16.070
 Introduction to Computers \& Programming

Machine architecture:
the binary system, storing numbers, data compression

The Binary System

- Decimal: Position represents a power of 10
- $5382_{10}=5 \times 10^{3}+3 \times 10^{2}+8 \times 10^{1}+2 \times 10^{0}$
- Binary: Position represents a power of 2
- $1011_{2}=1 \mathrm{x} 2^{3}+0 \mathrm{x} 2^{2}+1 \mathrm{x} 2^{1}+1 \mathrm{x} 2^{0}$

$$
=8+0+2+1=11_{10}
$$

- Binary addition

$$
\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
+0 & +0 & +1 & +1 \\
\hline 0 & 1 & 10
\end{array}
$$

bit number

- A byte

Representing Negative Numbers

- Using one byte, any suggestions for representing negative numbers?
- E.g., $00010011_{2}=19_{10}$. How to represent -19_{10} in binary?
- Reserve 1 bit (\#7) for sign, 7 bits for number (sign magnitude)
- $00000001_{2}=1_{10} \quad 10000001_{2}=-1_{10}$
- $00010011_{2}=19_{10} \quad 10010011_{2}=-19_{10}$

Representing Negative Numbers

- One's complement - invert each bit
- $00010011_{2}=19_{10} \quad 11101100_{2}=-19_{10}$
- $0_{10}: 00000000_{2}$ and 11111111_{2}
-Two's complement - invert each bit and add 1

$$
=00010011_{2}=19_{10} \quad 11101101_{2}=-19_{10}
$$

- Try to negate 0 :

```
\(-0_{10}=00000000_{2}\)
-invert: \(00000000_{2} \rightarrow 11111111_{2}\)
- add 1: \(11111111_{2}+00000001_{2}=00000000_{2}\)
```


Two's Complement Notation Systems

Bit pattern	Value represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

Bit pattern	Value represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

Addition

Problem in base ten

Problem in two's complement

Answer in base ten

$\begin{array}{r} 3 \\ +\quad 2 \\ \hline \end{array}$	\rightarrow	$\begin{array}{r} 0011 \\ +0010 \\ \hline 0101 \end{array}$	\longrightarrow	5
$\begin{array}{r} -3 \\ +-2 \\ \hline \end{array}$	$>$	$\begin{array}{r} 1101 \\ +1110 \\ \hline 1011 \end{array}$	\longrightarrow	-5
$\begin{array}{r} 7 \\ +-5 \\ \hline \end{array}$	$>$	$\begin{array}{r} 0111 \\ +1011 \\ \hline 0010 \end{array}$	\longrightarrow	2

- Example: we are using 8 bit two's complement and have the problem 97-81.

$$
\begin{array}{r|rrrrrrrr}
97 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
-81 & +1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline 16 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

Summary: One's/ Two's Complement

- Note that in sign magnitude and in one's complement there are two possible representations of 0 , and we can represent every integer n with $-\left(2^{k}-1\right) \leq \mathrm{n} \leq 2^{k}-1$ with a k-bit field.
- With two's complement there is only one representation of 0 , and we can represent the integers n with $-2^{k} \leq n \leq 2^{k}-1$.
- The most significant advantage of two's complement is the fact that subtraction can be performed with addition circuitry.

The Problem of Overflow

- Overflow: when a value to be represented falls outside the range of values that can be represented.
- An overflow is indicated if the addition of two positive values results in the pattern for a negative value or vice versa.
- Remember: small values can accumulate to produce large numbers.

Fractions in Binary

- Each position is assigned a quantity of twice the size of the one to its right.
- $101.101=$?

$+100.000$
111.001

Floating Point representation

- To represent a floating point number the number is divided into two parts: the integer and the fraction
- 3.1415 has integer 3 and fraction 0.1415
- Converting FP to binary:
- Convert integer part to binary
- Convert fraction part to binary
- Put a decimal point between the two numbers
- $71.3125=+1000111.0101$

Normalization

- To represent +1000111.0101
- Store sign, all bits, and the position of decimal point
-Instead we use Normalization
-Move the decimal point so that there is only one 1 to the left of the decimal point.
-To indicate the original value of the number, multiply by 2^{e} where e is the number of bits that the decimal point moved, positive for left movement, negative for right movement
-Store:
-The sign
-The exponent
-The mantissa

Excess (or bias) Notation

- Alternative to two's complement used to store the exponent for floating point numbers.

Bit pattern	Value represented
111	3
110	2
101	1
100	0
011	-1
010	-2
001	-3
000	-4

With 3 bits we have excess $4\left(=2^{3-1}\right)$

Excess (or bias) Notation

Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

With 4 bits we have excess $8\left(=2^{4-1}\right)$

With N bits we have excess $2^{\mathrm{N}-1}$

We add the magic number, 2^{N-1}, to the integer, change the result to binary, and add 0's (on the left) to make up N bits.

FP Representation

- The standard IEEE representation for FP uses 32 bits for single-precision format:
- 1 bit sign
- 8 bits exponent (excess $127=2^{8-1}-1$)
- 23 bits mantissa
- Representation. Store the:
- Sign as 0 (positive), 1 (negative)
- Exponent (power of 2) as excess 127
- Mantissa as an unsigned integer

Example: FP Representation

- Consider a 16-bit representation with
- 1 bit sign
- 5 bits exponent (excess $16=2^{5-1}$)
- 10 bits mantissa
- 0100111101100000
- The sign 0 represents positive
- The exponent $10011=19_{10}$ represents 3
- The mantissa is 1101100000 (1 to left of . is not stored, it is understood)

Coding the value $25 / 8$

D ata Compression

- Storing data in a format that requires less space than usual
- E.g., transformation of a string of characters in some representation (such as ASCII) into a new string (of bits, for example) which contains the same information but whose length is as small as possible.
- CCITT (Comité Consultatif International Téléphonique et Télégraphique)
- Transmitting faxes
- Communication through modems (CCITT V.42bis)
- File compression formats
- ZIP
- ARC (BBSs)
- Also widely used in
- Backup utilities, spreadsheet applications, database management systems
- Certain types of data, such as bit mapped graphics, can be compressed to a small fraction of their normal size.

Generic Data Compression Techniques

- Run-length encoding
- Relative encoding
- Frequency-dependent encoding
- Huffman codes
- Adaptive dictionary encoding
- Lempel-Ziv encoding
- Graphic Interchange Format
- Joint Photographic Experts Group

Lempel-Ziv Encoding

$$
x y x x y z y
$$

a. Count backward 5 symbols.

Decompressing xyxxyzy (5, 4, x)

```
x y x x y z y
```

b. Identify the four-bit segment to be appended to the end of the string.

$$
x y x x y z y x x y z
$$

c. Copy the four-bit segment onto the end of the message.

$$
\mathrm{xy} \mathrm{y} x \mathrm{y} \mathrm{zy} \mathrm{yx} \mathrm{y} \mathrm{zx}
$$

d. Add the symbol identified in the triple to the end of the message.

Error Detection and Correction

- Errors in data representation can be caused by factors such as noisy transmission (phone lines, radio links), power surges, ...
- Bits can flip during transmission or on orbit inside spacecraft processors
- What if one bit is in the wrong state?
- One bit flip can have dramatic ramifications
- Must develop/use routines to
- Detect single bit errors
- Correct for single bit errors (for system critical info)
- Make sure communication link and on-board processors are robust enough that more than one error per word is extremely unlikely

Communication Errors

- Parity bit

- Odd parity
- Even parity
- Checksum

Error-Correcting Codes

- Hamming distance between two bit patterns = number of bits that differ
- Hamming distance between A and B is 4
- Hamming distance between B and C is 3

Symbol	Code
A	000000
B	001111
C	010011
D	011100
E	100110
F	101001
G	110101
H	111010

010100

Character	Distance between the received pattern and the character being considered
A	2
B	4
C	3
D	1
E Smallest	
F	3
distance	
G	5
H	2
	4

Evening Quiz

- Day: Tuesday
- Date: Apr. 8, 2003
- Time: 7:30p - 9:30p
- Room: 35-225

- Monday lecture Apr. 7, 2003 is canceled

Colors

- Primary colors of pigment: Red, Yellow, Blue, that combined produce secondary colors
- Primary colors of light: Red, Green, Blue (RGB).
- Pigment color system does not apply to computer monitors because colors are created on monitors by adding light.
- RGB is an "additive" color system, i.e., color is added to a black background.

RGB

- A monochrome monitor can display only two colors, one for the background and one for the foreground.
- Color monitors implement the RGB color model by using three different phosphors that appear Red, Green, and Blue when activated. Placing the phosphors directly next to each other, and activating them with different intensities, colour monitors can create an unlimited number of colours. (in practice though, the real number of colors that any monitor can display is controlled by the "video adapter")

