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We will introduce some formal rules of reasoning for
constructing proofs.

Proof techniques will be introduced formally at first,
but as we become more familiar with them, we will
gradually start to use these techniques on a more casual
and less explicit level. Of course the techniques and
proof methods must still be observed in order for your
proofs to be valid but you will develop less need to

explicitly refer to the steps in order to construct avalid
proof.




B oo

= A theorem iIs a statement that can be shown to be true

= A proof Isaseguence of statements that forms an
argument showing that atheorem istrue

= A fallacy is an incorrect form of reasoning that is often
erroneoudsly believed to be avalid argument. Fallacies are
often found in “proofs’ of an invalid “theorem”

= A lemma isasimple theorem used in the proof of others.

= A corollary isaproposition that follows readily from a
theorem that has been proved

= A conjecture isastatement whose truth value is
unknown. When a proof of aconjecture isfound, it
becomes a theorem




We will introduce rules of inference for propositional
logic.

Rules of inference allow you to take stepsin a proof
toward your goal.

A proof starts out with assumptions (usually) then by
using rules of inference with the assumptions we move
closer and closer to the desired result of the theorem.

When we have reached the desired result by using only
our assumptions and valid rules of inference then the
theorem isproved.




(bU(p® q)) ® gisatautology. It statesthat if we

know that both an implication p ® ¢ istrue and that its
hypothesis, p, Is true, then the conclusion, g, istrue.

Ex: Suppose the implication “If the bus breaks down,
then | will have to walk” and its hypothesis “the bus
breaks down” are true. Then by modus ponens it follows
that “I will have to walk”.

Ex: Assume that theimplication (n>3) ® (n?>9)is
true. [It actually istrue, universal quantification].
Suppose also that n > 3. Then by modus ponens, it follows

that n2 > 9.




cy: Affirming the Conclu

(QU(p® q)) ® pisacontingency. It statesthat if we

know that both an implication p ® g istrue and that its
conclusion, g, istrue, then the hypothesis, p, is true.

Ex: Suppose the implication “If the bus breaks down,
then | will have to walk” and its conclusion “I will have
towak” Istrue. It does not follow that the bus broke

down. Perhaps| simply missed the bus.

Ex: Consider theimplication (n> 3) ® (n?>9) whichis
true. Suppose also that n2> 9. It does not follow that n >
3. It might be that n = -4 for example.




Tautology Name
p® pUg Addition
pUg® p Simplification

(MU() ® pUq

Conjunction

pU(P® g)® g

M odus Ponens

dqU(P® q) ® Tp

Modus Tollens

(P® @ U(q® r) |Hypothetical
\ p®r ® (p® r) Syllogism
pUq, Dp (PpUg UZp® q |Digunctive
\ g Syllogism
pUqg,Dp Ur (pUQ) U(BpUr) |Resolution
\ qUr ® qUr
R— il




Ex: Consider these statements “If | buy something, then | go to the
store” and“If | go to the store, then | drive my car.” If these two
statements are true, then by hypothetical syllogism we can conclude
that “If | buy something, then I drive my car.”

Ex: Consider the statements “ It israining today or it is snowing
today.” and “It is not snowing today or it iswindy today.” If we
know both of these statements are true then what can we conclude?

By the rule of resolution, we know that “It israining today or it is
windy today.”




= Anargument iscalled valid if whenever all of the
hypotheses are true then the conclusion istrue. So to
show that g logically follows from p,, p,, ..., P, IS
the same thing as showing that the implication
p,Up,U... Up,® qisatautology.




Ex: Show that
[(@GpUUIr® p)U@r® 9U(s® 1) ® t
IS a true statement.

Proof: We assume the hypotheses (Jp U q), (r ® p), (Jr ® <), and (s

® t).
1. By (@p Uq) we know @p 'simplification].
By (r ® p) weknow Qp® @r ‘contrapositive].

By 2and (JUr ® s)weknow (Op® s) [hypothetical syllogism].
By 3and (s® t) weknow (Gp ® t) 'hypothetical syllogism].

a &~ w0 D

By 1 and 4 we know t 'modus poneng|.




Resolution isarule of inference that we saw earlier in our table:
(pUQ)U@pUr)® qUr.
Thisrule turns out to be very useful in the field of automated
reasoning (trying to get a computer to draw conclusions based on
observations). Asit turns out the operators @, U, and U form a
functionally complete logic system. What this means is that any
statement in proposition that we wish to express, we could
expressthe statement using only these three operator s (though
the statement might be substantially longer if we choose to do
s0). [Transform® , « , A]




I Ex: A detective has interviewed four withesses to acrime. From I
the stories of the withesses the detective has concluded that if the

butler istelling the truth, then so is the cook; the cook and the
gardener can not both be telling the truth; the gardener and the

handyman are not both lying; and if the handymanistelling the
truth then the cook islying. For each of the four witnesses, can the
detective determine whether that person istelling the truth or lying?

Let ususethefirst letter of each title to represent the proposition that
the person istelling the truth (e.g. h stands for “the handymanis
telling the truth). We are given 4 statements which we trandate into
symbolic propositions using our letters and logical connectives:

(1) b® c

(2) B(cUQ) or @c U dg

(3) @(Dg U @h) or gUh
m (4 h® gc




(2) B(cUQ) or @c U dg
(3) @(Dg U @h) or gUh
(4) h® @c

What if the cook were telling the truth? [Use propositions]

By using our propositions and rules of logic, we determine that if the
cook istelling the truth then the cook must be lying! So it can not
possibly be that the cook istelling the truth. What we have done,
basically, isto chain our propositions together to see that thi s follows:
(5) c® @c [How can thisbe? What truth value must ¢ have?|

Now we know that cisfalse. [What does (1) tell us?|

bisfalse. Now we know both b and carefalse. [(1), (2), (47
They are all satisfied and so give no further info. [What about (3)7]

i3i Sais that the ﬂardener 1S truthful or the handyman or both. ‘ Fal. h‘
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(Db® c or @b Uc
(2) D(cUQg) or @c U dg
(3) @(Bg U @h) or gUh

(4) h® dc or @h Udc

By combining (1) and (2) weget  (5) @b Udg
By combining (1) and (4) weget  (6) @b UBh
By combining (2) and () weget  (7) @cUh

By combining (3) and (4) weget  (8) gU@c




(2) @c Udg (6) @b Ugh
(3) gUh (7) @cUh
(4) @h U dc (8) gU@c

By combining (1) and (7) we get (9) @b Uh

By combining (1) and (8) weget  (10) @b Ug

By combining (2) and (8) weget  (11) @cU@c° @c
By combining (3) and (5) we get (9) @b Uh

By combining (3) and (6) weget  (10) @b Ug

By combining (4) and (7) weget  (11) @cUBc° @c
By combining (5) and (8) weget  (12) @b Udc

m— 5) oTPnng G ad (weget | (120bUZC




I(1) @b Uc (5) @b U g

(2) @c Udg (6) @b Ugh
(3) gUh (7) @cUh
(4) @h U dc (8) gU@c

By combining (9) and (4) we get
By combining (9) and (6) we get
By combining (10) and (2) we get
By combining (10) and (5) we get
By combining (11) and (1) we get
By combining (12) and (1) we get

(9) @b Uh I

(10) @b Ug
(11) dc
(12) @b U @c

(12) @b Udc

(13) Zb UZb° @b
(12) @b Udc

(13) Zb UZb° @b
(13) @b

(13) @b U@b° @b

We can see that (13) won't combine with anything so we' re done.
We have come to the same conclusions as before @b and @c.




(@GpU(p® ) ® Dgisacontingency. It statesthat if we
know that both an implication p ® g istrue and that its
hypothesis, p, isfalse, then the conclusion, g, isalso false.

acy: Denying the Hypoth

Ex: Suppose the implication “If the bus breaks down,
then | will have to walk” istrue but its hypothesis “the
bus breaks down” isfalse. It does not follow that | will
not have to walk. Perhaps | simply missed the bus.

Ex: Consider theimplication (n > 3) ® (n?>9) whichis
true. Suppose also that n £ 3. It does not follow that n? £ 9.
It might be that n = -4 for example.




Rules of Inference for
Quantified Statements

The rules of Inference for quantified
statements are very important. We use
these rules when we construct proofs and
they are the basis for proving or disproving
auniversally or existentially quantified
statement.




If we know that " xP(x) istrue, then we can conclude that
P(c) istrue for a particular member c of the universe of
discourse. Thisiscalled universal instantiation because
we are taking an instance, c, from the universe of
discourse. Thisruleisuseful when we are given" xP(x)
as a premise and we know that c is an e ement of the
universe of discourse for x. Then we know P(c) Is true.

Ex: Weknow" x(x?3 0). So by universal instantiation
223 0.




- Universal Generalization -

If we know that P(c) istrue for all elementscinthe
universe of discourse, then we can conclude that " xP(X) Is
true. Thisiscalled universal generalization. Thisruleis
often used to prove statements of the form" xP(x) by
taking an arbitrary element ¢ from the universe of
discourse and showing that P(c) istrue. Itiscrucia that c
IS an arbitrary element from the universe of discourse for
this technique to be valid.

Ex: Let c beaninteger. We know that ¢ is not negative.
So ¢?3 0. Now by universal generalization (since c was
an arbitrary integer) we conclude " x(x%3 0).




- Existential Instantiation -

If we know that $xP(x) istrue, then we can conclude that
P(c) istrue for a some member c of the universe of
discourse. Thisiscalled existential instantiation because
we are taking an instance, c, from the universe of discourse
for which P(c) istrue. Thisruleis particularly useful

when we are given $xP(x) as a premise but we need to
discuss a particular element. We can simply give a name,
c, for an element of the universe of discourse for which
P(c) istrue. We may not know anything el se about c.

Ex: We know $x(x?=1). So by existential instantiation
c?= 1 for someinteger c. Now we can talk about c.




If we know that P(c) isfor some particular c in the
universe of discourse, then we can conclude that $xP(x) is
true. Thisiscalled existential generalization. Thisrule

IS often used to prove statements of the form $xP(x) by
finding a particular ¢ in the universe of discourse such that

P(c) istrue. The alternative to thisisto directly show that
some element x must exist in the u.d. for which P(x) istrue
without actual finding a particular element.

Ex: 12=1. So $x(x°=Xx) istrue.




Often these four rules are used without explicit reference in a proof.
We don't explicitly say, “... by universal generalization ...”. But we
need to be clear enough in our argumentsthat it is evident what rule
we are using. A proof that uses universal generalization to establish

" XP(x) usually starts off “Let x be an integer”. Thisreally means,
“Let X bean arbitrary integer”. Then we proceed to show that P(X) Is
true. Once we reach this conclusion, we don’'t usually go on to state
that “since x was an arbitrary integer, then P(x) is established for all
Integers.” We usually just leave it at that once we get to P(x).

By the same token, mathematicians use implicit universal
guantification. So the statement “ The sum of two odd integersis
even’” means”for all odd integersx andy, X +y iseven’. It does not
mean that there exists two odd integers whose sum is even.

We will now move on to proof techniques and start putting all of this
machinery we have developed to good use.




R Proving e

= We will now discuss approaches to proving

theorems. These approaches will use the rules of
Inference that we have just discussed.

= Many theorems to be proved are implications. So
we will concentrate on methods of proving
Implications.




To provetheimplication, p ® q, we must show that whenever the
hypothesis (p) is satisfied, then the conclusion (g) must also be true.
Remember that an implication is only false in the one case where p
Istrue and qisfalse. Sowe must rule out this possibility to show
that p ® qisatautology.

With adirect approach, we first assume that p istrue. Then we use
our rules of inference, logical equivalences, and previously proved
theorems to show that g must also be true.

Note that it may not be the case that p istrue. If pisfalsethenthe
implication holds. We assume that p is true so that we can explore
this scenario and show that g must necessarily be true as well.




Def: Theinteger nis even if there exists an integer k such that n = 2k.
That is, theinteger n iseven if $k(n = 2k) where the universe of
discourse for k isall integers. [$k(n=2Kk) « niseven]

Def: Theinteger nisodd if there exists an integer k such that
n=2k+ 1. Thatis, theinteger nisodd if $k(n = 2k + 1) where the
universe of discourse for k isall integers. [$k(n=2k + 1) « nisodd]

Note that an integer is either even or odd (but not both).

[niseven « nisnot odd]

Ex:. 7=2*3+1 [7 1S odd] 16=2*8 [16 is even]
-11=2*(-6) + 1 [-11lisodd] -6=2*(-3) [-6iseven]




Ex: Giveadirect proof of “1f nisodd, then n?isodd.”

First off, recall that this statement isimplicitly a universal
guantification “" n(nisodd ® n2isodd).” [What rule do we need?]

Proof: [step 1. Write assumptions]

Let n bean odd integer. [Implicitly arbitrary, set up for U.G]
[step 2: Trangdlate assumptions into aform we can work with]

Thenn =2k + 1 for someinteger k. [Definition of odd]
[step 3: Work with it until it isin aform we need for concl.]

Sone=(2k + 1)2=4k?> + 4k + 1 = 2(2k? + 2k) + 1.
[step 4: Realize that you're there and state your conclusion. ]
So = 2*m+ 1 wherem = (2k? + 2k), so r? isodd.§

2k? + 2Kk is an integer because k is and the integers are closed for +,*,-*




Theorem: If nisodd, then then r? is odd.

Proof: Let nbean oddinteger. Then n= 2k + 1 for some integer k.
Sone=(2k +1)2=4k?+4k+1=2(2k?+2k) + 1. Son*=2*m+ 1
where m = (2k? + 2k), so r? isodd.§




Theorem: If nisodd, then then r? is odd.

Proof: Assume the hypothesis. let n be an odd integer.

Then n= 2k + 1 for some integer k by the definition of an odd integer.

So by squaring both sideswe seethat #= (2k + 1)2=4k? + 4k + 1 =
2(2k? + 2k) + 1.

Now by letting m = 2k? + 2k, we see that = 2*m + 1.
Now m is an integer since 2 and k were integers.

So n? is odd by the definition of an odd integer.

Now by universal generalization, since n was chosen as an arbitrary
odd integer, then the statement is true for al integersn.§




|
| ing as simple as possible, but not

-Al

Einstein Simplified




Reversed (meet In the

Theorem: If nisodd, then then r? is odd.

Proof: Let nbean oddinteger. [Assume the hypothesis as always]

We wish to show that r? isodd. [State what we desire to conclude]

To show that r? is odd, we must show that = 2*m + 1 for some
integer m. [Now we realize that we need to know what n? equal s

Waell since nis odd then n = 2k + 1 for some integer K.
Sone=(2k + 1)2=4k? + 4k + 1 = 2(2k? + 2k) + 1.

So = 2*m + 1 where m = (2k? + 2Kk), which is what we wanted to
show. Sonisodd.§




To provethe implication, p ® (, we can take advantage of the fact
that the contrapositive, dq ® @p, islogically equivalent to the
original statement. We can prove 3q ® Op viathe direct approach
and then the original implication, p ® q, is proven.

With an indirect approach, wefirst assumethat q isfalse. Thenwe
use our rules of inference, logical eguivalences, and previously
proved theorems to show that p must also be false.

Note that it may not be the case that g isfalse. If gistruethenthe
Implication holds. We assume that g is false so that we can explore
this scenario and show that p must necessarily be false as well.




Ex: Givean indirect proof of “If 3n + 2 isodd, then nisodd.”

Recall again that this statement is implicitly a universal
guantification “" n(3n+ 2isodd ® nisodd).”

Proof: We will prove the contrapositive, “If nisnot odd, then 3n + 2
Isnot odd. Thatis, “If niseven, then 3n + 2 iseven.”

[step 1. Write assumptions] Let n be an even integer.

[step 2: Trandlate assumptions into aform we can work with]
Then n = 2k for some integer k. [Definition of even|

[step 3: Work with it until it isin aform we need for concl.]
So3n+2=3(2k) +2=06k +2=2(3k + 1).

[step 4: Realize that you're there and state your conclusion. ]

So3n+2=2*mwherem=(3k +1),s03n+ 2iseven.§




To provethe implication, p ® @, we must show that whenever the
hypothesis (p) is satisfied, then the conclusion (g) must also be true.
Remember that an implication is only false in the one case where p
Istrue and q isfalse.

If we can show that p isnot ever truethen theimplication is
proved. Thisiscalled vacuous proof.

Similarly, if we can show that g is always true then the implication
Isproved. Thisiscalledtrivial proof.




Ex: Useavacuous proof to show that “If 2nisodd, then 3niseven.”

Recall again that this statement is implicitly a universal quantification
“"n(2nisodd ® 3niseven).”

Proof: Let nbeaninteger. Then 2niseven by the definition of even.
S0 2nisnot odd. Hence the hypothesis is not satisfied and the
Implication is shown to be true.§

Ex: Useatrivial proof to show that “If nisodd, then 2niseven.”

Recall again that this statement is implicitly a universal quantification
““n(nisodd® 2niseven).”

Proof: Let nbeaninteger. Then 2niseven by the definition of

even. [It doesn’'t matter if nisodd, which is precisely why thisisa
trivial proof. | could have started off assuming the hypothesis(nis
odd).] Hence the conclusion is satisfied, so the implication istrue.§




other Unrelated Definlt

PseudoDef: A real number is some number that can be expressed as
X1 X5... X1 Y1YoY5... Wherethe x;’s and y;’ sare decimal digits
(0,1,2,3,4,5,6,7,8,9) and nisapositive integer. Note that the number
of digitsto the left of the decimal point must be finite, but the digitsto
the right of the decimal point extend endlesdly.

Ex: Any integer nisaso areal number [n.000...]
1/2 isarea number [0.5000...]
Any quotient of integers, n/fmisarea number
pisarea number [3.1415926535897...]
(2 isarea number [1.414213562373...]




I Def: A real number r that can be expressed as a quotient of integers, I
p/g, withg?! Oiscaledrational. A real number that is not rationa is

caledirrational. [risrationa iff $pl Z$gl Z (r=p/qU(g? 0))]

EXx: Any integer nisarationa number [n/1]
1/2 is arational number [1/2]
p isan irrational number [Thisis adeep result we will not prove]

2 isan irrational number [We will prove this, but not yet]

Ex: 1s0.75 arational number?
Yes. It can be expressed as 3/4. [Note that thisis not unique, 6/8, etc.]

Ex: 1s5/0.2 arationa number?

Yes. It can be expressed as 25/1. Thisisavery important point. To
know that a number isirrational, it is not enough that the number is
expressed as a/b but aor b isnot an integer. Y ou must know that there

Il IS N0 way to express it as a quotient of integers.




I Ex: Provethat the sum of two rational numbersisrational. I

Restated: " x" y[(x israt.) U(yisrat) ® $z[(zisrat) U(Xx +y =2)]]

Proof: [State the assumptions] Let x and y be rational numbers.

[ Trandlate the assumptions into something we can work with.
Remember that we are trying to find out about the sum x + v.]

Since x isrational then x = p/q for some integersp and g whereqg?® 0.
Sincey isrationa theny = r/sfor some integersr and swhere st 0.

[Work with it until we get to aform where we need for our concl.]
Thenx +y =p/g+r/s=pggs+ qr/gs= (ps+ gr)/qs

[Realize that we have what we need and state the concl. (X + y israt.)]
(ps+ gr) and gs are integers since p,q,r, and S were integers.

gs! Osinceg! Oandp?® 0. [Thisis something we haven't proved]
So x +y isrational.8




method/technique to

We' ve seen a number of proof techniques so far for provi ng an
implication. Our list of techniques will grow further as we go along.
So far we' ve seen direct proof, indirect proof, vacuous proof, and
trivial proof.

The question arises, when faced with an implication to prove, “which
method should | use to prove it?”

As we gain more experience with constructing proofs, you will
develop an intuition about how to choose. For now, it iIsmostly a
trial and error process. You have a number of techniques because
often one technique is most suitable to proving a particular theorem.

So if you get stuck, try another technique.




I Ex: Provethat if nisan integer and n?isodd, then nisodd. I

Direct Approach: Let n bean integer such that n?isodd. Then
(by the definition of odd), n2 = 2k + 1 for someinteger k. Now we
want to know something about n (namely that nisodd). It isdifficult
to go from information about n? to information about n. Itismuch
easier to go in the other direction. Let’stry an indirect approach.

Indirect Approach: Theoriginal statement is” nl Z(r?isodd ® n
isodd). So the contrapositiveis” nl Z(nisnot odd ® r?is not
odd). Recalling that a number is not odd iff the number is even, we
have: " nl Z(niseven® 2 iseven).

Let n bean even integer. Then (by the definition of even), n = 2k
for someinteger k. So n? = (2k)2 = 4k? = 2(2k?). Now 2k?isan
Integer since k is and so we have expressed n? as 2(some integer). So
by the definition of even, n2iseven.§




-Proof by Contradiction-

We have aready worked with the concept of proof by contradiction
on an informal basis. The essence of proof by contradiction is:;

Let’s say that we want to prove some proposition r. We may have
Initial assumptions that we have made and can use to prove this. An
approach that we may try isto assumethat r does not hold. That is,
assume @r. Then if we can use our original assumptions, along with
what Or tells us, to cometo a logical contradiction then we know
that @r can not possibly bethe case. Sor must betrue.

Thisisavery detailed and strict proof technique. Y ou must be
extremely careful when applying this technique that you follow the
rules. Misapplication of this technique leads to all sorts of invalid
reasoning.




| Let’s consider the specific case where the statement r that you are trying |
to prove isan implication of theform p ® a.

If we apply proof by contradiction to such a statement, we want to
prover (whichisp® ). Sowe assume Jr, and then show that this
assumption leads to a contradiction. Hence we will have shown that @r
can't possibly be the case, so we can conclude that r must be true.

What is @r?
Dr=a(p® q)° A(DpUQqg)° @Tp UDg° pUdAa.

So to assume @r, we assume p U @q (thisis exactly the only case when
theimplication p® qgisfalse, when pistrueand qisfalse). Then we
show that this assumption leads to a contradiction, and hence we can't
ever encounter this situation, so the implication must be true.

In summary, if we wish to prove an implication p ® g using the
technique of proof by contradiction then we: Assume p. Assume @q.
Derive a contradiction from these assumptions.




I Ex: Give proof by contradiction that “If 3n + 2 is odd, then nisodd.” I

Proof: [Asalways, we begin by writing our assumptions]. Let nbe
an integer such that 3n + 2 is odd.

Now we wish to show that nisodd. Solet us assumeto the
contrary that nisnot odd. That Is, we are assuming that n is even.

Since niseven, then n = 2k for some integer K.

So3n+2=3(2k) +2=06k +2=2(3k + 1).

So3n+2=2mwherem=(3k + 1), so 3n + 2 iseven.

But our original assumption wasthat 3n + 2 isodd. We know that
an integer is either even or odd but not both, so thisisa
contradiction. 3n + 2 can not be both odd and even. So our
assumption (to the contrary) that n was even, must have been in

error. Son must be odd.§




I : |
We assumed two thingsin the proof. We first assumed our
hypothesisthat “n isan integer such that 3n + 2 isodd”, then we
further assumed that “n isnot odd”. At the end (after we had
reached a contradiction based on these two assumptions) we
concluded that the assumption that “n isnot odd” wasin error.
Why is it necessarily this assumption that was in error? Could it

have been the assumption “n is an integer such that 3n + 2 isodd”?

Of course it could have been either assumption that was in error!

All we know isthat by assuming both things, we cometo a
contradiction. So what we have shown is that both things can’t be
true at once. But remember that we wanted to show “If 3n+ 2is
odd, thennisodd.” So assuming that 3n + 2 is odd, we concluded
that it can't also betruethat nisnot odd. Soif 3n+ 2isodd, thenn
must be odd. Thisiswhat we wanted to show.




So remember that with a proof by contradiction you make some
assumptions. When you reach a contradiction based on these
assumptions then you know that at |east one of the assumptions you
made can’'t be. That is, not all of your assumptions can be true at the
same time.

So if you aretrying to prove p ® g, then you would first assume p. If
you were going to use a direct approach, then you would proceed to
use the assumption p to show that g necessarily follows. But a proof
by contradiction would instead (after assuming p) how assume @a.
Then you would proceed to find a contradiction from these two
assumptions. So you would know that p and @q can't both be true at
the sametime. Or equivalently, if p istrue, then @q can't be true.
That is, If p istrue then g must be true as well.




= Everything since last exam until today’s lecture
= B11.1-11.5
= B45
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