16.070
Introduction to Computers & Programming

Ada: Recursion

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

ecursion

= Recursion means writing procedures and functions which
call themselves.
= Recursion involves:
= solving large problems
= by breaking them into smaller problems
= of identical forms
= Eventually a"trivial" problem is reached that can be solved
Immediately.
= |nitialy it may seem that the solution is incomplete.

= | f stopping condition then
sol ve sinple problem
el se
use recursion to solve smaller problens)
conbi ne solutions fromsnaller problen(s)

= Recursion isaway of implementing aloop
= |teration and recursion can always be interchanged
= |teration
= Cognitively simple
* Recursion
* |snot asintuitive

= Demanding on machine time and memory
= Sometimes simpler than iteration

‘ uess a number

= Problem: think of anumber intherange1to N

* Reworded:
= Given aset of N possible numbers to choose from
= (Guess a number from the set
= |f wrong, guess again
= Continue until the number is guessed successfully

= Recursion comesinto the “guess again” stage
= A set of N-1 numbers remains from which to guess
* Thisisasmaller version of the same problem

= Problem: Print anumber (an integer)

= Recursivealgorithm:
1. Print all of the number except the last digit
2. Print thelast digit

= Pseudocode

= procedure PrintNum (N : in integer) is
begi n
print the nunber N DIV 10;
print the digit N MO 10;

end Print Num

= Stopping condition added

= procedure PrintNum (N : in integer) 1Is
begi n

I1f N < 10 then

print the digit N
el se print the nunber N DIV 10;
print the digit N MOD 10

end I f;

end;

= Recursive procedure

= procedure Print Num (N : integer) 1Is
begi n
I1f N < 10 then
put (N, W DTH=>1)
el se
PrintNum (N DIV 10);
put ((N MOD 10), WDTH=>1)
end I f;
end;

= Solution to problems uses either iteration or recur sion

= What is meant by iteration?
= |nvolves counting vialooping within a module

= Not al recursive solutions are better than iteration.

= Whatisrecurson?

= |tisatechnique for performing atask T by performing
another task T'.

» Task T’ has exactly the same nature astheoriginal task T.

= Recursion can for example be used in binary search, such
as looking for word in a dictionary.

Psuedocode for recursive searching in adictionary

-- Search the dictionary for a word
| f the dictionary contains only one page
t hen scan the page for the word

el se
begi n
Qpen the dictionary to a point near the mddle to
determ ne which half contains the word
If the word is in the first half of the dictionary
then search the first half of the dictionary
for the word
el se search the second half of the dictionary for
t he word
end

= Functions are often useful for calculating
mathematical equations

= Write afunction that, given n, computes n!
nN==1*2* .* (n-)*n

= Example:
Bl==1*2%*3*4*5==120

= Specification:
Receive: n, an integer
Precondition: n>=0 (0'==1andl! ==1)
Return: n!

= At first glance, thisis a counting problem, so we could solve it with a for
loop:

function Factorial lIterative (N: in Natural) return Positive is

Result : Positive;

begi n
Result := 1,
for Count in 2 .. N loop
Result := Result * Count;
end | oop;

return Result:

end Factorial lterative;

= Butlet’sinstead use a different approach...

= Consider:nl==1*2* ..* (n-1) * n
» 50 (NF)!'==1*2* . *(n-1) = nl==(n-1)!*n

= We havedefined the! function in terms of itself

= A function that i1s defined in terms of itself i1s called
self-referential, or recursive.

= Recursive functions are designed in a 3-step process.

1. Identify abase case-- an instance of the problem whose
solutionistrivial

= Example: The factorial function has two base cases:
fn==0: nl==
fn==1:nl==

. Identify an induction step -- a means of solving the non-trivial
Instances of the problem using one or more “smaller” instances
of the problem.

Example: In the factorial problem, we solve the “big” problem
using a“smaller” version of the problem:

nl==(n-1)! * n

. Form an algorithm from the base case and induction step.

-- Factorial(N)

0. Recelve N

1L.IFN>1
Return Factorial(N-1) * N
Else
Return 1

function Factorial (N : in Natural)

begin — factori al

If N> 1 then

return N * Factorial (N1);
el se

return 1;
end i f;

end Factori al :

return Positive iIs

Suppose the function is called with N == 4.

function Factorial (N : in Natural)
return Positive is

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

The function starts executing, with N == 4.

Factori al (4)

N |4

return | ?

function Factorial (N : in Natural)
return Positive is

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

Theif executes,and N (4) > 1, ...

Factori al (4)

N |4

return | ?

function Factorial (N : in Natural)
return Positive is

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

and computing the return-value calls Factorial (3).

Factori al (4)

N |4

return | ?

function Factorial (N : in Natural)
return Positive is

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

This begins a new execution, in which N == 3.

Factori al (4)

N |4
return | ? Fact ori al (3)
N |3
function Factorial (N : in Natural) -
return Positive is return | -

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

Its if executes, and n (3) > 1, ...

Factori al (4)

N |4
return | ? Fact ori al (3)
N |3
function Factorial (N : in Natural) -
return Positive is return | -

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

and computing its return-value calls Factorial (2).

Factori al (4)

N |4
return | ? Fact ori al (3)
N |3
function Factorial (N : in Natural) -
return Positive is return | -

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

This begins a new execution, in which N == 2.

Factori al (4)

N |4
return | ? Factorial (3)
N |3
function Factorial (N : in Natural) - _
return Positive is return | % Factori al (2)
begin — factori al N | 2

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

return | ?

end Factori al ;

Its If executes, and N (2) > 1, ...

Factori al (4)

N |4

return | ? Fact ori al (3)

N |3

function Factorial (N : in Natural) - _
return Positive is return |- Factori al (2)

begin — factori al N | 2

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

return | ?

end Factori al ;

and computing its return-value calls Factorial(1).

Factori al (4)

N |4

return | ? Fact ori al (3)

N |3

function Factorial (N : in Natural)

return Positive is return | ?

Factori al (2)
begin — factori al N | 2

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

return | ?

end Factori al ;

This begins a new execution, in which N == 1.

Factori al (4)

Factori al (3)
N |4
N |3
return | ?
return | ?
function Factorial (N : in Natural) _
return Positive is Fact ori al (2)
begin — factori al N | 2
if N> 1 then
return | ? i
return N * Factorial (N-1); Factorial (1)
el se
return 1; N1
end if; return | ?

end Factori al ;

The if executes, and the condition N > 1 isfalse, ...

Factori al (4)

Factori al (3)
N |4
N |3
return | ?
return | ?
function Factorial (N : in Natural) _
return Positive is Fact ori al (2)
begin — factori al N | 2
if N> 1 then
return | ? i
return N * Factorial (N-1); Factorial (1)
el se
return 1; N1
end if; return | ?

end Factori al ;

so its return-value is computed as 1 (the base case)

Factori al (4)

Factorial (3
N |4 (3)
N |3
return | ?
return | ?
function Factorial (N : in Natural) _
return Positive is Fact ori al (2)
begin — factori al N | 2
if N> 1 then
return | ? -
return N * Factorial (N-1); Factorial (1)
el se
return 1; N |1
end if; return | 1

end Factori al ;

Factorial (1) terminates, returning 1 to Factorial(2).

Factori al (4)

Factorial (3
N |4 (3)
N |3
return | ?
return | ?
function Factorial (N : in Natural) _
return Positive is Fact ori al (2)
begin — factori al N |2
if N> 1 then | return | ? -
return N * Factorial (N-1);
el se
return 1; N\ 1
end i f; return |'1

end Factori al ;

Factorial (2) resumes, computing its return-value:

Factori al (4)

N

return

4

Factori al (3)

?

function Factorial (N :

return Positive iIs

begin — factori al

if N> 1 then

return N * Factorial (N-1);

el se
return 1;
end if;

end Factori al ;

N |3
return | ?
i n Natural)

Factori al (2)

N

return

2

2

=2 *1

Factorial(2) terminates, returning 2 to Factorial(3):

Factori al (4)

Factori al (3)
N |4
N |3
return | ?
return | ? - 3 * 2k
function Factorial (N : in Natural) N\ 2
return Positive is \
return |2
begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

Factorial (3) resumes, and computes its return-value:

Factori al (4)

Factorial (3
N |4 (3)
N |3
return | ?
return | 6 =3 * 2
function Factorial (N : in Natural)

return Positive is
begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

Factorial(3) terminates, returning 6 to Factorial (4):

Factori al (4)

N |4
return | ? -4 * B
1&3
function Factorial (N : in Natural) 5
return Positive is return

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

Factorial (4) resumes, and computes its return-value:

Factori al (4)

N |4

return (24 -4 * B

function Factorial (N : in Natural)
return Positive is

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

Factorial (4) terminates, returning 24 to its caller.

Factori al (4)

N |4

return (24

function Factorial (N : in Natural)
return Positive is

begin — factori al

if N> 1 then

return N * Factorial (N-1);
el se

return 1,
end if;

end Factori al ;

= |f wetime the for-loop version and the recursive version,
the for-loop version will usually win, because the
overhead of afunction call is far more time-consuming
than the time to execute a loop.

= However, there are problems where the recursive solution

IS more efficient than a corresponding |oop-based
solution.

For example the exponentiation problem:

Given two values x and n, compute x".

Example: 32 == 27

Dual procedure recursion

= Sometimes have algorithms with multiple states

= Example:

D(X) p(x-1) + q(x/2) {x>1}
{x<=1}

q(X) q(x-3) * p(x-5) {x>3}
X/3 {x<=3}

= Thisinvolvestwo recursive functions
= directly recursive:

= p calsitself

= g calsitself
= alsoindirectly recursive

= p callsqwhich call p again
= g calspwhichcall gagan

= Adarequires that things must be declared before they can be
used

= Y ou cannot both define p before q and define g before p.
= must predefine one or both of the functions

I ———_

-- first declare q, so p can refer to it
function q (x: in float) return float;

-- now define p. Full definition is possible
function p (x: in float) return float is
begi n

I f (x<=1) then

return 2;

end if;

return p(x-1) + q(x/2);
end p;

-- now provide full definition of (¢
function q(x: in float) return float is
begi n
I f (x<=3) then
return x/3;

end if;
return g(x-3) * p(x-5);
end (;

Merge sort

= Mergesort isamore efficient sorting algorithm than
either selection sort or bubblesort

= Where bubblesort and select sort are O(n?), merge sort is
O(nlogn)

= Thebasicidesisthat if you know you have 2 sorted lists,
you can combine them into asingle large sorted list by just
looking at the first item in each list. Whichever is smaller
IS moved to the single list being assembled. Thereisthen a
new first item in the list from which the item was moved,
and the process repeats.

= Theprocessoverall isthus
= Split theoriginal list into two halves
= Sort each half (using merge sort)
= Merge the two sorted halves together into a single sorted list

= procedure nergesort(first,last,array)
md= (first+last)/2
nergesort(first, md, array)
nmer gesort(m d+1, | ast, array)
rejoin_two hal ves(md, array)
end mergesort

procedure main is

type int _array is array(1l..100) of integer;
tosort:int_array,;

procedure nerge (a:in out int_array; lowmd,high:in integer) is
tenp: int_array;
choosel: bool ean;
| oop_I ow, | oop_hi gh:i nteger;

begi n
| oop_I| ow. =I ow,
| oop_hi gh: =hi gh;

for i in low..high |oop
I f (loop_|owsmd) then choosel: =fal se;
el sif (loop_high>high) then choosel: =true;
el se choosel: = a(l oop_| ow) <a(l oop_hi gh);
end if; -- choose which side

| f choosel then -- choose from | ow side
tenp(i):=a(l oop | ow;
| oop_| ow. =l oop_| ow+1;
el se
tenp(i):=a(loop_high); -- choose from hi gh side
| oop_hi gh: =l oop_hi gh+1;
end i f;
end | oop;
a: =t enp;

end ner ge;

procedure nmergesort(a: in out int_array;low high:integer) is
m d: i nt eger;

begi n
I f 1 ow<high then
m d: = (hi gh+l ow)/ 2;
mergesort(a,l ow, md);
mer gesort(a, m d+1, hi gh);
merge(a, | ow, m d, hi gh);
end if;
end nergesort;

begi n

-- sonet hing happens here to get the initial values of tosort

-- then use nergesort to sort the array nergesort(tosort, 1, 100);
end nmai n;

Legend has it that there were three diamond needles set
Into the floor of the temple of Brahma in Hanoi.

2

L
C —_]

Stacked upon the leftmost needle were 64 golden disks, each a
different size, stacked in concentric order:

The priests were to transfer the disks from the first needle to
the second needle, using the third as necessary.

. 1

But they could only move one disk at a time, and could never put a
larger disk on top of a smaller one.

When they completed this task, the world would end!

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

Since we can only move one disk at atime, we move the top disk
from A to B.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

We then move the top disk from A to C.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

We then move the top disk from B to C.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

We then move the top disk from A to B.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

We then move the top disk from C to A.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

We then move the top disk from C to B.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

We then move the top disk from A to B.

For ssmplicity, suppose there were just 3 disks, and we'll
refer to thethree needlesas A, B, and C...

and we're done!
The problem gets more difficult as the number of disksincreases..

Today’ s problem isto write a program that generates the
Instructions for the priests to follow in moving the disks.

2

L
C —_]

While quite difficult to solve iteratively, this problem has a ample
and elegant recursive solution.

= Congder six disksinstead of 64

= Suppose the problem isto move the stack of six
disks from needle 1 to needle 2.

= Part of the solution will be to move the bottom disk
from needle 1 to needle 2, as a single move.

= Before we can do that, we need to move the five disks
on top of it out of the way.

= After we have moved the large disk, we then need to
move the five disks back on top of it to complete the
solution.

= We have the following process:
= Movethetop five disksto stack 3
= Movethedisk on stack 1 to stack 2
= Move the disks on stack 3 to stack 2

= Notice that part of solving the six disk problem, is
to solve the five disk problem (with a different
destination needle). Here is where recursion
comesin.

hanoi (from t o, ot her, nunber)
-- nove the top nunber disks
-- fromstack fromto stack to
| f nunmber=1 t hen
nove the top disk fromstack fromto stack to
el se
hanoi (from ot her,to, nunber-1)
hanoi (fromto, ot her, 1)
hanoi (ot her,to, from nunber-1)
end

TOT_Dl SK: const ant | NTEGER =64;

type int _array is array(1..TOIl D SK) of integer;
type towers is record
num i nt eger : =0;
di sk:int_array;
end record,;
type all towers is array(1l..3) of towers;

mai n_tower: all _towers;

i f (nunber=1) then

el

disk loc:= tower(from.num
di sk_nov: =tower (from . di sk(di sk _|oc);
tower (from.num =tower (from.numl;
put ("Moving disk "); put(disk _nov);
put (" fromtower "); put(from;
put(" to tower "); put (to);
new | i ne;

t ower (t o). num =t ower (t o). numt1;

di sk_| oc: =tower (to). num

tower (to).disk(disk |oc):=disk nov;
se

hanoi (from ot her, t o, nunber-1, t ower);
hanoi (fromto, ot her, 1, tower);

hanoi (ot her,to, from nunber-1,t ower);

end if;
end hanoi :

procedure hanoi (fromto, ot her, nunber: in integer;
t oner : in out all _towers);
di sk_nove: integer;
di sk loc : integer;
begi n

procedure nmain i s
begi n

for 1 1n 1..TOT_DI SK | oop

mai n_tower (1).disks(i):=i;

end | oop;

mai n_tower (1). num =TOT_Dl SK;

hanoi (1, 2, 3, TOT_DI SK, mai n_t ower) ;
end mai n;

= set TOI DI SK =3
hanoi (1, 2, 3, 3, mai n_t ower) ;

hanoi (1, 3, 2,2) hanoi (1, 2,3,1) nove
tower 1 to tower 2 hanoi(1,3,2,1) nove
tower 1 to tower 3 hanoi(2,3,1,1) nove
tower 2 to tower 3 hanoi (1, 2,3,1) nove
tower 1 to tower 2 hanoi (3, 2,1, 2)

hanoi (3,1,2,1) nove tower 3 to tower 1
hanoi (3,2,1,1) nove tower 3 to tower 2
hanoi (1, 2,3,1) nove tower 1 to tower 2

Let’s see how many moves it takes to solve this problem,
of n, the number of disks to be moved.
n Number of disk-moves required

1
3
7
15
31

o b~ W PNk

2-1
64 2%4-1 (abig number)

as a function

How big?

Suppose that our computer and “ super-printer” can generate and print
1,048,576 (229) instructions/second.

How long will it take to print the priest’ s instructions?

= There are 254 instructions to print.
= Then it will take 2%4/2% = 244 seconds to print them.

= 1 minute == 60 seconds.
= Let'stake 64 = 26 as an approximation of 60.

= Then it will take @24 / 26 = 238 minutes to print them.

Hmm. 238 minutesis hard to grasp. Let’s keep going...

= 1 hour == 60 minutes.

= |et'stake 64 = 2° as an approximation of 60.

= Thenit will take @238/ 26 = 232 hours to print them.
= 1 day == 24 hours.

= Let’stake 32 = 2° as an approximation of 24.

= Then it will take @P32/ 25 = 227 days to print them.

Hmm. 227 daysis hard to grasp. Let’s keep going...
= 1 year == 365 days.

= |et’'stake 512 = 2° as an approximation of 365.

= Thenit will take @P27 / 2° = 218 years to print them.
= 1 century == 100 years.

= |Let’'stake 128 = 27 as an approximation of 100.

= Then it will take @P18/ 27 = 211 centuriesto print them.

Hmm. 211 centuriesis hard to grasp. Let’s keep going...
= 1 millenium == 10 centuries.

= Let'stake 16 = 2* as an approximation of 10.

= Then it will take @R/ 24 = 27 = 128 millenia just to print the
priest’ s instructions (assuming our computer doesn’'t crash, in which case we
haveto start al over again).

How fast can the priests actually move the disks?

I’ll leave it to you to calculate the data of the apocalypse...

