16.070
Introduction to Computers & Programming

Computer Architecture, Machine Language, Program Execution

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

= This chapter introduces the activities of a
computer's CPU. It describes the machine
cycle executed by the control unit and the
various operations (or, and, exclusive or, add,
shift, etc.) performed by a typical
arithmetic/logic unit. The concept of a
machine language Is presented in terms of the
simple yet representative machine described
In Appendix C of the text.

Computer architecture =
Interface between Computer and User =
Instruction set architecture + computer organization

computer
processor memory devices
CuU
Reg 1010 Input
ALU
0111 Output
Reg

%

= CPU: central processing unit

Part of a computer that controls all the other parts

Control Unit: fetches instructions from memory, decodes
them and produces signals which control the other parts of
the computer.

Arithmetic Logic Unit: performs operations such as addition,
subtraction, bit-wise AND, OR, ...

Memory:

* Registers, Cache, RAM/ROM
Temporary buffers
Logic

computer
processor memory devices
CuU
Reg 1010 |nput
ALU
0111 Output
Reg

M
I e

Example 1

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

High level language
program
Compiler
Assembly language
program
Assembler
Machine language
program
ISA

Machine interpretation

Control signal spec. or
microprogram

Control

Microprogram execution
(circuits)

Pay := Anountl1l + Anount 2;
Account : = Account - Pay;

LOAD R1, ($2)
LOAD R2, ($4)
ADD R2, R1, R2
STORE R2, ($6)

0000 0011 0011 0100 1101 1110
1001 0001 1011 1101 1100 0100

PCout, AR n, READ,
DRout, Rlin, PCinc
AR n, READ

ALU operation

= |SA: the parts of aprocessor’s design that needsto
be understood In order to write assembly language
= Operations (add, sub, mult, ..., how is it specified)
Number of operands (0, 1, 2, 3)
= Operand storage (where besides memory)
= Memory address (how is memory location specified)
= Type and size of operands (byte, int, float, ...)
= Other aspects
» Parallelism
* Encoding

= Successor instruction
= Conditions

= Accumulator

= Stack

= General purpose register
= Load/store

Software

| nstruction Set

Hardware

= The collection of machine language instructions that a
processor understands

= |nstructions are bits with well defined fields
= |nstruction format

= A mapping from instruction to binary values
= Which bit positions correspond to which parts of the instruction

= RISC (reduced instruction set computer)

= A processor whose design is based on the rapid
execution of a sequence of simple instructions

= CISC (complex instruction set computer)

= Each instruction can perform several low-level
operations such as memory access, arithmetic
operations or address calculations

= Datatransfer
= LOAD/ STORE
= |/O instructions
= Arithmetic/logic

= |nstructions that tell the CU to request an activity
withinthe ALU (+, -, ..., XOR, SHIFT, ROTATE)

= Control

= |nstructions that direct the execution of the program
= Conditional jumps
= Unconditional jumps

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

Central processing unit

Arithmetic/logic ! Control unit
unit Registers
E o Program counter
[] 1
Instruction register
R 2
L} B

Main memory

Address Cells

00

Bus 61

6 2

03

b B

SRR

Op-code Operand
| |

I | I
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

Instruction{ 3

Op-code 3 means

to store the contents
of a register in a
memory cell.

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Encoded
instructions

Example 2

Translation

156C

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

166D

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

5056

Add the contents of register 5 and
6 as though they were two's
complement representation and
leave the result in register 0.

306E

Store the contents of register O
in the memory cell at address 6E.

Co000

Halt.

X : Integer := 92;
Y . Integer := 90;
Z . Integer;

Z .= X + Y,

0D 14 20 1B
OE 15 SA 1C
OF 16 30 1D
10 17 OF 1E
11 18 11 1F
12 19 OE 20
13 1A 12 21
Op-code | Operand | Description

1 RXY LOAD RegR from M(XY)

2 RXY LOAD RegR with #XY

3 RXY STORE M(XY) with RegR

5 RST ADDI RegR := RegS+ RegT
C 000 HALT execution

6 RST ADDF RegR := RegS + RegT

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

2. Decode the bit pattern
in the instruction register.

3. Perform the action
requested by the
instruction in the
instruction register.

v

Instruction
fetch

'

Instruction
decode

'

Operand
fetch

'

Execute

'

Result
store

'

Next
instruction

Obtain instruction from program storage

Determine required actions and instr. size

Locate and obtain operand data

Compute results in storage for later

Deposit results in storage for later use

Determine successor instruction

Instruction { B

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register O.

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Program counter contains
address of first instructions.

Registers

Program counter

Instruction register

Main memory
Address

A0
Al
A2
A3
A4
A5
A6
A7
A8
A9

— Program is

stored in
main memory
beginning at
address AO.

CPU

Program counter

Bus

Main memory

Address
A0

-

Instruction register |

Al

A2

A3

L

Cells

6

a. At the beginning of the fetch step the instruction starting at address AQ is
retrieved from memory and placed in the instruction register.

CPU Main memory

Program counter Address
AQ
Bus
- : Al
Instruction register
.
A3

b. Then the program counter is incremented so that it points to the next instruction.

Cells

15

6

= Pset 2 due tomorrow @ recitation

* Pset 3 on web page today

= Office hoursthis week

= Lecture Friday: Operating Systems

= Lectures next week: Tony Brogner (Draper)
= ?

