
16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Operating systems

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

§ This chapter introduces the fundamental concepts
associated with operating systems and networks. It
begins with a historical look at operating systems,
followed by discussions of operating system
architecture and internal operation. An optional
section covers semaphores and deadlock. Following
this is an introduction to networks in general and the
Internet in particular. There is an optional section
that introduces the four level software hierarchy on
which the Internet communication is based. the
chapter closes with a discussion of network security
issues.

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

OS Fundamentals

§ A program that acts as an intermediary between a
user of a computer and the computer hardware.
§ Operating system goals:
§ Execute user programs and make solving user problems

easier.
§ Make the computer system convenient to use.

§ Use the computer hardware in an efficient manner.

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Computer System

§ Hardware – provides basic computing resources
(CPU, memory, I/O devices).
§ Operating system – controls and coordinates the

use of the hardware among the various application
programs for the various users.
§ Applications programs – define the ways in which

the system resources are used to solve the
computing problems of the users (compilers,
database systems, video games, business
programs).
§ Users (people, machines, other computers).

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Systemic View

Silberschatz, Galvin, and Gagne 1999

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Types of OS

§ Real-time operating system (RTOS)
§ Single-user, single task
§ Single-user, multi task
§ Multi-user

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Key Components of an OS

§ Processor management
§ Memory management
§ Device management
§ Storage management
§ Application interface
§ User interface

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

OS Evolution

Silberschatz, Galvin, and Gagne 1999

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

First Generation

§ Run one job at a time
§ Enter it into the computer (might require rewiring!)
§ Run it
§ Record the results

§ Problem: lots of wasted computer time!
§ Computer was idle during first and last steps
§ Computers were very expensive!

§ Goal: make better use of an expensive commodity:
computer time

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Batch Systems

§ Bring cards to 1401
§ Read cards onto input tape
§ Put input tape on 7094
§ Perform the computation, writing

results to output tape
§ Put output tape on 1401, which prints

output

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Structure of a Second Generation Job

$END

$RUN
$LOAD

$FORTRAN
$JOB, 10,6610802, ETHAN MILLER

FORTRAN
program

Data for
program

Silberschatz, Galvin, and Gagne 1999

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Spooler

§ Original batch systems used tape drives
§ Later batch systems used disks for buffering
§ Operator read cards onto disk attached to the computer
§ Computer read jobs from disk
§ Computer wrote job results to disk
§ Operator directed that job results be printed from disk

§ Disks enabled simultaneous peripheral operation on-line
(spooling)
§ Computer overlapped I/O of one job with execution of another
§ Better utilization of the expensive CPU
§ Still only one job active at any given time

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Third Generation: Multiprogramming

§ Multiple jobs in memory
§ Protected from one

another

§ Operating system
protected from each job
as well

§ Resources (time,
hardware) split between
jobs

§ Still not interactive
§ User submits job
§ Computer runs it
§ User gets results minutes

(hours, days) later

Operating
system

Job 1

Job 2

Job 3

Memory
partitions

Silberschatz, Galvin, and Gagne 1999

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Time Sharing

§ Multiprogramming allowed several jobs to be
active at one time
§ Initially used for batch systems
§ Cheaper hardware terminals -> interactive use

§ Computer use got much cheaper and easier
§ No more “priesthood”
§ Quicker turnaround meant quick fixes for problems

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Memory

§ Single base/limit pair: set for each process
§ Two base/limit registers: one for program, one for data

User program
and data

User program
and data

Operating
system

Address

0x1dfff

0x23000

0x27fff

0x2b000

0x2ffff

0

Base

Limit

User data

User program

Operating
system

User data

Base1

Limit2

Limit1

Base2

Address

0x1dfff

0x23000

0x29000
0x2bfff

0x2ffff

0

0x2d000

0x24fff

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Processes

§ Process: program in execution
§ Address space (memory) the program can

use
§ State (registers, including program counter &

stack pointer)

§ OS keeps track of all processes in a
process table

§ Processes can create other processes
§ Process tree tracks these relationships
§ A is the root of the tree
§ A created three child processes: B, C, and D
§ C created two child processes: E and F
§ D created one child process: G

A

B

E F

C D

G

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Unix Process

§ Processes have three segments
§ Text: program code
§ Data: program data
§ Statically declared variables
§ Areas allocated by new

§ Stack
§ Automatic variables
§ Procedure call information

§ Address space growth
§ Text: doesn’t grow
§ Data: grows “up”
§ Stack: grows “down”

Stack

Data

Text

0x7fffffff

Data

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Deadlock

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Monolithic OS

Main
procedure

Service
routines

Utility
routines

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Client Server Model

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Virtual Machines

§ First widely used in VM/370 with CMS
§ Available today in VMware
§ Allows users to run any x86-based OS on top of Linux or NT

§ “Guest” OS can crash without harming underlying OS
§ Only virtual machine fails—rest of underlying OS is fine

§ “Guest” OS can even use raw hardware
§ Virtual machine keeps things separated

Bare hardware

Linux

VMware

Linux

App1 App2 App3

VMware VMware

Windows NT FreeBSD
I/O instructions

System calls

Calls to simulate I/O

“Real” I/O instructions

16.070 — February 21/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Client Server Model

§ Processes (clients and OS servers) don’t share
memory
§ Communication via message-passing
§ Separation reduces risk of “byzantine” failures

§ Examples include Mach

Microkernel

Client
process

Process
server

Terminal
server

Client
process

File
server

Memory
server

… User mode

Kernel mode

