
16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

������

���������	��
��
��������
�
��������	��

���	
����������	
��	���
� �������

���������	
����������	

� ��
������ ����� 	
����� ��

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	
����������	�������

� Represent a table of names
� Set aside an array big enough to

contain one element for each
possible string of letters

� Convert from names to integers

� Tells where person’s phone
number is immediately

� Dictionary operations
� Insert / delete /search ����������	�
�	����

������������������
���������������
���������������	�
����������
������	����
������������������

�

�����	��
������
�����
���
����
�����	�
����

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	
����������	�������

� Dictionary operations
� Insert / delete /search

1. Sequential search through n records

2. n records are specially ordered or stored in a tree

3. Certain information from each record is used to
generate a memory address

����

������

����

“ hashing”

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�����

� Direct-access table

� Hash table

� Hash function

� Collision resolution
� Chaining

� Open addressing

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�
������������
��

� Direct addressing is a simple technique that works well
when the universeU of keys is reasonably small

� Assume we have:
� Application needs a dynamic set
� All elements of dynamic set have keys, from Universe

U = {0, 1, …, m-1} of keys, associated with them
� m is not too large
� No two elements have the same key

� Direct-address tables
� Implement a dynamic set as an array (direct-address table),

T[0 .. m-1]
� Each slot corresponds to a key in U
� Slot k points to an element in dynamic set with key k
� If dynamic set contains no element with key k then T[k] = NIL

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�
������������
��

�
�

	

�
�

���

�

�

�

	

�

�

�

�

�

	

�

�

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�
������������
��

� Dictionary operations

� Insert
� direct_access_insert (T, x)

T[key[x]] := x O(1)

� Delete
� direct_access_ delete (T, x)

T[key[x]] := NIL O(1)

� Search
� direct_access_ search (T, k)

return T[k] O(1)

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�������

� The problem with direct-addressing is:
� If universe U is large, storing a table of size |U| is

impractical

� If the set of actually stored keys k is small relative to U,
then most of the space allocated for T is wasted

� The advantages of hash table is:
� When set k of keys stored in dictionary is much smaller

than the universe U of all keys, a hash table requires
much less space than a direct-address table

� Storage requirements are reduced to Θ(|k|) instead of
Θ(|U|)

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�������

� The differences are:
� Searching for an element using hashing requires Θ(1)

on average
� Searching for an element using direct-addressing

requires Θ(1) in the worst-case
� Direct-addressing stores an element with key k in slot

(also called a bucket) k
� Hashing stores an element in slot h(k), where h(k) is a

hash function h used to compute the slot from the key k

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�������

��

�

���

�

�

������������������

�

�� !���������

��
�	

��

��

"����

"����

"�����#�"����

"��	�

!
�������
���������� ���������
������
�"������
���
#���
��$ ����% �����������
���

�����
����� ��������

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

��������
�
�
���

� Hash function h: is used to compute the slot in the
hash table from the key k

� Hash tableT: where hash function h maps the
universe U of all possible keys into slots
T[0 .. m-1]

h : U � { 0, 1, .., m-1}
� Hashes means mapping key k to slot h(k)
� Hash value is the h(k) of key k
� Collisionsare when two keys hash to the same slot
� Chaining is putting all elements that hash to the same

slot into a linked list or double linked list for O(1)
time deletion

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���
�����������
�����������	�� ���
��

� An ideal hash function should avoid collisions
entirely
� The “birthday paradox” makes this improbable

� What is the probability that at least 2 people in a room of 23
will have the same birthday?

� A hash function must be deterministic, in that a given
input k should always produce the same h(k) output

� Since |U| > m, there must be 2 keys that have the same
hash value
� A well designed random output hash function may

minimize collisions, but we need a mechanism for handling
collisions

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

!���
�
�������� �
�������	�
�
��

� In chaining we put all the elements that hash to
the same slot in a linked list.
� Slot j contains a pointer to the head of the list of all

stored elements that hash to j.
� If no element hashes to j, then j contains NIL

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

!	�
�
��

��

�

�

������������������

�

�� !���������

��

�	

��

��

&����
���	�
�������� �������#�'������
�"������
�����(�)������
�����������
���������
������
�*��
����
���������
��#�+�	�������������,��-����.��������/��-����%��-����$�#

�� ��

��

�

�

�� ��

�

�
 �	

��

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�
��
������������
���

� Insert
� chained_hash_insert (T, x)

insert x at head of list T[h(key[x])]
worst-case runtime O(1)

� Delete
� chained_hash_delete (T, x)

delete x from list T[h(key[x])]
worst-case runtime O(1) if lists are doubly-linked

� Search
� chained_hash_search (T, k)

search for element with key k in list T[h(k)]
worst-case runtime O(1)

� If the number of hash table slots n is at least proportional
to the number of elements in the table m or n = O(m)

� So that α= n/m = O(m)/m = O(1)

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

������
�����	��	
���"
�	��	�
�
��

� Some definitions:
� Load factor α: is the ratio of the number of stored

elements n divided by the number of slots m in hash
table T or α = n/m

� Simple uniform hashing: is when any given element is
equally likely to hash into any of the m slots,
independently of where any other element has hashed
to

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

������
�����	��	
���"
�	��	�
�
��

� Worst-casebehaviour:
� All n keys hash to the same slot, this creates a list of

length n

� The worst-case time is therefore (terrible!) Θ(n)
� Which is no better than if using one linked list for all

elements, plus the time it takes to compute the hash
function

� Hash tables are not used for their worst-case
performance

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

������
�����	��	
���"
�	��	�
�
��

� Average-casebehaviour
� Depends on how well the hash function h distributes the set

of keys to be stored among the m slots, on the average

� Assume simple uniform hashing

� Assume the hash value h(k) can be computed in O(1) time

� Must examine the number of elements in the list T[h(k)]
that are checked to see if their keys are equal to k.
� Two cases

– The search is unsuccessful. No element in the table has key k

– The search successfully finds an element with key k.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�	�������	�
�� �� ������ �

� Theorem: In a hash table in which collisions are resolved
by chaining, an unsuccessful search takes expected time
Θ(1+α), under the assumption of simple uniform hashing.

� Proof: Under the assumption of simple uniform hashing,
any key k not already stored in the table is equally likely to
hash to any of the m slots. The expected time to search
unsuccessfully for a key k is the expected time to search to
the end of list T[h(k)], which has expected length = α.
Thus, the expected number of elements examined in an
unsuccessful search is α, and the total time required
(including the time for computing h(k)) is Θ(1+α).

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�	�������	�
��� ������ �

� Theorem: In a hash table in which collisions are resolved
by chaining, a successful search takes time Θ(1+α), on the
average, under the assumption of simple uniform hashing.

� ∴If the number of hash-table slots is at least proportional
to the number of elements in the table, we have n= O(m)
and, consequently, α=n/m=O(m)/m=O(1). Thus, searching
takes constant time on average. Since insertion takes O(1)
worst-case time and deletion takes O(1) worst-case time
when the lists are doubly linked, all dictionary operations
can be suppor ted in O(1) time on average.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�� ���
���

� The best possible hash function would hash n keys
into m “buckets” with no more than �n/m� keys per
bucket. Such a function is called a perfect hash
function

� What is the big picture?
� A hash function which maps an arbitrary key to an

integer turns searching into array access, hence O(1)
� To use a finite sized array means two different keys

will be mapped to the same place. Thus we must have
some way to handle collisions

� A good hash function must spread the keys uniformly,
or else we have a linear search

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�� ���
�����	���
#
�
���$��	��

� Map key k into one of m slots by taking the
remainder of k divided by m.
� We use the hash function

– h(k) = k mod m
– We avoid certain values of m, such as m=2p for

binary k and m=10p for decimal k

– We chose m as primes not close to 2p

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

%&�����

� Suppose we wish to allocate a hash table, with collisions
resolved by chaining, to hold roughly n=2000 character
strings, where a character has 8 bits.

� We don’ t mind examining an average of 3 elements in an
unsuccessful search, so we allocate a hash table of size
m=701.

� The number 701 is chose because it is a prime near 2000/3
but not near any power of 2.

� Treating each key k as an integer, our hash function would
be:

h(k)= k mod 701

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�� ���
�����	��$ ��
��
���
���$��	��

� Operates in two steps:
� Multiply the key k by a constant A in the

range 0 < A < 1, and extract the fractional part of kA.

� Multiply this value by m and take the floor of the result.

� Resulting hash function is:

h(k) = ����m(kA mod 1)����

where kA mod 1 returns the fractional part of kA, the same
as kA- �kA�

� Advantage of the multiplication method is that the value of
m is not critical. Typically chose it to be a power of 2.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

���	�� ���
�����	��$ ��
��
���
���$��	��

� Suppose that the word size of the
machine is w bits and that k fits into a
single word. We restrict A to be a
fraction of the form s/2w, where s is an
integer in the range 0 < s < 2w.

'��	����� ���

�

������	�

�
�

���

� ���

� First multiply k by the
w-bit integer s=A2w.
The result is a 2w-bit
value r12w+r0, where r1

is the high-order word
of the product and r0 is
the low-order word of
the product. The
desired p-bit hash
values consists of the p
most significant bits of
r0.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

� Suppose we have k=123456, p=14, m=214=16384,
and w=32.

� Choose A to be the fraction of the form s/232 that is
closest to (√5 – 1)/2 so that A = 2654435769/232.

� Then ks=327706022297664
=(76300*232) + 17612864,

� and so r1=76300 and r0 = 17612864.

� The 14 most significant bits of r0 yields the value
h(k)=67.

%&�����

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

'�
#������	��	
��

� The worst case scenario is when n keys all hash to
the same slot. This requires a Θ(n) retrieval time.
Any fixed hash function is vulnerable to the
possibility of the worst case. The only effective
counter measure is t choose the hash function
randomly in a way that is independent of the keys
that are actually going to be stored. This method,
known as universal hashing yields good
performance on average.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

'�
#������	��	
��

� Let H be a finite collection of hash functions so that
� For every h∈H, we have h: U � { 0, 1, …, m-1}

� This collection H is universal
� If for each pair of distinct keys x,y∈U, the number of hash

functions h∈H where h(x)=h(y) is |H|/m

� We interpret this to mean that:

� Given hash function h ∈H chosen randomly

� The probability of a collision between x and y when x≠y
is 1/m

� This is exactly the probability of a collision of h(x) and
h(y) are randomly chosen from { 0, 1, …, m-1}

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

!���
�
�������� �
��

� Two approaches
� Separate chaining

� m much smaller than n

� ~n/m keys per table position

� Put keys that collide in a list

� Need to search lists

� Open addressing (linear probing, double hashing)
� m much larger than n

� Plenty of empty table slots

� When a new key collides, find an empty slot

� Complex collision patterns

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

(�����������
��

� To perform insertion using open addressing we
probe the hash table to find an empty slot in
which to put the key. Instead of being fixed in the
order 0, 1, …, m-1 (requiring Θ(n) time), the
sequence of positions is probed depending upon
the key being inserted.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

(�����������
��

� Advantages:
� Do not use pointers, which speed up addressing schemes,

frees up space
� Faster retrieval times

� Reduces the number of collisions

� May store a larger table with more slots for the same memory

� Compute the sequence of slots to be examined

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

(�����������
��

� Extend the hash function to also include the probe
number (starting from 0) as a second input.
� h: U * { 0, 1, …, m-1} � { 0, 1, …, m-1}

� For open addressing, we require that for every key
k, the probe sequence

<h(k, 0), h(k, 1), …, h(k, m-1)>
be a permutation of <0, 1, …, m-1>, so that every
hash-table position is eventually considered as a
slot for a new key as the table fills up.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

)�� ��������
�����

� Assume that the elements in the hash table T are
keys with no satellite information; the key k is
identical to the element containing key k. Each slot
contains either a key or NIL (if slot is empty).

hash_i nser t (T, k)
i : = 0
repeat j : = h(k, i)

if T[j] = NI L
then T[j] : = k

else i : = i +1
until i = m
error “ hash t abl e over f l ow”

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�����	

� The algorithm for searching for key k probes the same
sequence of slots that the insertion algorithm examined
when key k was inserted. Therefore, the search can
terminate (unsuccessfully) when it finds an empty slot,
since k would have been inserted there and not later in its
probe sequence. (this argument assumes that keys are not
deleted from the hash table.) The procedure hash_search
takes as input a hash table T and a key k, returning j if slot
j is found to contain key k, or NIL of key k is not present in
table T.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

)�� �������������	

� hash_sear ch(T, k)
i : = 0
repeat j : = h(k, i)

if T[j] = k
then return j

i : = i +1
until T[j] = NI L or i =m
return NI L

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

�����
��

� Deletion from an open-address hash table is difficult.
When we delete a key from slot i, we cannot simply mark
that slot as empty by storing NIL in it. Doing so might
make it impossible to retrieve any key k during whose
insertion we had probed slot i and found it occupied.

� Solution: mark the slot by storing in it the special value
DELETED instead of NIL.
� modify the procedure hash_insert to treat such a slot as
empty so that a new key can be inserted.
No modification of hash_search is needed, since it will pass
over DELETED values while searching.

� When special value is used, search times no longer
dependent on the load factor α, and for this reason chaining
is more commonly selected as a collision resolution
technique when keys must be deleted.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

(�����������
��

� Assume: uniform hashing instead of simple uniform
hashing.
� The hash function in uniform hashing produces a hash

sequence

� Each key is equally likely to have any of m! permutations of
{ 0, 1, …, m-1} as its probe sequence

� Deletion is difficult and a modification to hash_search is
necessary to continue to search if a slot is marked deleted
instead of NIL.

� Chaining may be needed

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

(�����������
��

� Four techniques for computing probe sequences for open
addressing
1. Sequential probing: h, h+1, h+2, h+3, …

2. Linear probing : h, h+k, h+2k, h+3k, …

3. Quadratic probing: h, h+12, h+22, h+32, …

4. Double hashing: h(k,i) = (h1(k) + ih2(k)) mod m
, where h1 and h2 are auxiliary hash functions.

� All generate <h(k,0), h(k, 1), …, h(k, m-1)> as a permutation of
,0, 1, …, m-1>

� None can generate more than m2 different probe sequences as
uniform hashing requires m! different probe sequences
(permutations)

� Double hashing has the greatest number and may give the best
results

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

*�����
�������� ����	��	
��

� We have a hash table of size 13 with
h1(k) = k mod 13 and
h2(k) = 1 + (k mod 11)
since 14 ≡ 1 (mod 13) and 14 ≡ 1 (mod 11),
the key 14 is inserted into empty slot 9, after
slots 1 and 5 are examined and found to be
occupied.

50

14

72

98

69

79

�

�

�

	

�

�

�

�

��

��

��

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

������
�����(�����������
��

� Theorem: given an open-address hash table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful search is at most

1
1- α

assuming uniform hashing
� Corollary: Inserting an element into an open-address hash table with load factor

α requires at most
1

1- α
probes on average, assuming uniform hashing

� Theorem: Given an open-address hash table with load factor α < 1, the expected
number of probes in a successful search is at most

1 1 1
α 1- α α

assuming uniform hashing and assuming that each key in the table is equally
likely to be searched for.

� If the hash table is half full, then the expected number of probes is less than
3.38629. If it is ninety percent full, we have less than 3.66954 probes.

ln

