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� Represent a table of names
� Set aside an array big enough to 

contain one element for each 
possible string of letters

� Convert from names to integers 

� Tells where person’s phone
number is immediately

� Dictionary operations
� Insert / delete /search ����������	�
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� Dictionary operations
� Insert / delete /search

1. Sequential search through n records

2. n records are specially ordered or stored in a tree

3. Certain information from each record is used to 
generate a memory address
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“ hashing”
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� Direct-access table

� Hash table

� Hash function

� Collision resolution 
� Chaining

� Open addressing
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� Direct addressing is a simple technique that works well 
when the universeU of keys is reasonably small

� Assume we have:
� Application needs a dynamic set
� All elements of dynamic set have keys, from Universe 

U = {0, 1, …, m-1} of keys, associated with them
� m is not too large
� No two elements have the same key

� Direct-address tables
� Implement a dynamic set as an array (direct-address table), 

T[0 .. m-1]
� Each slot corresponds to a key in U
� Slot k points to an element in dynamic set with key k
� If dynamic set contains no element with key k then T[k] = NIL
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� Dictionary operations

� Insert
� direct_access_insert (T, x)   

T[key[x]] := x O(1)

� Delete
� direct_access_ delete (T, x)  

T[key[x]] := NIL O(1)

� Search 
� direct_access_ search (T, k)

return T[k] O(1)
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� The problem with direct-addressing is:
� If universe U is large, storing a table of size |U| is 

impractical

� If the set of actually stored keys k is small relative to U, 
then most of the space allocated for T is wasted

� The advantages of hash table is:
� When set k of keys stored in dictionary is much smaller 

than the universe U of all keys, a hash table requires 
much less space than a direct-address table

� Storage requirements are reduced to Θ(|k|) instead of 
Θ(|U|)
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� The differences are:
� Searching for an element using hashing requires Θ(1) 

on average
� Searching for an element using direct-addressing

requires Θ(1) in the worst-case
� Direct-addressing stores an element with key k in slot 

(also called a bucket) k
� Hashing stores an element in slot h(k), where h(k) is a 

hash function h used to compute the slot from the key k
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� Hash function h: is used to compute the slot in the 
hash table from the key k

� Hash tableT: where hash function h maps the 
universe U of all possible keys into slots 
T[0 .. m-1]

h : U � { 0, 1, .., m-1}
� Hashes means mapping key k to slot h(k)
� Hash value is the h(k) of key k
� Collisionsare when two keys hash to the same slot
� Chaining is putting all elements that hash to the same 

slot into a linked list or double linked list for O(1) 
time deletion
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� An ideal hash function should avoid collisions
entirely
� The “birthday paradox”  makes this improbable

� What is the probability that at least 2 people in a room of 23 
will have the same birthday? 

� A hash function must be deterministic, in that a given 
input k should always produce the same h(k) output

� Since |U| > m, there must be 2 keys that have the same 
hash value
� A well designed random output hash function may 

minimize collisions, but we need a mechanism for handling 
collisions
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� In chaining we put all the elements that hash to 
the same slot in a linked list.
� Slot j contains a pointer to the head of the list of all 

stored elements that hash to j.
� If no element hashes to j, then j contains NIL
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� Insert
� chained_hash_insert (T, x)   

insert x at head of list T[h(key[x])] 
worst-case runtime O(1)

� Delete
� chained_hash_delete (T, x) 

delete x from list T[h(key[x])]
worst-case runtime O(1) if lists are doubly-linked

� Search
� chained_hash_search (T, k) 

search for element with key k in list T[h(k)]
worst-case runtime O(1)

� If the number of hash table slots n is at least proportional 
to the number of elements in the table m or n = O(m)

� So that α= n/m = O(m)/m = O(1)
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� Some definitions:
� Load factor  α: is the ratio of the number of stored 

elements n divided by the number of slots m in hash 
table T or α = n/m

� Simple uniform hashing: is when any given element is 
equally likely to hash into any of the m slots, 
independently of where any other element has hashed 
to
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� Worst-casebehaviour:
� All n keys hash to the same slot, this creates a list of 

length n

� The worst-case time is therefore (terrible!) Θ(n)
� Which is no better than if using one linked list for all 

elements, plus the time it takes to compute the hash 
function

� Hash tables are not used for their worst-case 
performance
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� Average-casebehaviour
� Depends on how well the hash function h distributes the set 

of keys to be stored among the m slots, on the average

� Assume simple uniform hashing

� Assume the hash value h(k) can be computed in O(1) time

� Must examine the number of elements in the list T[h(k)] 
that are checked to see if their keys are equal to k.
� Two cases

– The search is unsuccessful. No element in the table has key k

– The search successfully finds an element with key k.
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� Theorem: In a hash table in which collisions are resolved 
by chaining, an unsuccessful search takes expected time 
Θ(1+α), under the assumption of simple uniform hashing.

� Proof: Under the assumption of simple uniform hashing, 
any key k not already stored in the table is equally likely to 
hash to any of the m slots. The expected time to search 
unsuccessfully for a key k is the expected time to search to 
the end of list T[h(k)], which has expected length = α. 
Thus, the expected number of elements examined in an 
unsuccessful search is α, and the total time required 
(including the time for computing h(k)) is Θ(1+α).
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� Theorem: In a hash table in which collisions are resolved 
by chaining, a successful search takes time Θ(1+α), on the 
average, under the assumption of simple uniform hashing.

� ∴If the number of hash-table slots is at least proportional 
to the number of elements in the table, we have n= O(m) 
and, consequently, α=n/m=O(m)/m=O(1). Thus, searching 
takes constant time on average. Since insertion takes O(1) 
worst-case time and deletion takes O(1) worst-case time 
when the lists are doubly linked, all dictionary operations 
can be suppor ted in O(1) time on average.
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� The best possible hash function would hash n keys 
into m “buckets”  with no more than �n/m� keys per 
bucket. Such a function is called a perfect hash 
function

� What is the big picture?
� A hash function which maps an arbitrary key to an 

integer turns searching into array access, hence O(1)
� To use a finite sized array means two different keys 

will be mapped to the same place. Thus we must have 
some way to handle collisions

� A good hash function must spread the keys uniformly, 
or else we have a linear search
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� Map key k into one of m slots by taking the 
remainder of k divided by m.
� We use the hash function

– h(k) = k mod m
– We avoid certain values of m, such as m=2p for 

binary k and m=10p for decimal k

– We chose m as primes not close to 2p
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� Suppose we wish to allocate a hash table, with collisions 
resolved by chaining, to hold roughly n=2000 character 
strings, where a character has 8 bits.

� We don’ t mind examining an average of 3 elements in an 
unsuccessful search, so we allocate a hash table of size 
m=701.

� The number 701 is chose because it is a prime near 2000/3 
but not near any power of 2. 

� Treating each key k as an integer, our hash function would 
be:

h(k)= k mod 701
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� Operates in two steps:
� Multiply the key k by a constant A in the 

range 0 < A < 1, and extract the fractional part of kA.

� Multiply this value by m and take the floor of the result. 

� Resulting hash function is:

h(k) = ����m(kA mod 1)����

where kA mod 1 returns the fractional part of kA, the same 
as kA- �kA�

� Advantage of the multiplication method is that the value of 
m is not critical. Typically chose it to be a power of 2.
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� Suppose that the word size of the 
machine is w bits and that k fits into a 
single word. We restrict A to be a 
fraction of the form s/2w, where s is an 
integer in the range 0 < s < 2w.
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� First multiply k by the 
w-bit integer s=A2w. 
The result is a 2w-bit 
value r12w+r0, where r1

is the high-order word 
of the product and r0 is 
the low-order word of 
the product. The 
desired p-bit hash 
values consists of the p
most significant bits of 
r0.
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� Suppose we have k=123456, p=14, m=214=16384, 
and w=32.

� Choose A to be the fraction of the form s/232 that is 
closest to (√5 – 1)/2 so that A = 2654435769/232. 

� Then ks=327706022297664 
=(76300*232) + 17612864, 

� and so r1=76300 and r0 = 17612864. 

� The 14 most significant bits of r0 yields the value 
h(k)=67.

%&�����
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� The worst case scenario is when n keys all hash to 
the same slot. This requires a Θ(n) retrieval time. 
Any fixed hash function is vulnerable to the 
possibility of the worst case. The only effective 
counter measure is t choose the hash function 
randomly in a way that is independent of the keys 
that are actually going to be stored. This method, 
known as universal hashing yields good 
performance on average.
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� Let H be a finite collection of hash functions so that
� For every h∈H, we have h: U � { 0, 1, …, m-1}

� This collection H is universal
� If for each pair of distinct keys x,y∈U, the number of hash 

functions h∈H where h(x)=h(y) is |H|/m

� We interpret this to mean that:

� Given hash function h ∈H chosen randomly

� The probability of a collision between x and y when x≠y 
is 1/m

� This is exactly the probability of a collision of h(x) and 
h(y) are randomly chosen from { 0, 1, …, m-1}
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� Two approaches
� Separate chaining

� m much smaller than n

� ~n/m keys per table position

� Put keys that collide in a list

� Need to search lists

� Open addressing (linear probing, double hashing)
� m much larger than n

� Plenty of empty table slots

� When a new key collides, find an empty slot

� Complex collision patterns
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� To perform insertion using open addressing we 
probe the hash table to find an empty slot in 
which to put the key. Instead of being fixed in the 
order 0, 1, …, m-1 (requiring Θ(n) time), the 
sequence of positions is probed depending upon 
the key being inserted.
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� Advantages:
� Do not use pointers, which speed up addressing schemes, 

frees up space
� Faster retrieval times

� Reduces the number of collisions

� May store a larger table with more slots for the same memory

� Compute the sequence of slots to be examined
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� Extend the hash function to also include the probe 
number (starting from 0) as a second input.
� h: U *  { 0, 1, …, m-1}  � { 0, 1, …, m-1}

� For open addressing, we require that for every key 
k, the probe sequence

<h(k, 0), h(k, 1), …, h(k, m-1)>
be a permutation of <0, 1, …, m-1>, so that every 
hash-table position is eventually considered as a 
slot for a new key as the table fills up. 
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� Assume that the elements in the hash table T are 
keys with no satellite information; the key k is 
identical to the element containing key k. Each slot 
contains either a key or NIL (if slot is empty).

hash_i nser t ( T,  k)
i  : = 0
repeat j  : = h( k,  i )

if T[ j ]  = NI L
then T[ j ]  : = k

else i  : = i +1
until i  = m
error “ hash t abl e over f l ow”
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� The algorithm for searching for key k probes the same 
sequence of slots that the insertion algorithm examined 
when key k was inserted. Therefore, the search can 
terminate (unsuccessfully) when it finds an empty slot, 
since k would have been inserted there and not later in its 
probe sequence. (this argument assumes that keys are not 
deleted from the hash table.) The procedure hash_search 
takes as input a hash table T and a key k, returning j if slot 
j is found to contain key k, or NIL of key k is not present in 
table T.

16.070 — March 31/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

)�� �������������	

� hash_sear ch( T,  k)
i  : = 0
repeat j  : = h( k,  i )

if T[ j ]  = k
then return j

i  : = i +1
until T[ j ]  = NI L or  i =m
return NI L
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� Deletion from an open-address hash table is difficult. 
When we delete a key from slot i, we cannot simply mark 
that slot as empty by storing NIL in it. Doing so might 
make it impossible to retrieve any key k during whose 
insertion we had probed slot i and found it occupied.

� Solution: mark the slot by storing in it the special value 
DELETED instead of NIL.
� modify the procedure hash_insert to treat such a slot as 
empty so that a new key can be inserted.
No modification of hash_search is needed, since it will pass 
over DELETED values while searching.

� When special value is used, search times no longer 
dependent on the load factor α, and for this reason chaining 
is more commonly selected as a collision resolution 
technique when keys must be deleted. 
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� Assume: uniform hashing instead of simple uniform 
hashing.
� The hash function in uniform hashing produces a hash 

sequence

� Each key is equally likely to have any of m! permutations of 
{ 0, 1, …, m-1}  as its probe sequence

� Deletion is difficult and a modification to hash_search is 
necessary to continue to search if a slot is marked deleted 
instead of NIL.

� Chaining may be needed
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� Four techniques for computing probe sequences for open 
addressing
1. Sequential probing: h, h+1, h+2, h+3, …

2. Linear probing : h, h+k, h+2k, h+3k, …

3. Quadratic probing: h, h+12, h+22, h+32, …

4. Double hashing: h(k,i) = (h1(k) + ih2(k)) mod m
, where h1 and h2 are auxiliary hash functions.

� All generate <h(k,0), h(k, 1), …, h(k, m-1)> as a permutation of 
,0, 1, …, m-1>

� None can generate more than m2 different probe sequences as 
uniform hashing requires m! different probe sequences 
(permutations)

� Double hashing has the greatest number and may give the best 
results
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� We have a hash table of size 13 with 
h1(k) = k mod 13 and 
h2(k) = 1 + (k mod 11)
since 14 ≡ 1 (mod 13) and 14 ≡ 1 (mod 11), 
the key 14 is inserted into empty slot 9, after 
slots 1 and 5 are examined and found to be 
occupied.
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� Theorem: given an open-address hash table with load factor α = n/m < 1, the 
expected number of probes in an unsuccessful search is at most

1
1- α

assuming uniform hashing
� Corollary: Inserting an element into an open-address hash table with load factor 

α requires at most
1

1- α
probes on average, assuming uniform hashing

� Theorem: Given an open-address hash table with load factor α < 1, the expected 
number of probes in a successful search is at most

1  1      1
α 1- α α

assuming uniform hashing and assuming that each key in the table is equally 
likely to be searched for.

� If the hash table is half full, then the expected number of probes is less than 
3.38629. If it is ninety percent full, we have less than 3.66954 probes.

ln


