16.070

Introduction to Computers & Programming

http://web.mit.edu/16.070/www/

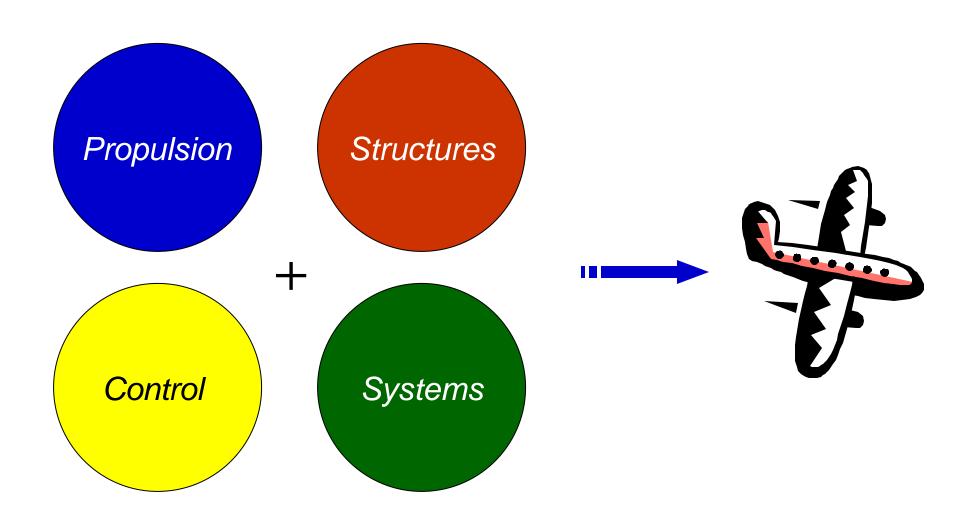
Prof. I. Kristina Lundqvist Dept. of Aero/Astro, MIT

Today

- Introductions
- Why?
 - 16.070 as part of the Aero/Astro core curriculum
- How?
 - Programmatics
 - Administrativa
- What?
 - Course objectives

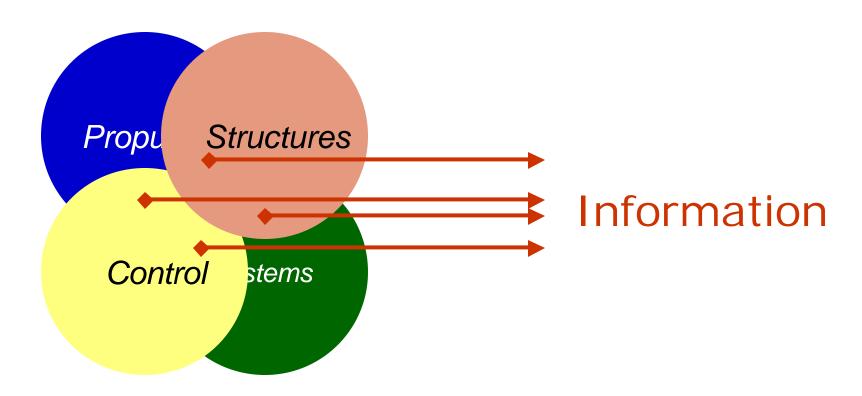
Introductions

- Instructor (33-332, kristina@mit.edu)
 - Prof. I. Kristina Lundqvist
- Graduate TA (33-106, jksrini@mit.edu)
 - Jayakanth "JK" Srinivasan
- Undergraduate TAs (33-106)
 - Gerardo Guevara
 - Nayden Kambouchev
 - Malia Kilpinen
 - Robin Riedel

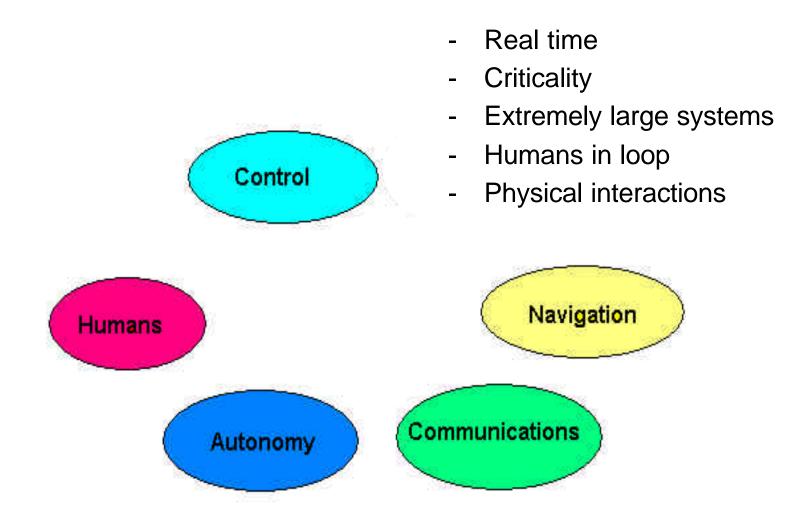

Catherine Chang

Mabel Feng

Chinwe Nyenke


Darlene Utter

16.070 as part of Aero/Astro Core Curriculum



16.070 as part of Aero/Astro Core Curriculum

Integrated design process

Aerospace Info Systems

A Typical Flight

•	Make a reservation	15,000,000	LOC
•	Board aircraft	5,000,000	LOC
•	Airlines planning/Maintenance	20,000,000	LOC
•	Air traffic control	30,000,000	LOC
•	Weather data	10,000,000	LOC
•	Navigation network	10,000,000	LOC
•	Communication network	+ 10,000,000	LOC
		100,000,000	LOC

Software is vital even in moving mass

One Strike and you are Out

Polar Lander Leading Diagnosis:

- Legs deployed during descent.
- Noise spike on leg sensors latched by software monitors.
- Laser altimeter registers 50ft.
- Begins polling leg monitors to determine touch down.
- Latched noise spike read as touchdown.
- Engine shutdown at ~50ft.

Summary

- Modern Aerospace Systems range from information intensive to information centric
- Increasing fraction of new functionality & performance comes from information/software
- Increasing fraction of development effort/cost in information/software
- Increasing fraction of failures comes from information/software
- The system "integrator" usually comes from the subsystem that dominates cost & performance

Needs

- Society needs engineers who can:
 - Conceive
 - _ Design
 - _ Implement
 - _ Operate

Integrated Mechanical-Electrical-Information System

• You need the knowledge, skills & attitude to do this

How? Programmatics

- Texts and Handouts
- Broad spectrum of student experience
- Topics covered
 - Ada programming
 - Computer architecture
 - Algorithm analysis
 - Software development
 - Theoretical computer science
- Final projects

How? Expectations

- Students responsible for all material covered in lectures, recitations, labs, handouts (done ahead of lecture)
- Homework is 40% of your grade do it, and hand it in on time!
 - Pset posted on Web on Wednesdays, due following Wednesday lecture
 - Computers available: 33-202, inside/outside Aero Library, home
 - Late assignments
 - Approval from Prof. Lundqvist/JK prior to due date
 - No more than 2 days (i.e., until Friday) delay will ever be approved
 - W/o approval, docked 1/3 of grade for each 24 hour late

How? Expectations

- Collaboration/teamwork policy on the web
- Pathways for feedback
 - "Muddiest Point" anonymous on the web
 - Concerns: Prof. Lundqvist, TA (grad or undergrad), advisor, Prof. Deyst

What? Administrativa

- Schedule of lectures, recitation, labs, office hours
- Scheduling "Tuesday"
 - 8 sessions available, max 10 students per session
 - Lab times
 - M3, M4, T9, T12, T1, T2, T3, T4
- Go to web page and identify conflicts that you have with the lab times
 - Pset 1: 2 problems: Due Friday, 2/7/02 by 6pm
 - Announcements link
- Lab times will be assigned and students notified by email no later than Monday

Course Schedule

	16.070 Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
9 AM	247		Robin, Nayden	20	100	24	->.77	Mestine
10		;				91-1. 191		Meeting Lecture Lab
71			Office Hours Malia					Recitation Office Hou
2 PM			Lab Gerry, Nayden					
1		Office Hours Malia	Lab Gerry, Robin	Office Hours Gerry		Office Hours Robin		
2		Lecture	Lab Darlene Catherine	Lecture	Recitation	Lecture		
3		Lab Robin, Malia	Lab ??	Office Hours Prof, Lundqvist	Office Hours JK			
4		Lab Robin, Malia	Lab ??	Weekly mtg	Office Hours JK			
5		Office Hours Mable	Office Hours JK			** **		
6		Office Hours Nayden	Office Hours JK					
	Office Hours Nayden		Office Hours Malia					
8			Office Hours Malia					
9			Office Hours Nayden					
10			Office Hours Gerry					
71			Office Hours Gerry					
12			Office Hours Gerry					
1			J. 500					

What? Course Objectives

- After attending 16.070 the student will have an understanding of the fundamentals of computer science and will have learnt problem solving using the Ada 95 programming language.
- Measurable outcomes:
 - To be able to *solve simple problems in computer science* with a specific focus on digital logic, number systems, proof theory, and algorithm analysis (problem sets, quizzes).
 - To be able to solve *basic programming* problems (programming assignments, quizzes).

What? Course Objectives

Measurable outcomes:

- To get an intuitive understanding of the *process of programming*: Problem understanding, formulation, solution, and implementation cycle (programming assignments, final project, quizzes).
- To be able to translate intuitive understanding to practical *implementation* using good design practices and software tools (Programming assignments, Final Project).
- To develop a programming style that is accepted *industry practice* (Programming assignments, Final Project).
- To understand the *impact of computer science on aerospace* (Final Project).

Software

- Operating systems
- Concept of a process
- Programming language history
- Software engineering
 - Software life cycle
 - Modularity
 - Design methodologies

Ada 95

- Programming experience
- Algorithms
 - Search and sort
 - Recursion
 - Algorithm analysis: What makes some problems computationally hard and others easy?
- Data structures
 - Arrays, linked lists, stacks, queues, trees, graphs, hash tables, ...

Use of Ada Around the World

- The control software of nearly every new commercial aircraft model, including the Boeing 777, the Airbus 340, and many regional airlines
- Nearly every country's air traffic control system
- High-speed railroads, including French TGV, and the French/British Channel Tunnel system
- A number of communications and navigational satellites and ground-based equipment
- Steel mills, industrial robotics, medical electronics, telecommunications, ...

Computer Architecture

- Data storage
- Memory organization
- Binary system
- Data compression
- Different computer architectures
- Machine language
- Program execution

Theory of Computation

Automata, Computability, and Complexity

- What are the fundamental capabilities and limitations of computers?
 - Finite State Machines (FSM)
 - Regular languages, DFA, NFA, CFG, PDA, Turing machines, halting problem, P/NP hard problems
 - Proof theory

- Tomorrow: Programming mechanics: how to use the PC computers, brief intro to compiler, tools, Source code, executable, libraries, simple I/O, and web page basics (JK @ 35-225)
- Friday: Machine architecture: Data storage, logic gates, flip-flops, memory organization, mass storage, representing numbers, text as bit patterns

