
16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Introduction to: Data Structures and Algorithm Analysis

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Slides based on:

A Practical Introduction to
Data Structures and Algorithm Analysis
Second Edition

Clifford A. Shaffer
Department of Computer Science
Virginia Tech



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Abstract Data Types

§ Abstract Data Type (ADT): a definition for a 
data type solely in terms of a set of values and a 
set of operations on that data type.

§ Each ADT operation is defined by its inputs and 
outputs.

§ Encapsulation: Hide implementation details.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Data Structure

§ A data structure is the physical implementation 
of an ADT.
§ Each operation associated with the ADT is 

implemented by one or more subroutines in the 
implementation.

§ Data structure usually refers to an organization 
for data in main memory.

§ File structure is an organization for data on 
peripheral storage, such as a disk drive.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Data Structure Philosophy

§ Each data structure has costs and benefits.

§ Rarely is one data structure better than another 
in all situations.

§ A data structure requires:
§ space for each data item it stores,
§ time to perform each basic operation,
§ programming effort.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Data Structure Philosophy (cont)

§ Each problem has constraints on available 
space and time.

§ Only after a careful analysis of problem 
characteristics can we know the best data 
structure for the task.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Efficiency

§ A solution is said to be efficient if it solves the 
problem within its resource constraints.
§ Space
§ Time

§ The cost of a solution is the amount of 
resources that the solution consumes.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Estimation Techniques

§ Known as “back of the envelope” or 
“back of the napkin” calculation

1. Determine the major parameters that effect the 
problem.

2. Derive an equation that relates the parameters to the 
problem.

3. Select values for the parameters, and apply the 
equation to yield and estimated solution.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Estimation Example

§ How many library bookcases does it take 
to store books totaling one million pages?

§Estimate:
§Pages/inch

§Feet/shelf

§Shelves/bookcase



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Algorithm Efficiency

There are often many approaches (algorithms) to 
solve a problem.  How do we choose between 
them?

At the heart of computer program design are two 
goals.

1. To design an algorithm that is easy to understand, 
code, debug.

2. To design an algorithm that makes efficient use of 
the computer’s resources.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

How to Measure Efficiency?

1. Empirical comparison (run programs)
2. Asymptotic Algorithm Analysis

Critical resources: ?

Factors affecting running time: ?

For most algorithms, running time depends on 
“size” of the input.

Running time is expressed as T(n) for some 
function T on input size n.



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Ada Side Bar

§ Array Construct
<constant for array size> : constant Integer := <array size>;

type <type name> is array (1 .. <constant for array size>)
of <element type>;

<variable name> : <type name>; 

§ List of Homogenous Elements
§ Operations
§ Store A(i):= C;
§ Retrieve C := A(i);
§ Assignment A := B;
§ Equality test A = B; A /= B;
§ Search
§ Sort



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Examples of Growth Rate

Example 1.
Write ada code to find the largest number in the array

// Find largest value
int largest(int array[], int n) {
int currlarge = 0; // Largest value seen
for (int i=1; i<n; i++) // For each val
if (array[currlarge] < array[i])
currlarge = i;      // Remember pos

return currlarge;       // Return largest
}



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Examples of Growth Rate

Example 1.
function Linear_Largest (Input_Array :My_Integer_Array ) 

return Integer is 

Largest : Integer := 1;  
begin

for I in 2.. My_Array_Max loop
if (Input_Array(I) > Input_Array(Largest))then

Largest:= I;
end if;

end loop;

return (Largest);
end Linear_Largest;



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Examples (cont)

Example 2: Assignment statement.

Example 3:
sum := 0;
for i in 1 .. N loop
for j in 1 .. N-1 loop
sum := sum + 1;

end loop;
end loop;



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Growth Rate Graph



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Best, Worst, Average Cases

§ Not all inputs of a given size take the same 
time to run.

§ Sequential search for K in an array of n
integers:
§ Begin at first element in array and look at each 

element in turn until K is found

Best case: ?

Worst case: ?
Average case: ?



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Which Analysis to Use?

§ While average time appears to be the fairest 
measure, it may be difficult to determine.

§ When is the worst case time important?



16.070 — March 3/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Faster Computer or Algorithm?

§ What happens when we buy a computer 10 
times faster?

-----n’ = n + 316132n

3.16n’ = √10n223702n2

7.37√10 n < n’ < 10n1,8422505n log n

10n’ = 10n5,00050020n

10n’ = 10n10,0001,00010n

n’/nChangen’nT(n)


