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Methods of Proof

We will introduce some formal rules of reasoning for 
constructing proofs.  

Proof techniques will be introduced formally at first, 
but as we become more familiar with them, we will 
gradually start to use these techniques on a more casual 
and less explicit level.  Of course the techniques and 
proof methods must still be observed in order for your 
proofs to be valid but you will develop less need to 
explicitly refer to the steps in order to construct a valid 
proof.
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Definitions

§ A theorem is a statement that can be shown to be true
§ A proof is a sequence of statements that forms an 

argument showing that a theorem is true
§ A fallacy is an incorrect form of reasoning that is often 

erroneously believed to be a valid argument.  Fallacies are 
often found in “proofs” of an invalid “theorem”

§ A lemma is a simple theorem used in the proof of others.
§ A corollary is a proposition that follows readily from a 

theorem that has been proved
§ A conjecture is a statement whose truth value is 

unknown.  When a proof of a conjecture is found, it 
becomes a theorem
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Rules of Inference

We will introduce rules of inference for propositional
logic.  

Rules of inference allow you to take steps in a proof
toward your goal.  

A proof starts out with assumptions (usually) then by 
using rules of inference with the assumptions we move 
closer and closer to the desired result of the theorem.

When we have reached the desired result by using only 
our assumptions and valid rules of inference then the 
theorem is proved.
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Rule of Inference:  Modus Ponens

(p ∧ (p → q)) → q is a tautology.  It states that if we 
know that both an implication p → q is true and that its 
hypothesis, p, is true, then the conclusion, q, is true.

Ex:  Suppose the implication “If the bus breaks down, 
then I will have to walk” and its hypothesis “the bus 
breaks down” are true.  Then by modus ponens it follows 
that “I will have to walk”.

Ex:  Assume that the implication (n > 3) → (n2 > 9) is 
true.  [It actually is true, universal quantification].  
Suppose also that n > 3.  Then by modus ponens, it follows 
that n2 > 9.
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Fallacy:  Affirming the Conclusion

(q ∧ (p → q)) → p is a contingency.  It states that if we 
know that both an implication p → q is true and that its 
conclusion, q, is true, then the hypothesis, p, is true.

Ex:  Suppose the implication “If the bus breaks down, 
then I will have to walk” and its conclusion “I will have 
to walk” is true.  It does not follow that the bus broke 
down.  Perhaps I simply missed the bus.

Ex:  Consider the implication (n > 3) → (n2 > 9) which is 
true.  Suppose also that n2 > 9.  It does not follow that n > 
3.  It might be that n = -4 for example.
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Rule of Inference Tautology Name 
p 
∴ p ∨ q 

p → p ∨ q Addition 

p ∧ q 
∴ p 

p ∧ q → p Simplification 

p, q 
∴ p ∧ q 

(p) ∧ (q) → p ∧ q Conjunction 

p, p → q 
∴ q 

p ∧ (p → q) → q Modus Ponens 

¬q, p → q 
∴ ¬p 

¬q ∧ (p → q) → ¬p Modus Tollens 

p → q, q → r 
∴ p → r 

(p → q) ∧ (q → r) 
→ (p → r) 

Hypothetical 
Syllogism 

p ∨ q, ¬p 
∴ q 

(p ∨ q) ∧ ¬p → q Disjunctive 
Syllogism 

p ∨ q, ¬p ∨ r 
∴ q ∨ r 

(p ∨ q) ∧ (¬p ∨ r) 
→ q ∨ r 

Resolution 
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Ex:  Consider these statements “If I buy something, then I go to the 
store.”  and “If I go to the store, then I drive my car.”  If these two 
statements are true, then by hypothetical syllogism we can conclude 
that “If I buy something, then I drive my car.”

Ex:  Consider the statements “It is raining today or it is snowing 
today.” and “It is not snowing today or it is windy today.”  If we 
know both of these statements are true then what can we conclude?

By the rule of resolution, we know that “It is raining today or it is 
windy today.”
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Valid Arguments

§ An argument is called valid if whenever all of the 
hypotheses are true then the conclusion is true.  So to 
show that q logically follows from p1, p2, …, pn is 
the same thing as showing that the implication 
p1 ∧ p2 ∧ … ∧ pn → q is a tautology.
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Ex:  Show that 
[(¬p ∧ q) ∧ (r → p) ∧ (¬r → s) ∧ (s → t)] → t

is a true statement.

Proof:  We assume the hypotheses (¬p ∧ q), (r → p), (¬r → s), and (s 
→ t).

1. By (¬p ∧ q) we know ¬p [simplification].

2. By (r → p) we know ¬p → ¬r [contrapositive].

3. By 2 and (¬r → s) we know (¬p → s) [hypothetical syllogism].

4. By 3 and (s → t) we know (¬p → t) [hypothetical syllogism].

5. By 1 and 4 we know t [modus ponens].
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Resolution

Resolution is a rule of inference that we saw earlier in our table: 
(p ∨ q) ∧ (¬p ∨ r) → q ∨ r.  

This rule turns out to be very useful in the field of automated 
reasoning (trying to get a computer to draw conclusions based on
observations).  As it turns out the operators ¬, ∨, and ∧ form a 
functionally complete logic system.  What this means is that any 
statement in proposition that we wish to express, we could 
express the statement using only these three operators (though 
the statement might be substantially longer if we choose to do 
so).  [Transform →, ↔, ⊕]
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Ex:  A detective has interviewed four witnesses to a crime.  From 
the stories of the witnesses the detective has concluded that if the 
butler is telling the truth, then so is the cook; the cook and the 
gardener can not both be telling the truth; the gardener and the 
handyman are not both lying; and if the handyman is telling the 
truth then the cook is lying.  For each of the four witnesses, can the 
detective determine whether that person is telling the truth or lying?

Let us use the first letter of each title to represent the proposition that 
the person is telling the truth (e.g. h stands for “the handyman is 
telling the truth).  We are given 4 statements which we translate into 
symbolic propositions using our letters and logical connectives:

(1) b → c

(2) ¬(c ∧ g) or ¬c ∨ ¬g

(3) ¬(¬g ∧ ¬h) or g ∨ h

(4) h → ¬c
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(1) b → c

(2) ¬(c ∧ g) or ¬c ∨ ¬g

(3) ¬(¬g ∧ ¬h) or g ∨ h

(4) h → ¬c

What if the cook were telling the truth?  [Use propositions]
By using our propositions and rules of logic, we determine that if the 
cook is telling the truth then the cook must be lying!  So it can not 
possibly be that the cook is telling the truth.  What we have done, 
basically, is to chain our propositions together to see that this follows:  
(5) c → ¬c [How can this be?  What truth value must c have?]

Now we know that c is false.  [What does (1) tell us?]
b is false.  Now we know both b and c are false.  [(1), (2), (4)?]
They are all satisfied and so give no further info.  [What about (3)?]

(3) Says that the gardener is truthful or the handyman or both. [Fal. h...]
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(1) b → c or ¬b ∨ c

(2) ¬(c ∧ g) or ¬c ∨ ¬g

(3) ¬(¬g ∧ ¬h) or g ∨ h

(4) h → ¬c or ¬h ∨ ¬c

By combining (1) and (2) we get (5) ¬b ∨ ¬g

By combining (1) and (4) we get (6) ¬b ∨ ¬h

By combining (2) and (3) we get (7) ¬c ∨ h

By combining (3) and (4) we get (8)    g ∨ ¬c
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(1) ¬b ∨ c (5) ¬b ∨ ¬g

(2) ¬c ∨ ¬g (6) ¬b ∨ ¬h

(3) g ∨ h (7) ¬c ∨ h

(4) ¬h ∨ ¬c (8)  g ∨ ¬c

By combining (1) and (7) we get (9) ¬b ∨ h

By combining (1) and (8) we get (10) ¬b ∨ g

By combining (2) and (8) we get (11) ¬c ∨ ¬c ≡ ¬c

By combining (3) and (5) we get (9) ¬b ∨ h

By combining (3) and (6) we get (10) ¬b ∨ g

By combining (4) and (7) we get (11) ¬c ∨ ¬c ≡ ¬c

By combining (5) and (8) we get (12) ¬b ∨ ¬c

By combining (6) and (7) we get (12) ¬b ∨ ¬c
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(1) ¬b ∨ c (5) ¬b ∨ ¬g (9) ¬b ∨ h

(2) ¬c ∨ ¬g (6) ¬b ∨ ¬h (10) ¬b ∨ g

(3) g ∨ h (7) ¬c ∨ h (11) ¬c

(4) ¬h ∨ ¬c (8)  g ∨ ¬c (12) ¬b ∨ ¬c

By combining (9) and (4) we get (12) ¬b ∨ ¬c

By combining (9) and (6) we get (13) ¬b ∨ ¬b ≡ ¬b

By combining (10) and (2) we get (12) ¬b ∨ ¬c

By combining (10) and (5) we get (13) ¬b ∨ ¬b ≡ ¬b

By combining (11) and (1) we get (13) ¬b

By combining (12) and (1) we get (13) ¬b ∨ ¬b ≡ ¬b

We can see that (13) won’t combine with anything so we’re done. 
We have come to the same conclusions as before ¬b and ¬c.
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Fallacy:  Denying the Hypothesis

(¬p ∧ (p → q)) → ¬q is a contingency.  It states that if we 
know that both an implication p → q is true and that its 
hypothesis, p, is false, then the conclusion, q, is also false.

Ex:  Suppose the implication “If the bus breaks down, 
then I will have to walk” is true but its hypothesis “the 
bus breaks down” is false.  It does not follow that I will 
not have to walk.  Perhaps I simply missed the bus.

Ex:  Consider the implication (n > 3) → (n2 > 9) which is 
true.  Suppose also that n ≤ 3.  It does not follow that n2 ≤ 9.  
It might be that n = -4 for example.
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Rules of Inference for
Quantified Statements

The rules of inference for quantified 
statements are very important.  We use 
these rules when we construct proofs and 
they are the basis for proving or disproving 
a universally or existentially quantified 
statement.
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Universal Instantiation

If we know that ∀xP(x) is true, then we can conclude that 
P(c) is true for a particular member c of the universe of 
discourse.  This is called universal instantiation because 
we are taking an instance, c, from the universe of 
discourse.  This rule is useful when we are given ∀xP(x) 
as a premise and we know that c is an element of the 
universe of discourse for x.  Then we know P(c) is true.

Ex:  We know ∀x(x2 ≥ 0).  So by universal instantiation 
22 ≥ 0.
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Universal Generalization

If we know that P(c) is true for all elements c in the 
universe of discourse, then we can conclude that ∀xP(x) is 
true.  This is called universal generalization.  This rule is 
often used to prove statements of the form ∀xP(x) by 
taking an arbitrary element c from the universe of 
discourse and showing that P(c) is true.  It is crucial that c
is an arbitrary element from the universe of discourse for 
this technique to be valid.

Ex:  Let c be an integer.  We know that c2 is not negative.  
So c2 ≥ 0.  Now by universal generalization (since c was 
an arbitrary integer) we conclude ∀x(x2 ≥ 0). 
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Existential Instantiation

If we know that ∃xP(x) is true, then we can conclude that 
P(c) is true for a some member c of the universe of 
discourse.  This is called existential instantiation because 
we are taking an instance, c, from the universe of discourse 
for which P(c) is true.  This rule is particularly useful 
when we are given ∃xP(x) as a premise but we need to 
discuss a particular element.  We can simply give a name, 
c, for an element of the universe of discourse for which 
P(c) is true.  We may not know anything else about c.

Ex:  We know ∃x(x2 = 1).  So by existential instantiation 
c2 = 1 for some integer c.  Now we can talk about c.
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Existential Generalization

If we know that P(c) is for some particular c in the 
universe of discourse, then we can conclude that ∃xP(x) is 
true.  This is called existential generalization.  This rule 
is often used to prove statements of the form ∃xP(x) by 
finding a particular c in the universe of discourse such that 
P(c) is true.  The alternative to this is to directly show that 
some element x must exist in the u.d. for which P(x) is true 
without actual finding a particular element.

Ex:  12 = 1.  So ∃x(x2 = x) is true.
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Often these four rules are used without explicit reference in a proof.  
We don’t explicitly say, “… by universal generalization …”.  But we 
need to be clear enough in our arguments that it is evident what rule 
we are using.  A proof that uses universal generalization to establish 
∀xP(x) usually starts off “Let x be an integer”.  This really means, 
“Let x be an arbitrary integer”.  Then we proceed to show that P(x) is 
true.  Once we reach this conclusion, we don’t usually go on to state 
that “since x was an arbitrary integer, then P(x) is established for all 
integers.” We usually just leave it at that once we get to P(x).

By the same token, mathematicians use implicit universal 
quantification.  So the statement “The sum of two odd integers is 
even” means ”for all odd integers x and y, x + y is even”.  It does not 
mean that there exists two odd integers whose sum is even.

We will now move on to proof techniques and start putting all of this 
machinery we have developed to good use.
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Methods of Proving Theorems

§ We will now discuss approaches to proving 
theorems.  These approaches will use the rules of 
inference that we have just discussed.

§ Many theorems to be proved are implications.  So 
we will concentrate on methods of proving 
implications.
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Direct Proof

To prove the implication, p → q, we must show that whenever the 
hypothesis (p) is satisfied, then the conclusion (q) must also be true.  
Remember that an implication is only false in the one case where p 
is true and q is false.  So we must rule out this possibility to show 
that p → q is a tautology.

With a direct approach, we first assume that p is true.  Then we use 
our rules of inference, logical equivalences, and previously proved 
theorems to show that q must also be true.

Note that it may not be the case that p is true.  If p is false then the 
implication holds.  We assume that p is true so that we can explore 
this scenario and show that q must necessarily be true as well.
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Unrelated Definition

Def:  The integer n is even if there exists an integer k such that n = 2k.  
That is, the integer n is even if ∃k(n = 2k) where the universe of 
discourse for k is all integers.  [∃k(n = 2k) ↔ n is even]

Def:  The integer n is odd if there exists an integer k such that 
n = 2k + 1.  That is, the integer n is odd if ∃k(n = 2k + 1) where the 
universe of discourse for k is all integers.  [∃k(n = 2k + 1) ↔ n is odd]

Note that an integer is either even or odd (but not both).

[n is even ↔ n is not odd]

Ex:  7 = 2*3 + 1 [7 is odd] 16 = 2*8 [16 is even]

-11 = 2*(-6) + 1 [-11 is odd] -6 = 2*(-3) [-6 is even]
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Ex:  Give a direct proof of “If n is odd, then n2 is odd.”

First off, recall that this statement is implicitly a universal 
quantification “∀n(n is odd → n2 is odd).”  [What rule do we need?]

Proof:  [step 1:  Write assumptions]

Let n be an odd integer.  [Implicitly arbitrary, set up for U.G.]

[step 2:  Translate assumptions into a form we can work with]

Then n = 2k + 1 for some integer k.  [Definition of odd]

[step 3:  Work with it until it is in a form we need for concl.]

So n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

[step 4:  Realize that you’re there and state your conclusion.]

So n2 = 2*m + 1 where m = (2k2 + 2k), so n2 is odd.♣

2k2 + 2k is an integer because k is and the integers are closed for +,*,-,^



16.070 — May 2/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Proof Simplified

Theorem:  If n is odd, then then n2 is odd.

Proof:  Let n be an odd integer.  Then n = 2k + 1 for some integer k.
So n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. So n2 = 2*m + 1 
where m = (2k2 + 2k), so n2 is odd.♣
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Proof Complicated

Theorem:  If n is odd, then then n2 is odd.

Proof:  Assume the hypothesis:  let n be an odd integer.

Then n = 2k + 1 for some integer k by the definition of an odd integer.

So by squaring both sides we see that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 
2(2k2 + 2k) + 1.

Now by letting m = 2k2 + 2k, we see that n2 = 2*m + 1.

Now m is an integer since 2 and k were integers.

So n2 is odd by the definition of an odd integer.

Now by universal generalization, since n was chosen as an arbitrary 
odd integer, then the statement is true for all integers n.♣
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Einstein Simplified

“Make everything as simple as possible, but not simpler.”
-Albert Einstein
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Proof Reversed (meet in the middle)

Theorem:  If n is odd, then then n2 is odd.

Proof:  Let n be an odd integer.  [Assume the hypothesis as always]

We wish to show that n2 is odd.  [State what we desire to conclude]

To show that n2 is odd, we must show that n2 = 2*m + 1 for some 
integer m.  [Now we realize that we need to know what n2 equals]

Well since n is odd then n = 2k + 1 for some integer k.

So n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

So n2 = 2*m + 1 where m = (2k2 + 2k), which is what we wanted to 
show.  So n is odd.♣
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Indirect Proof

To prove the implication, p → q, we can take advantage of the fact 
that the contrapositive, ¬q → ¬p, is logically equivalent to the 
original statement.  We can prove ¬q → ¬p via the direct approach 
and then the original implication, p → q, is proven.

With an indirect approach, we first assume that q is false.  Then we 
use our rules of inference, logical equivalences, and previously
proved theorems to show that p must also be false.

Note that it may not be the case that q is false.  If q is true then the 
implication holds.  We assume that q is false so that we can explore 
this scenario and show that p must necessarily be false as well.
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Ex:  Give an indirect proof of “If 3n + 2 is odd, then n is odd.”

Recall again that this statement is implicitly a universal 
quantification “∀n(3n + 2 is odd → n is odd).”

Proof:  We will prove the contrapositive, “If n is not odd, then 3n + 2 
is not odd.  That is, “If n is even, then 3n + 2 is even.”

[step 2:  Translate assumptions into a form we can work with]

Then n = 2k for some integer k.  [Definition of even]

[step 3:  Work with it until it is in a form we need for concl.]

So 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).

[step 4:  Realize that you’re there and state your conclusion.]

So 3n + 2 = 2*m where m = (3k + 1), so 3n + 2 is even.♣

[step 1:  Write assumptions]  Let n be an even integer.  
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Vacuous and Trivial Proof

To prove the implication, p → q, we must show that whenever the 
hypothesis (p) is satisfied, then the conclusion (q) must also be true.  
Remember that an implication is only false in the one case where p 
is true and q is false.

If we can show that p is not ever true then the implication is 
proved.  This is called vacuous proof.

Similarly, if we can show that q is always true then the implication 
is proved.  This is called trivial proof.
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Ex:  Use a vacuous proof to show that “If 2n is odd, then 3n is even.”

Recall again that this statement is implicitly a universal quantification 
“∀n(2n is odd → 3n is even).”

Proof:  Let n be an integer.  Then 2n is even by the definition of even.  
So 2n is not odd.  Hence the hypothesis is not satisfied and the
implication is shown to be true.♣

Ex:  Use a trivial proof to show that “If n is odd, then 2n is even.”

Recall again that this statement is implicitly a universal quantification 
“∀n(n is odd → 2n is even).”

Proof:  Let n be an integer.  Then 2n is even by the definition of 
even.  [It doesn’t matter if n is odd, which is precisely why this is a 
trivial proof.  I could have started off assuming the hypothesis (n is 
odd).]  Hence the conclusion is satisfied, so the implication is true.♣
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Another Unrelated Definition

PseudoDef:  A real number is some number that can be expressed as 
x1x2… xn.y1y2y3… where the xi’s and yi’s are decimal digits 
(0,1,2,3,4,5,6,7,8,9) and n is a positive integer.  Note that the number 
of digits to the left of the decimal point must be finite, but the digits to 
the right of the decimal point extend endlessly.

Ex:  Any integer n is also a real number [n.000…]

1/2 is a real number [0.5000…]

Any quotient of integers, n/m is a real number 

π is a real number [3.1415926535897…]

√2 is a real number [1.414213562373…]
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Def:  A real number r that can be expressed as a quotient of integers, 
p/q, with q ≠ 0 is called rational.  A real number that is not rational is 
called irrational.  [r is rational iff ∃p∈Z ∃q∈Z ( r = p/q ∧ (q ≠ 0))]

Ex:  Any integer n is a rational number [n/1]

1/2 is a rational number [1/2]

π is an irrational number [This is a deep result we will not prove]

√2 is an irrational number [We will prove this, but not yet]

Ex:  Is 0.75 a rational number?
Yes.  It can be expressed as 3/4.  [Note that this is not unique, 6/8, etc.]

Ex:  Is 5/0.2 a rational number?

Yes.  It can be expressed as 25/1.  This is a very important point.  To 
know that a number is irrational, it is not enough that the number is 
expressed as a/b but a or b is not an integer.  You must know that there 
is no way to express it as a quotient of integers.
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Ex:  Prove that the sum of two rational numbers is rational.

Restated:  ∀x∀y[(x is rat.) ∧ (y is rat.) → ∃z[(z is rat.) ∧ (x + y = z)]]

Proof: [State the assumptions]  Let x and y be rational numbers.

[Translate the assumptions into something we can work with.  
Remember that we are trying to find out about the sum x + y.]
Since x is rational then x = p/q for some integers p and q where q ≠ 0.
Since y is rational then y = r/s for some integers r and s where s ≠ 0.

[Work with it until we get to a form where we need for our concl.]
Then x + y = p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs

[Realize that we have what we need and state the concl. (x + y is rat.)]
(ps + qr) and qs are integers since p,q,r, and s were integers.
qs ≠ 0 since q ≠ 0 and p ≠ 0.  [This is something we haven’t proved]
So x + y is rational.♣
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Which method/technique to use?

We’ve seen a number of proof techniques so far for proving an 
implication.  Our list of techniques will grow further as we go along.  
So far we’ve seen direct proof, indirect proof, vacuous proof, and 
trivial proof.

The question arises, when faced with an implication to prove, “which 
method should I use to prove it?”

As we gain more experience with constructing proofs, you will 
develop an intuition about how to choose.  For now, it is mostly a 
trial and error process.  You have a number of techniques because 
often one technique is most suitable to proving a particular theorem.

So if you get stuck, try another technique.
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Ex:  Prove that if n is an integer and n2 is odd, then n is odd.

Direct Approach:  Let n be an integer such that n2 is odd.  Then 
(by the definition of odd), n2 = 2k + 1 for some integer k.  Now we 
want to know something about n (namely that n is odd).  It is difficult 
to go from information about n2 to information about n.  It is much 
easier to go in the other direction.  Let’s try an indirect approach.

Indirect Approach:  The original statement is ∀n∈Z(n2 is odd → n 
is odd).  So the contrapositive is ∀n∈Z(n is not odd → n2 is not 
odd).  Recalling that a number is not odd iff the number is even, we 
have: ∀n∈Z(n is even → n2 is even).

Let n be an even integer.  Then (by the definition of even), n = 2k
for some integer k.  So n2 = (2k)2 = 4k2 = 2(2k2).  Now 2k2 is an 
integer since k is and so we have expressed n2 as 2(some integer).  So 
by the definition of even, n2 is even.♣
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Proof by Contradiction

We have already worked with the concept of proof by contradiction
on an informal basis.  The essence of proof by contradiction is:

Let’s say that we want to prove some proposition r.  We may have 
initial assumptions that we have made and can use to prove this. An 
approach that we may try is to assume that r does not hold.  That is, 
assume ¬r.  Then if we can use our original assumptions, along with 
what ¬r tells us, to come to a logical contradiction then we know 
that ¬r can not possibly be the case.  So r must be true.

This is a very detailed and strict proof technique.  You must be
extremely careful when applying this technique that you follow the 
rules.  Misapplication of this technique leads to all sorts of invalid 
reasoning.
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Let’s consider the specific case where the statement r that you are trying 
to prove is an implication of the form p → q.

If we apply proof by contradiction to such a statement, we want to 
prove r (which is p → q).  So we assume ¬r, and then show that this 
assumption leads to a contradiction.  Hence we will have shown that ¬r 
can’t possibly be the case, so we can conclude that r must be true.

What is ¬r?

¬r = ¬(p → q) ≡ ¬(¬p ∨ q) ≡ ¬¬p ∧ ¬q ≡ p ∧ ¬q.

So to assume ¬r, we assume p ∧ ¬q (this is exactly the only case when 
the implication p → q is false, when p is true and q is false).  Then we 
show that this assumption leads to a contradiction, and hence we can’t 
ever encounter this situation, so the implication must be true.

In summary, if we wish to prove an implication p → q using the 
technique of proof by contradiction then we: Assume p.  Assume ¬q.  
Derive a contradiction from these assumptions.
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Ex:  Give proof by contradiction that “If 3n + 2 is odd, then n is odd.”

Since n is even, then n = 2k for some integer k.

So 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).

So 3n + 2 = 2*m where m = (3k + 1), so 3n + 2 is even.

Proof:  [As always, we begin by writing our assumptions].  Let n be 
an integer such that 3n + 2 is odd.

Now we wish to show that n is odd.  So let us assume to the 
contrary that n is not odd.  That is, we are assuming that n is even.

But our original assumption was that 3n + 2 is odd.  We know that 
an integer is either even or odd but not both, so this is a 
contradiction.  3n + 2 can not be both odd and even.  So our 
assumption (to the contrary) that n was even, must have been in 
error.  So n must be odd.♣
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Observations about the proof

We assumed two things in the proof.  We first assumed our 
hypothesis that “n is an integer such that 3n + 2 is odd”, then we 
further assumed that “n is not odd”.  At the end (after we had 
reached a contradiction based on these two assumptions) we 
concluded that the assumption that “n is not odd” was in error. 
Why is it necessarily this assumption that was in error?  Could it 
have been the assumption “n is an integer such that 3n + 2 is odd”?

Of course it could have been either assumption that was in error!  
All we know is that by assuming both things, we come to a 
contradiction.  So what we have shown is that both things can’t be 
true at once.  But remember that we wanted to show “If 3n + 2 is
odd, then n is odd.”  So assuming that 3n + 2 is odd, we concluded 
that it can’t also be true that n is not odd.  So if 3n + 2 is odd, then n 
must be odd.  This is what we wanted to show.
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So remember that with a proof by contradiction you make some 
assumptions.  When you reach a contradiction based on these 
assumptions then you know that at least one of the assumptions you 
made can’t be.  That is, not all of your assumptions can be true at the 
same time.

So if you are trying to prove p → q, then you would first assume p.  If 
you were going to use a direct approach, then you would proceed to 
use the assumption p to show that q necessarily follows.  But a proof 
by contradiction would instead (after assuming p) now assume ¬q.  
Then you would proceed to find a contradiction from these two 
assumptions.  So you would know that p and ¬q can’t both be true at 
the same time.  Or equivalently, if p is true, then ¬q can’t be true.  
That is, if p is true then q must be true as well.
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