16.070
 Introduction to Computers \& Programming

Asymptotic analysis: upper/ lower bounds, Θ notation Binary, Insertion, and Merge sort

Complexity Analysis

- Complexity: rate at which storage or time grows as a function of the problem size
- Growth depends on compiler, machine, ...
- Asymptotic analysis
- Describing the inherent complexity of a program, independent of machine and compiler.
- A "proportionality" approach, expressing the complexity in terms of its relationship to some known function.

Asymptotic Analysis

- Idea: as problem size grows, the complexity can be described as a simple proportionality to some known function.

Asymptotic Analysis: Big-oh

Definition: $T(n)=O(f(n))$-- Tof nis in Big Oh of fofn iff there are constants c and n_{0} such that $\mathrm{T}(\mathrm{n}) \leq \mathrm{cf}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$

Usage: The algorithm is in $\mathrm{O}\left(n^{2}\right)$ in [best, average, worst] case.

Meaning: For all data sets big enough (i.e., $n>n_{0}$), the algorithm always executes in less than cf(n) steps in [best, average, worst] case.

Big oh is said to describe an "upper bound" on the complexity.

Big-oh Notation (cont)

Big-oh notation indicates an upper bound on the complexity

Example: If $\mathbf{T}(n)=3 n^{2}$ then $\mathbf{T}(n)$ is in $\mathrm{O}\left(n^{2}\right)$.
Wish tightest upper bound:
While $\mathbf{T}(n)=3 n^{2}$ is in $\mathrm{O}\left(n^{25}\right)$, we prefer $\mathrm{O}\left(n^{2}\right)$.

- $\mathrm{T}(\mathrm{n})=\mathrm{O}(1)$
- E.g., array access
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\lg (\mathrm{n}))$
- E.g., binary search
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- E.g., looping over all elements in a 1-dimensional array
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \log \mathrm{n})$
" $\mathrm{n} \log \mathrm{n}$ " growth
- E.g., Merge sort
- $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \quad$ polynomial growth
- E.g., Selection sort is n^{2}, k seldom larger than 5
- $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(2^{\mathrm{n}}\right) \quad$ exponential growth
- E.g., basically useless for anything but very small problems

1 billion instructions/second

n	$\mathrm{T}(\mathrm{n})=$ n	$\mathrm{T}(\mathrm{n})=$ $\mathrm{n} \lg (\mathrm{n})$	$\mathrm{T}(\mathrm{n})=$ n^{2}	$\mathrm{T}(\mathrm{n})=$ n^{3}	$\mathrm{T}(\mathrm{n})=$ 2^{n}
5	$0.005 \mu \mathrm{~s}$	$0.01 \mu \mathrm{~s}$	$0.03 \mu \mathrm{~s}$	$0.13 \mu \mathrm{~s}$	$0.03 \mu \mathrm{~s}$
10	$0.1 \mu \mathrm{~s}$	$0.03 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
20	$0.02 \mu \mathrm{~s}$	$0.09 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	1 ms
50	$0.05 \mu \mathrm{~s}$	$0.28 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	$125 \mu \mathrm{~s}$	13 days
100	$0.1 \mu \mathrm{~s}$	$0.66 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	1 ms	4×10^{13} years

Big-Oh Examples

Example 1: Finding value X in an array (average cost).

$\mathbf{T}(n)=c_{s} n / 2$.
For all values of $n>1, c_{s} n / 2<=c_{s} n$.
Therefore, by the definition, $\mathbf{T}(n)$ is in $\mathrm{O}(n)$ for $n_{0}=1$ and $c=c_{s}$.

Big-Oh Examples

Example 2: $\mathbf{T}(n)=c_{1} n^{2}+c_{2} n$ in average case.

$$
\begin{aligned}
& c_{1} n^{2}+c_{2} n<=c_{1} n^{2}+c_{2} n^{2}<=\left(c_{1}+c_{2}\right) n^{2} \text { for } \\
& \text { all } n>1 .
\end{aligned}
$$

$\mathbf{T}(n)<=c n^{2}$ for $c=c_{1}+c_{2}$ and $n_{0}=1$.
Therefore, $\mathbf{T}(n)$ is in $\mathrm{O}\left(n^{2}\right)$ by the definition.

Example 3: $\mathbf{T}(n)=c$. We say this is in $\mathrm{O}(1)$.

Does Big-oh tell the whole story?

- $\mathrm{T}_{1}(\mathrm{n})=\mathrm{T}_{2}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- $\mathrm{T}_{1}(\mathrm{n})=50+3 \mathrm{n}+(10+5+15) \mathrm{n}=50+33 \mathrm{n}$
- Setup of algorithm -- takes 50 time units read n elements into array -- 3 units/element for i 1..n
do operation1 on A[i] -- takes 10 units
do operation2 on A[i] -- takes 5 units
do operation3 on A[i] -- takes 15 units
- $T_{2}(n)=200+3 n+(10+5) n=200+18 n$
- Setup of algorithm -- takes 200 time units read n elements into array -- 3 units/element for i 1..n
do operation1 on A[i] -- takes 10 units
do operation2 on A[i] -- takes 5 units

Big-Omega

Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\Omega(g(n))$ if there exist two positive constants c and n_{0} such that $\mathbf{T}(n)>=c g(n)$ for all $n>n_{0}$.

Meaning: For all data sets big enough (i.e., $n>n_{0}$), the algorithm always executes in more than $c g(n)$ steps.

Lower bound.

Big-Omega Example

$$
\begin{aligned}
& \mathbf{T}(n)=c_{1} n^{2}+c_{2} n . \\
& c_{1} n^{2}+c_{2} n>=c_{1} n^{2} \text { for all } n>1 . \\
& \mathbf{T}(n)>=c n^{2} \text { for } c=c_{1} \text { and } n_{0}=1 .
\end{aligned}
$$

Therefore, $\mathbf{T}(n)$ is in $\Omega\left(n^{2}\right)$ by the definition.

We want the greatest lower bound.

Theta Notation

When big-Oh and Ω meet, we indicate this by using Θ (big-Theta) notation.

Definition: An algorithm is said to be $\Theta(h(n))$ if it is in $\mathrm{O}(h(n))$ and it is in $\Omega(h(n))$.

Tight bound.

A Common Misunderstanding

Confusing worst case with upper bound.
Upper bound refers to a growth rate.
Worst case refers to the worst input from among the choices for possible inputs of a given size.

Simplifying Rules

1. If $f(n)$ is in $\mathrm{O}(g(n))$ and $g(n)$ is in $\mathrm{O}(h(n))$, then $f(n)$ is in $\mathrm{O}(h(n))$.
2. If $f(n)$ is in $\mathrm{O}(\mathrm{kg}(n))$ for any constant $k>0$, then $f(n)$ is in $\mathrm{O}(g(n))$.
3. If $f_{1}(n)$ is in $\mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n)$ is in $\mathrm{O}\left(g_{2}(n)\right)$, then $\left(f_{1}+f_{2}\right)(n)$ is in $\mathrm{O}\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$.
4. If $f_{1}(n)$ is in $\mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n)$ is in $\mathrm{O}\left(g_{2}(n)\right)$ then $f_{1}(n) f_{2}(n)$ is in $\mathrm{O}\left(g_{1}(n) g_{2}(n)\right)$.

Binary Search

How many elements are examined in worst case?

Binary Search

Procedure Binary_Search (Input_Array, Number_To_Search,
Begin
Set Return_Index to -1 ;
Set Current_Index to (Upper_Bound - Lower_Bound + 1) /2.
Loop
if the lower_bound $>$ upper_bound Exit;
end if
if (Input_Array(Current_Index) = Number_to_Search) then

Return_Index := Current_Index Exit;
end if
if (Input_Array(Current_Index) < Number_to_Search) then

Lower_Bound : = Current_Index +1
else
Upper_Bound := Current_Index - 1
end if
end loop
end Binary_Search;

Insertion sort

- InsertionSort(A, n) -- A[1..n] for j 2..n do key :=A[j]
i : $=j-1$
while i > 0 and A[i] > key
A[i+1] := A[i]
i : $=$ i-1
A[i+1]:= key

Insertion sort

8 (2)4936 284936 248936 248936 234.896
 234689

Insertion sort

- Running time
- Depends on the input
- An already sorted sequence is easier to sort
- Worst case: input reverse sorted

$$
T(n)=\sum_{j=2}^{n} \Theta(j)=\Theta\left(n^{2}\right)
$$

- Average case: all permutations equally likely

$$
T(n)=\sum_{j=2}^{n} \Theta(j / 2)=\Theta\left(n^{2}\right)
$$

Merge sort

- MergeSort A[1..n]

1. If the input sequence has only one element, return
2. Partition the input sequence into two halves
3. Sort the two subsequences using the same algorithm
4. Merge the two sorted subsequences to form the output sequence

Merge sort

Merge sort

Merge sort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1
\end{array}\right.
$$

Total $=\Theta(\mathrm{n} \lg \mathrm{n})$

Space Bounds

- Space bounds can also be analyzed with asymptotic complexity analysis.

Time: Algorithm
Space: Data Structure

Space/Time Tradeoff Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa.
- Encoding or packing information
- Boolean flags
- Table lookup
- Factorial
- Disk-based Space/Time Tradeoff Principle: The smaller you make the disk storage requirements, the faster your program will run.

