already visited.
- Do not place visited nodes on Q.

Does it maintain correctness?

• Any goal reachable from a node that was visited a second time would be reachable from that node the first time.

Does it always improve efficiency?

• Guarantees each node appears at most once at the head of a path in Q.

Simple Search Algorithm

Let Q be a list of partial paths, Let S be the start node and Let G be the Goal node.

- 1. Initialize Q with partial path (S) as only entry; set Visited = ()
- 2. If Q is empty, fail. Else, pick some partial path N from Q
- 3. If head(N) = G, return N

(goal reached!)

- 4. Else
 - a) Remove N from Q
 - b) Find all children of head(N) not in Visited and create all the one-step extensions of N to each child.
 - c) Add to Q all the extended paths;
 - d) Add children of head(N) to Visited

Brian Williams, Spring 03

e) Go to step 2.

Outline

- Problem encoding as state space search
- Graphs and search trees
- Depth and breadth-first search
 - A generic search algorithm
 - Depth-first search example
 - Handling cycles
 - Breadth-first search example (do at home)

Depth First Search (DFS)

Depth-first:

Add path extensions to front of Q

Pick first element of Q

Breadth First Search (BFS)

Breadth-first:

Add path extensions to **back** of Q

Pick first element of Q

For each search type, where do we place the children on the queue?

	Q	Visited	
1	(3)	S	
2	(A S) (B S)	A,B,S	
3			
4			
5			
6			

	Q	Visited	
1	(S)	S	
2	(A S) (B S)	A,B,S	
3			
4			
5			B
6			

	Q	Visited	
1	(S)	S	
2	(A S) (B S)	A,B,S	
3	(B S) (C A S) (D A S)	C,D,B,A,S	
4			
5			B
6			

	Q	Visited	
1	(S)	S	
2	(A S) (B S)	A,B,S	
3	(BS) (CAS) (DAS)	C,D,B,A,S	
4			
5			
6			

	Q	Visited
1	(S)	S
2	(A S) (B S)	A,B,S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(C A S) (D A S) (G B S)*	G,C,D,B,A,S
5	(D A S) (G B S)	G,C,D,B,A,S
6	(G B S)	G,C,D,B,A,S

Depth-first with visited list

	Q	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(C A S) (D A S) (B S)	C,D,B,A,S
4 🔇	(DAS) (BS)	C,D,B,A,S
5	(G D A S) (B S)	G,C,D,B,A,S

Summary

- Most problem solving tasks may be encoded as state space search.
- Basic data structures for search are graphs and search trees.
- Depth-first and breadth-first search may be framed, among others, as instances of a generic search strategy.
- Cycle detection is required to achieve efficiency and completeness.

Appendix

Breadth-First (without Visited list)

