\square

16.070

Introduction to Computers \& Programming

Hashing: breaking the $\log \boldsymbol{n}$ barrier

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

Hashing and Hash Tables

- Represent a table of names
- Set aside an array big enough to contain one element for each possible string of letters
- Convert from names to integers
- Tells where person's phone number is immediately

Katherine

Stefano
Julie
Alan
Megan
Richard
Jaclyn

- Dictionary operations
- Insert / delete /search

```
(check, a restraint)
(check, examination)
(check, a bill)
(check, a pattern)
(check, a small crack)
(check, move in chess)
```


Today

- Dictionary operations
- Insert / delete /search

1. Sequential search through \mathbf{n} records

O(n)

2. \mathbf{n} records are specially ordered or stored in a tre $\mathbf{O}(\mathbf{l g} \mathbf{n})$
3. Certain information from each record is used to generate a memory address

O(1)

"hashing"

- Direct-access table
- Hash table
- Hash function
- Collision resolution
- Chaining
- Open addressing

Direct Addressing

- Direct addressing is a simple technique that works well when the universe U of keys is reasonably small
- Assume we have:
- Application needs a dynamic set
- All elements of dynamic set have keys, from Universe $\boldsymbol{U}=\{0,1, \ldots, m-1\}$ of keys, associated with them
- m is not too large
- No two elements have the same key
- Direct-address tables
- Implement a dynamic set as an array (direct-address table), T[0 .. m-1]
- Each slot corresponds to a key in U
- Slot k points to an element in dynamic set with key k
- If dynamic set contains no element with key k then $\mathrm{T}[\mathrm{k}]=$ NIL

Direct Addressing

- Dictionary operations
- Insert
- direct_access_insert (T, x)

$$
\begin{equation*}
\mathrm{T}[\operatorname{key}[\mathrm{x}]]:=\mathrm{x} \tag{1}
\end{equation*}
$$

- Delete
- direct_access_ delete (T, x)

$$
\begin{equation*}
\mathrm{T}[\operatorname{key}[\mathrm{x}]]:=\mathrm{NIL} \tag{1}
\end{equation*}
$$

- Search
- direct_access_ search (T, k)
return $\mathrm{T}[\mathrm{k}]$

Direct Addressing

\qquad

\square

Hash tables

- The differences are:
- Searching for an element using hashing requires $\Theta(1)$ on average
- Searching for an element using direct-addressing requires $\Theta(1)$ in the worst-case
- Direct-addressing stores an element with key k in slot (also called a bucket) k
- Hashing stores an element in slot $\mathrm{h}(\mathrm{k})$, where $\mathrm{h}(\mathrm{k})$ is a hash function h used to compute the slot from the key k
\qquad

Using a hash function h to map keys to hash-table slots. Keys k_{2} and k_{5} map to the same slot, so they collide
16.070 - March 3112003 - Prof. I. . K. Lundquist - kristina@mit.edu

Desired properties of a Hash Function

- An ideal hash function should avoid collisions entirely
- The "birthday paradox" makes this improbable
- What is the probability that at least 2 people in a room of 23 will have the same birthday?
- A hash function must be deterministic, in that a given input k should always produce the same $\mathrm{h}(\mathrm{k})$ output
- Since $|U|>m$, there must be 2 keys that have the same hash value
- A well designed random output hash function may minimize collisions, but we need a mechanism for handling collisions
- In chaining we put all the elements that hash to the same slot in a linked list.
- Slot j contains a pointer to the head of the list of all stored elements that hash to j.
- If no element hashes to j, then j contains NIL

Chaining

Collision resolution by chaining. Each hash-table slot $T[j]$ contains a linked list of all the keys whose hash value is j. For example, $h\left(k_{1}\right)=h\left(k_{4}\right)$ and $h\left(k_{7}\right)=h\left(k_{5}\right)=h\left(k_{2}\right)$. 16.070 - March 3112003 - Prof. I. . . Lundqyist - kristina@mit.edu

Analysis of hashing with chaining

- Insert
- chained_hash_insert (T, x)
insert x at head of list $T[h(\operatorname{key}[x])]$
worst-case runtime $\mathbf{O}(1)$
- Delete
- chained_hash_delete (T, x)
delete x from list $\mathrm{T}[\mathrm{h}(\mathrm{key}[\mathrm{x}])]$
worst-case runtime $\mathbf{O}(1)$ if lists are doubly-linked
- Search
- chained_hash_search (T, k)
search for element with key k in list $\mathrm{T}[\mathrm{h}(\mathrm{k})]$
worst-case runtime $\mathbf{O}(1)$
- If the number of hash table slots n is at least proportional
to the number of elements in the table m or $\mathrm{n}=\mathbf{O}(\mathrm{m})$
- So that $\alpha=\mathrm{n} / \mathrm{m}=\mathrm{O}(\mathrm{m}) / \mathrm{m}=\mathrm{O}(1)$

Analysis of hashing with chaining

- Average-case behaviour

- Depends on how well the hash function \boldsymbol{h} distributes the set of keys to be stored among the \boldsymbol{m} slots, on the average
- Assume simple uniform hashing
- Assume the hash value $h(k)$ can be computed in $\mathbf{O}(1)$ time
- Must examine the number of elements in the list $\mathrm{T}[\mathrm{h}(\mathrm{k})$] that are checked to see if their keys are equal to k.
- Two cases
- The search is unsuccessful. No element in the table has key k
- The search successfully finds an element with key k.
- Hash tables are not used for their worst-case performance
- Theorem: In a hash table in which collisions are resolved by chaining, an unsuccessful search takes expected time $\Theta(1+\alpha)$, under the assumption of simple uniform hashing.
- Proof: Under the assumption of simple uniform hashing, any key k not already stored in the table is equally likely to hash to any of the m slots. The expected time to search unsuccessfully for a key k is the expected time to search to the end of list $\mathrm{T}[\mathrm{h}(\mathrm{k})]$, which has expected length $=\alpha$. Thus, the expected number of elements examined in an unsuccessful search is α, and the total time required (including the time for computing $h(k))$ is $\Theta(1+\alpha)$.
- Theorem: In a hash table in which collisions are resolved by chaining, a successful search takes time $\Theta(1+\alpha)$, on the average, under the assumption of simple uniform hashing.
- \therefore If the number of hash-table slots is at least proportional to the number of elements in the table, we have $\mathrm{n}=\mathrm{O}(\mathrm{m})$ and, consequently, $\alpha=\mathrm{n} / \mathrm{m}=\mathrm{O}(\mathrm{m}) / \mathrm{m}=\mathrm{O}(1)$. Thus, searching takes constant time on average. Since insertion takes O(1) worst-case time and deletion takes $\mathrm{O}(1)$ worst-case time when the lists are doubly linked, all dictionary operations can be supported in $O(1)$ time on average.
- The best possible hash function would hash n keys into m "buckets" with no more than $\lceil n / m\rceil$ keys per bucket. Such a function is called a perfect hash function
- What is the big picture?
- A hash function which maps an arbitrary key to an integer turns searching into array access, hence $\mathrm{O}(1)$
- To use a finite sized array means two different keys will be mapped to the same place. Thus we must have some way to handle collisions
- A good hash function must spread the keys uniformly, or else we have a linear search
- Map key k into one of m slots by taking the remainder of k divided by m.
- We use the hash function
$-h(k)=k \bmod m$
- We avoid certain values of m, such as $m=\mathbf{2}^{\mathbf{p}}$ for binary k and $m=\mathbf{1 0}^{\text {p }}$ for decimal k
- We chose m as primes not close to $2^{\text {p }}$
16.070 - March 31/2003 - Prof. I. K. Lundquist - krisitina mit.edu

Hash functions: The Multiplication Method

- Operates in two steps:
- Multiply the key k by a constant A in the range $0<A<1$, and extract the fractional part of $k A$.
- Multiply this value by m and take the floor of the result.
- Resulting hash function is:

$$
h(k)=\lfloor m(k A \bmod 1)\rfloor
$$

where $k A \bmod 1$ returns the fractional part of $k A$, the same as $k A-\lfloor k A\rfloor$

- Advantage of the multiplication method is that the value of m is not critical. Typically chose it to be a power of 2 .
- Suppose that the word size of the machine is w bits and that k fits into a single word. We restrict A to be a fraction of the form $\mathrm{s} / 2^{\mathrm{w}}$, where s is an integer in the range $0<s<2^{\mathrm{w}}$.

- First multiply k by the w-bit integer $s=\mathrm{A} 2^{\mathrm{w}}$. The result is a $2 w$-bit value $r_{1} 2^{w}+r_{0}$, where r_{1} is the high-order word of the product and r_{0} is the low-order word of the product. The desired p-bit hash values consists of the p most significant bits of r_{0}.
16.070 - March 31/2003 - Prof. I. K. Lundquist - krisitina@mit.edu
16.070 - March $31 / 2003$ - Prof. I. K. Lundquist - krisinina@mitedu

Universal hashing

- Suppose we have $k=123456, p=14, m=2^{14}=16384$, and $w=32$.
- Choose A to be the fraction of the form $\mathrm{s} / 2^{32}$ that is closest to $(\sqrt{5}-1) / 2$ so that $A=2654435769 / 2^{32}$.
- Then $k s=327706022297664$ $=(76300 * 232)+17612864$,
- and so $r_{1}=76300$ and $r_{0}=17612864$.
- The 14 most significant bits of r_{0} yields the value $h(k)=67$.

Universal hashing

- The worst case scenario is when n keys all hash to the same slot. This requires a $\Theta(\mathrm{n})$ retrieval time. Any fixed hash function is vulnerable to the possibility of the worst case. The only effective counter measure is t choose the hash function randomly in a way that is independent of the keys that are actually going to be stored. This method, known as universal hashing yields good performance on average.
- Let \mathbf{H} be a finite collection of hash functions so that
- For every $\mathrm{h} \in \mathbf{H}$, we have $\mathrm{h}: \mathrm{U} \rightarrow\{0,1, \ldots, \mathrm{~m}-1\}$
- This collection \mathbf{H} is universal
- If for each pair of distinct keys $x, y \in U$, the number of hash functions $\mathrm{h} \in \mathbf{H}$ where $\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})$ is $\mid \mathrm{H} / \mathrm{m}$
- We interpret this to mean that:
- Given hash function $\mathrm{h} \in \mathbf{H}$ chosen randomly
- The probability of a collision between x and y when $x \neq y$ is $1 / \mathrm{m}$
- This is exactly the probability of a collision of $\mathrm{h}(\mathrm{x})$ and $h(y)$ are randomly chosen from $\{0,1, \ldots, m-1\}$

[^0]- Two approaches
- Separate chaining
- m much smaller than n
- $\sim \mathrm{n} / \mathrm{m}$ keys per table position
- Put keys that collide in a list
- Need to search lists
- Open addressing (linear probing, double hashing)
- m much larger than n
- Plenty of empty table slots
- When a new key collides, find an empty slot
- Complex collision patterns
16.070 - March 31/2003 - Prof. I. K. Lundquist - krisitina @mitedu

To perform insertion using open addressing we probe the hash table to find an empty slot in which to put the key. Instead of being fixed in the order $0,1, \ldots, m-1$ (requiring $\Theta(n)$ time), the sequence of positions is probed depending upon the key being inserted.

- Advantages:
- Do not use pointers, which speed up addressing schemes,
frees up space
- Faster retrieval times
- Reduces the number of collisions
- May store a larger table with more slots for the same memory
- Compute the sequence of slots to be examined
- Extend the hash function to also include the probe number (starting from 0) as a second input.
- h: $U^{*}\{0,1, \ldots, \mathrm{~m}-1\} \rightarrow\{0,1, \ldots, \mathrm{~m}-1\}$
- For open addressing, we require that for every key k , the probe sequence
$\langle h(k, 0), h(k, 1), \ldots, h(k, m-1)>$ be a permutation of $\langle 0,1, \ldots, m-1\rangle$, so that every hash-table position is eventually considered as a slot for a new key as the table fills up.
- Assume that the elements in the hash table T are keys with no satellite information; the key k is identical to the element containing key k. Each slot contains either a key or NIL (if slot is empty).
hash_insert(T, k)
i $:=0$
repeat $j:=h(k, i)$
if $\mathrm{T}[\mathrm{j}]=\mathrm{NIL}$
then $T[j]:=k$
else i := i+1
until $i=m$
error "hash table overflow"
- The algorithm for searching for key k probes the same sequence of slots that the insertion algorithm examined when key k was inserted. Therefore, the search can terminate (unsuccessfully) when it finds an empty slot, since k would have been inserted there and not later in its probe sequence. (this argument assumes that keys are not deleted from the hash table.) The procedure hash_search takes as input a hash table T and a key k, returning j if slot j is found to contain key k, or NIL of key k is not present in table T.
16.070 - March $31 / 2003$ - Prof. I. K. Lundquist - krisinina@mitedu
\square
16.070 - March 3112003 - Prof. I. . K. Lundquist - kristina@mit.edu

deletion

- Deletion from an open-address hash table is difficult. When we delete a key from slot i, we cannot simply mark that slot as empty by storing NIL in it. Doing so might make it impossible to retrieve any key k during whose insertion we had probed slot i and found it occupied.
- Solution: mark the slot by storing in it the special value DELETED instead of NIL.
\rightarrow modify the procedure hash_insert to treat such a slot as empty so that a new key can be inserted.
No modification of hash_search is needed, since it will pass over DELETED values while searching.
- When special value is used, search times no longer dependent on the load factor α, and for this reason chaining is more commonly selected as a collision resolution technique when keys must be deleted.

Open Addressing

Open Addressing

- Assume: uniform hashing instead of simple uniform hashing.
- The hash function in uniform hashing produces a hash sequence
- Each key is equally likely to have any of m ! permutations of $\{0,1, \ldots, m-1\}$ as its probe sequence
- Deletion is difficult and a modification to hash_search is necessary to continue to search if a slot is marked deleted instead of NIL.
- Chaining may be needed

- Four techniques for computing probe sequences for open addressing

1. Sequential probing: $h, h+1, h+2, h+3, \ldots$
2. Linear probing : $\mathrm{h}, \mathrm{h}+\mathrm{k}, \mathrm{h}+2 \mathrm{k}, \mathrm{h}+3 \mathrm{k}, \ldots$
3. Quadratic probing: $h, h+1^{2}, h+2^{2}, h+3^{2}, \ldots$
4. Double hashing: $\mathrm{h}(\mathrm{k}, \mathrm{i})=\left(\mathrm{h}_{1}(\mathrm{k})+\mathrm{ih}_{2}(\mathrm{k})\right) \bmod \mathrm{m}$, where h_{1} and h_{2} are auxiliary hash functions.

- All generate $<\mathrm{h}(\mathrm{k}, 0), \mathrm{h}(\mathrm{k}, 1), \ldots, \mathrm{h}(\mathrm{k}, \mathrm{m}-1)>$ as a permutation of $, 0,1, \ldots, m-1>$
- None can generate more than m 2 different probe sequences as uniform hashing requires m ! different probe sequences (permutations)
- Double hashing has the greatest number and may give the best results

Analysis of Open Addressing

- Theorem: given an open-address hash table with load factor $\alpha=\mathrm{n} / \mathrm{m}<1$, the expected number of probes in an unsuccessful search is at most

$$
\frac{1}{1-\alpha}
$$

assuming uniform hashing

- Corollary: Inserting an element into an open-address hash table with load factor α requires at most

$$
\frac{1}{1-\alpha}
$$

probes on average, assuming uniform hashing

- Theorem: Given an open-address hash table with load factor $\alpha<1$, the expected number of probes in a successful search is at most

$$
\frac{1}{\alpha} \ln \frac{1}{1-\alpha} \frac{1}{\alpha}
$$

assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.

- If the hash table is half full, then the expected number of probes is less than 3.38629. If it is ninety percent full, we have less than 3.66954 probes.

[^0]: 16.070 - March 31/2003 - Prof. I. . . Lundquist - kristina @mit.edu

