
16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Ada: Recursion

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Recursion

§ Recursion means writing procedures and functions which
call themselves.

§ Recursion involves:
§ solving large problems
§ by breaking them into smaller problems
§ of identical forms

§ Eventually a "trivial" problem is reached that can be solved
immediately.

§ Initially it may seem that the solution is incomplete.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

General Algorithm

§ if stopping condition then
solve simple problem

else
use recursion to solve smaller problem(s)
combine solutions from smaller problem(s)

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Iterative vs Recursive

§ Recursion is a way of implementing a loop
§ Iteration and recursion can always be interchanged
§ Iteration
§ Cognitively simple

§ Recursion
§ Is not as intuitive
§ Demanding on machine time and memory
§ Sometimes simpler than iteration

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Guess a number

§ Problem: think of a number in the range 1 to N

§ Reworded:
§ Given a set of N possible numbers to choose from
§ Guess a number from the set
§ If wrong, guess again
§ Continue until the number is guessed successfully

§ Recursion comes into the “guess again” stage
§ A set of N-1 numbers remains from which to guess
§ This is a smaller version of the same problem

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Print a number

§ Problem: Print a number (an integer)

§ Recursive algorithm:
1. Print all of the number except the last digit
2. Print the last digit

§ Pseudocode
§ procedure PrintNum (N : in integer) is

begin
print the number N DIV 10;
print the digit N MOD 10;

end PrintNum;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Print a number

§ Stopping condition added

§ procedure PrintNum (N : in integer) is
begin
if N < 10 then
print the digit N

else print the number N DIV 10;
print the digit N MOD 10

end if;
end;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Print a number

§ Recursive procedure

§ procedure PrintNum (N : integer) is
begin
if N < 10 then
put(N,WIDTH=>1)

else
PrintNum (N DIV 10);
put ((N MOD 10), WIDTH=>1)

end if;
end;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Recursion

§ Solution to problems uses either iteration or recursion
§ What is meant by iteration?
§ Involves counting via looping within a module

§ Not all recursive solutions are better than iteration.

§ What is recursion?
§ It is a technique for performing a task T by performing

another task T’.
§ Task T’ has exactly the same nature as the original task T.

§ Recursion can for example be used in binary search, such
as looking for word in a dictionary.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Recursive

Psuedocode for recursive searching in a dictionary

-- Search the dictionary for a word
if the dictionary contains only one page

then scan the page for the word
else

begin
Open the dictionary to a point near the middle to

determine which half contains the word

if the word is in the first half of the dictionary
then search the first half of the dictionary

for the word
else search the second half of the dictionary for

the word
end

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Factorial

§ Functions are often useful for calculating
mathematical equations
§ Write a function that, given n, computes n!

n! == 1 ∗ 2 ∗ ... ∗ (n-1) ∗ n
§ Example:

5! == 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 == 120

§ Specification:
Receive: n, an integer
Precondition: n >= 0 (0! == 1 and 1! == 1)
Return: n!

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Preliminary Analysis

§ At first glance, this is a counting problem, so we could solve it with a for
loop:

function Factorial_Iterative (N : in Natural) return Positive is

Result : Positive;

begin
Result := 1;
for Count in 2 .. N loop

Result := Result * Count;
end loop;

return Result;

end Factorial_Iterative;

§ But let’s instead use a different approach...

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Analysis

§ Consider: n! == 1 ∗ 2 ∗ ... ∗ (n-1) ∗ n
§ so: (n-1)! == 1 ∗ 2 ∗ ... ∗ (n-1) è n! == (n-1)! ∗ n

§ We have defined the ! function in terms of itself

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Recursion

§ A function that is defined in terms of itself is called
self-referential, or recursive.

§ Recursive functions are designed in a 3-step process:
1. Identify a base case -- an instance of the problem whose

solution is trivial
§ Example: The factorial function has two base cases:

if n == 0 : n! == 1
if n == 1 : n! == 1

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Induction Step

2. Identify an induction step -- a means of solving the non-trivial
instances of the problem using one or more “smaller” instances
of the problem.
Example: In the factorial problem, we solve the “big” problem
using a “smaller” version of the problem:

n! == (n-1)! ∗ n

3. Form an algorithm from the base case and induction step.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Algorithm

-- Factorial(N)

0. Receive N

1. If N > 1
Return Factorial(N-1) * N

Else
Return 1

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Ada Code

function Factorial (N : in Natural) return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Suppose the function is called with N == 4.

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

The function starts executing, with N == 4.

N 4

return ?

Factorial(4)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

The if executes, and N (4) > 1, ...

N 4

return ?

Factorial(4)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

and computing the return-value calls Factorial(3).

N 4

return ?

Factorial(4)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

This begins a new execution, in which N == 3.

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Its if executes, and n (3) > 1, ...

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

and computing its return-value calls Factorial(2).

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

This begins a new execution, in which N == 2.

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)
function Factorial (N : in Natural)

return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Its if executes, and N (2) > 1, ...

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)
function Factorial (N : in Natural)

return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

and computing its return-value calls Factorial(1).

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)
function Factorial (N : in Natural)

return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

This begins a new execution, in which N == 1.

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)

N 1

return ?

Factorial(1)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

The if executes, and the condition N > 1 is false, ...

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)

N 1

return ?

Factorial(1)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

so its return-value is computed as 1 (the base case)

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)

N 1

return 1

Factorial(1)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(1) terminates, returning 1 to Factorial(2).

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)

N 1

return 1

= 2 * 1

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(2) resumes, computing its return-value:

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return 2

Factorial(2)

= 2 * 1

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(2) terminates, returning 2 to Factorial(3):

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return 2

= 3 * 2

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(3) resumes, and computes its return-value:

N 4

return ?

Factorial(4)

N 3

return 6

Factorial(3)

= 3 * 2

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(3) terminates, returning 6 to Factorial(4):

N 4

return ?

Factorial(4)

N 3

return 6

= 4 * 6

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(4) resumes, and computes its return-value:

N 4

return 24

Factorial(4)

= 4 * 6

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Behavior

Factorial(4) terminates, returning 24 to its caller.

N 4

return 24

Factorial(4)

function Factorial (N : in Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

§ If we time the for-loop version and the recursive version,
the for-loop version will usually win, because the
overhead of a function call is far more time-consuming
than the time to execute a loop.

§ However, there are problems where the recursive solution
is more efficient than a corresponding loop-based
solution.

For example the exponentiation problem:

Given two values x and n, compute xn.

Example: 33 == 27

For example the exponentiation problem:

Given two values x and n, compute xn.

Example: 33 == 27

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Dual procedure recursion
§ Sometimes have algorithms with multiple states
§ Example:

p(x) = p(x-1) + q(x/2) {x>1}
2 {x<=1}

q(x) = q(x-3) * p(x-5) {x>3}
x/3 {x<=3}

§ This involves two recursive functions
§ directly recursive:
§ p calls itself
§ q calls itself

§ also indirectly recursive
§ p calls q which call p again
§ q calls p which call q again

§ Ada requires that things must be declared before they can be
used
§ You cannot both define p before q and define q before p.
§ must predefine one or both of the functions

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Dual procedure recursion

-- first declare q, so p can refer to it
function q (x: in float) return float;

-- now define p. Full definition is possible
function p (x: in float) return float is
begin

if (x<=1) then
return 2;

end if;
return p(x-1) + q(x/2);

end p;

-- now provide full definition of q
function q(x: in float) return float is
begin

if (x<=3) then
return x/3;

end if;
return q(x-3) * p(x-5);

end q;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Merge sort

§ Merge sort is a more efficient sorting algorithm than
either selection sort or bubblesort

§ Where bubblesort and select sort are O(n2), merge sort is
O(n log n)

§ The basic ides is that if you know you have 2 sorted lists,
you can combine them into a single large sorted list by just
looking at the first item in each list. Whichever is smaller
is moved to the single list being assembled. There is then a
new first item in the list from which the item was moved,
and the process repeats.

§ The process overall is thus:
§ Split the original list into two halves
§ Sort each half (using merge sort)
§ Merge the two sorted halves together into a single sorted list

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Algorithm

§ procedure mergesort(first,last,array)
mid= (first+last)/2
mergesort(first,mid,array)
mergesort(mid+1,last,array)
rejoin_two_halves(mid,array)

end mergesort

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Code 1(3)
procedure main is

type int_array is array(1..100) of integer;
tosort:int_array;

procedure merge (a:in out int_array; low,mid,high:in integer) is
temp: int_array;
choose1: boolean;
loop_low,loop_high:integer;

begin
loop_low:=low;
loop_high:=high;

for i in low..high loop
if (loop_low>mid) then choose1:=false;
elsif (loop_high>high) then choose1:=true;
else choose1:= a(loop_low)<a(loop_high);
end if; -- choose which side

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Code 2(3)

if choose1 then -- choose from low side
temp(i):=a(loop_low);
loop_low:=loop_low+1;

else
temp(i):=a(loop_high); -- choose from high side
loop_high:=loop_high+1;

end if;
end loop;
a:=temp;

end merge;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Code 3(3)

procedure mergesort(a: in out int_array;low,high:integer) is
mid:integer;

begin
if low<high then

mid:= (high+low)/2;
mergesort(a,low,mid);
mergesort(a,mid+1,high);
merge(a,low,mid,high);

end if;
end mergesort;

begin
-- something happens here to get the initial values of tosort
-- then use mergesort to sort the array mergesort(tosort,1,100);

end main;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

A Legend

Legend has it that there were three diamond needles set
into the floor of the temple of Brahma in Hanoi.

Stacked upon the leftmost needle were 64 golden disks, each a
different size, stacked in concentric order:

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

A Legend (Ct’d)

The priests were to transfer the disks from the first needle to
the second needle, using the third as necessary.

But they could only move one disk at a time, and could never put a
larger disk on top of a smaller one.

When they completed this task, the world would end!

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

To Illustrate

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

Since we can only move one disk at a time, we move the top disk
from A to B.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

We then move the top disk from A to C.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example (Ct’d)

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

We then move the top disk from B to C.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example (Ct’d)

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

We then move the top disk from A to B.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example (Ct’d)

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

We then move the top disk from C to A.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example (Ct’d)

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

We then move the top disk from C to B.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example (Ct’d)

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

We then move the top disk from A to B.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example (Ct’d)

For simplicity, suppose there were just 3 disks, and we’ll
refer to the three needles as A, B, and C...

and we’re done!
The problem gets more difficult as the number of disks increases...

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Our Problem

Today’s problem is to write a program that generates the
instructions for the priests to follow in moving the disks.

While quite difficult to solve iteratively, this problem has a simple
and elegant recursive solution.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ Consider six disks instead of 64
§ Suppose the problem is to move the stack of six

disks from needle 1 to needle 2.
§ Part of the solution will be to move the bottom disk

from needle 1 to needle 2, as a single move.
§ Before we can do that, we need to move the five disks

on top of it out of the way.
§ After we have moved the large disk, we then need to

move the five disks back on top of it to complete the
solution.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ We have the following process:
§ Move the top five disks to stack 3
§ Move the disk on stack 1 to stack 2
§ Move the disks on stack 3 to stack 2

§ Notice that part of solving the six disk problem, is
to solve the five disk problem (with a different
destination needle). Here is where recursion
comes in.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Algorithm

§ hanoi(from,to,other,number)
-- move the top number disks
-- from stack from to stack to

if number=1 then
move the top disk from stack from to stack to

else
hanoi(from,other,to, number-1)
hanoi(from,to,other, 1)
hanoi(other,to, from, number-1)

end

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Ada Code

TOT_DISK: constant INTEGER:=64;

type int_array is array(1..TOT_DISK) of integer;

type towers is record
num:integer:=0;
disk:int_array;

end record;

type all_towers is array(1..3) of towers;

main_tower: all_towers;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Ada Code
procedure hanoi(from,to,other,number: in integer;

tower : in out all_towers);
disk_move: integer;
disk_loc : integer;

begin
if (number=1) then

disk_loc:= tower(from).num;
disk_mov:=tower(from).disk(disk_loc);
tower(from).num:=tower(from).num-1;
put("Moving disk "); put(disk_mov);
put(" from tower "); put(from);
put(" to tower "); put(to);
new_line;
tower(to).num:=tower(to).num+1;
disk_loc:=tower(to).num;
tower(to).disk(disk_loc):=disk_mov;

else
hanoi(from,other,to,number-1,tower);
hanoi(from,to,other,1,tower);
hanoi(other,to,from,number-1,tower);

end if;
end hanoi;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Ada Code

procedure main is
begin
for i in 1..TOT_DISK loop
main_tower(1).disks(i):=i;

end loop;
main_tower(1).num:=TOT_DISK;
hanoi(1,2,3,TOT_DISK,main_tower);

end main;

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Execution

§ set TOT_DISK =3
hanoi(1,2,3,3,main_tower);

hanoi(1,3,2,2) hanoi(1,2,3,1) move
tower 1 to tower 2 hanoi(1,3,2,1) move
tower 1 to tower 3 hanoi(2,3,1,1) move
tower 2 to tower 3 hanoi(1,2,3,1) move
tower 1 to tower 2 hanoi(3,2,1,2)
hanoi(3,1,2,1) move tower 3 to tower 1
hanoi(3,2,1,1) move tower 3 to tower 2
hanoi(1,2,3,1) move tower 1 to tower 2

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Analysis

Let’s see how many moves it takes to solve this problem, as a function
of n, the number of disks to be moved.
n Number of disk-moves required
1 1
2 3
3 7
4 15
5 31
...
i 2i-1
64 264-1 (a big number)

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Analysis (Ct’d)

How big?
Suppose that our computer and “super-printer” can generate and print

1,048,576 (220) instructions/second.
How long will it take to print the priest’s instructions?

§ There are 264 instructions to print.
§ Then it will take 264/220 = 244 seconds to print them.

§ 1 minute == 60 seconds.
§ Let’s take 64 = 26 as an approximation of 60.

§ Then it will take ≅ 244 / 26 = 238 minutes to print them.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Analysis (Ct’d)

Hmm. 238 minutes is hard to grasp. Let’s keep going...
§ 1 hour == 60 minutes.
§ Let’s take 64 = 26 as an approximation of 60.

§ Then it will take ≅ 238 / 26 = 232 hours to print them.
§ 1 day == 24 hours.
§ Let’s take 32 = 25 as an approximation of 24.

§ Then it will take ≅ 232 / 25 = 227 days to print them.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Analysis (Ct’d)

Hmm. 227 days is hard to grasp. Let’s keep going...
§ 1 year == 365 days.
§ Let’s take 512 = 29 as an approximation of 365.

§ Then it will take ≅ 227 / 29 = 218 years to print them.
§ 1 century == 100 years.
§ Let’s take 128 = 27 as an approximation of 100.

§ Then it will take ≅ 218 / 27 = 211 centuries to print them.

16.070 — April 28/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Analysis (Ct’d)

Hmm. 211 centuries is hard to grasp. Let’s keep going...
§ 1 millenium == 10 centuries.
§ Let’s take 16 = 24 as an approximation of 10.

§ Then it will take ≅ 211 / 24 = 27 = 128 millenia just to print the
priest’s instructions (assuming our computer doesn’t crash, in which case we
have to start all over again).

How fast can the priests actually move the disks?

I’ll leave it to you to calculate the data of the apocalypse...

