16.070
 Introduction to Computers \& Programming

Ada: Recursion

Prof. Kristina Lundquist
Dept. of Aero/Astro, $\mathcal{M I T}$

Recursion

- Recursion means writing procedures and functions which call themselves.
- Recursion involves:
- solving large problems
- by breaking them into smaller problems
- of identical forms
- Eventually a "trivial" problem is reached that can be solved immediately.
- Initially it may seem that the solution is incomplete.

General Algorithm

- if stopping condition then solve simple problem
else
use recursion to solve smaller problem(s) combine solutions from smaller problem(s)

Iterative vs Recursive

- Recursion is a way of implementing a loop
- Iteration and recursion can always be interchanged
- Iteration
- Cognitively simple
- Recursion
- Is not as intuitive
- Demanding on machine time and memory
- Sometimes simpler than iteration

Guess a number

- Problem: think of a number in the range 1 to N
- Reworded:
- Given a set of N possible numbers to choose from
- Guess a number from the set
- If wrong, guess again
- Continue until the number is guessed successfully
" Recursion comes into the "guess again" stage
- A set of N-1 numbers remains from which to guess
- This is a smaller version of the same problem

Print a number

- Problem: Print a number (an integer)
- Recursive algorithm:

1. Print all of the number except the last digit
2. Print the last digit

- Pseudocode
- procedure PrintNum (N : in integer) is begin
print the number N DIV 10; print the digit N MOD 10;
end PrintNum;

Print a number

- Stopping condition added
- procedure PrintNum (N : in integer) is begin
if $N<10$ then print the digit N
else print the number N DIV 10; print the digit N MOD 10
end if;
end;

Print a number

- Recursive procedure
- procedure PrintNum (N : integer) is begin
if $N<10$ then
put ($\mathrm{N}, \mathrm{WIDTH}=>1$)
else
PrintNum (N DIV 10);
put ((N MOD 10), WIDTH=>1) end if;
end;

Recursion

- Solution to problems uses either iteration or recursion
- What is meant by iteration?
- Involves counting via looping within a module
- Not all recursive solutions are better than iteration.
- What is recursion?
- It is a technique for performing a task \mathbf{T} by performing another task T'
- Task T' has exactly the same nature as the original task T.
- Recursion can for example be used in binary search, such as looking for word in a dictionary.

Recursive

Psuedocode for recursive searching in a dictionary

```
-- Search the dictionary for a word
    if the dictionary contains only one page
        then scan the page for the word
    else
        begin
            Open the dictionary to a point near the middle to
                determine which half contains the word
            if the word is in the first half of the dictionary
            then search the first half of the dictionary
                    for the word
            else search the second half of the dictionary for
                        the word
    end
```


Factorial

- Functions are often useful for calculating mathematical equations
- Write a function that, given n , computes n ! $\mathrm{n}!==1 * 2 * \ldots *(\mathrm{n}-1) * \mathrm{n}$
- Example:
$5!==1 * 2 * 3 * 4 * 5==120$
- Specification:

Receive:
n, an integer
Precondition:
$n>=0 \quad(0!==1$ and $1!==1)$
Return:
$n!$

Preliminary Analysis

- At first glance, this is a counting problem, so we could solve it with a for loop:
function Factorial_Iterative (N : in Natural) return Positive is
Result : Positive;
begin
Result := 1;
for Count in 2 .. N loop Result := Result * Count;
end loop;
return Result;
end Factorial_Iterative;
- But let's instead use a different approach...

Analysis

- Consider: $\mathrm{n}!==1 * 2 * \ldots *(\mathrm{n}-1) * \mathrm{n}$
- so: $(\mathrm{n}-1)!==1 * 2 * \ldots *(\mathrm{n}-1) \Rightarrow \mathrm{n}!==(\mathrm{n}-1)!* \mathrm{n}$
- We have defined the ! function in terms of itself

Recursion

- A function that is defined in terms of itself is called self-referential, or recursive.
- Recursive functions are designed in a 3-step process:

1. Identify a base case -- an instance of the problem whose solution is trivial

- Example: The factorial function has two base cases: if $n=0: n!==1$ if $n=1: n!==1$

Induction Step

2. Identify an induction step -- a means of solving the non-trivial instances of the problem using one or more "smaller" instances of the problem.
Example: In the factorial problem, we solve the "big" problem using a "smaller" version of the problem:

$$
\mathrm{n}!=(\mathrm{n}-1)!* \mathrm{n}
$$

3. Form an algorithm from the base case and induction step.

Algorithm

-- Factorial(N)
0. Receive N

1. If $\mathrm{N}>1$

Return Factorial(N-1) * N
Else
Return 1

Ada Code

function Factorial (N : in Natural) return Positive is begin - factorial
if $N>1$ then
return N * Factorial (N-1);
else
return 1;
end if;
end Factorial;

Behavior

Suppose the function is called with $\mathrm{N}==4$.

```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

The function starts executing, with $\mathrm{N}==4$.

Factorial (4)


```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

The if executes, and $\mathrm{N}(4)>1, \ldots$

Factorial(4)


```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
```

 end Factorial;

Behavior

and computing the return-value calls Factorial(3).
Factorial(4)


```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

This begins a new execution, in which $\mathrm{N}==3$.

Behavior

Its if executes, and $\mathrm{n}(3)>1, \ldots$

```
Factorial(4)
N 4
return ? Factorial (3)
```



```
    begin - factorial
        if N > 1 then
        return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

and computing its return-value calls Factorial(2).

Behavior

This begins a new execution, in which $\mathrm{N}==2$.

Behavior

Its if executes, and $\mathrm{N}(2)>1, \ldots$

Factorial(4)

\mathbf{N}	4
	$?$

Factorial(3)

```
function Factorial (N : in Natural) return Positive is
N 3
    begin - factorial
        if N > 1 then
        return N * Factorial(N-1);
    else
        return 1;
    end if;
    end Factorial;
```


Behavior

and computing its return-value calls Factorial(1).

Behavior

This begins a new execution, in which $\mathrm{N}==1$.
Factorial(4)


```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
        return N * Factorial(N-1);
        else
        return 1;
        end if;
    end Factorial;
```

Factorial(2)

Factorial(1)

Behavior

The if executes, and the condition $\mathrm{N}>1$ is false, ...
Factorial(4)

Factorial(3)

function Factorial (N : in Natural) return Positive is
begin - factorial
if $N>1$ then
return N * Factorial (N-1);
else
return 1;
end if;
end Factorial;

Behavior

so its return-value is computed as 1 (the base case)
Factorial(4)

function Factorial (N : in Natural)

```
return Positive is
Factorial(2)
```

 begin - factorial
 if \(N>1\) then
 return \(N\) * Factorial (N-1);
 else
 return 1;
 end if;
 end Factorial;

Factorial(1)

Behavior

Factorial(1) terminates, returning 1 to Factorial(2).

Factorial(4)

function Factorial (N : in Natural) return Positive is
begin - factorial
if $N>1$ then
return N * Factorial ($\mathbf{N}-1$);
else
return 1;
end if;
end Factorial;

Behavior

Factorial(2) resumes, computing its return-value:

Factorial(2)

else
return 1;
end if;
end Factorial;

Behavior

Factorial(2) terminates, returning 2 to Factorial(3):

Behavior

Factorial(3) resumes, and computes its return-value:

Factorial(4)


```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
        return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

Factorial(3) terminates, returning 6 to Factorial(4):

```
Factorial(4)
\begin{tabular}{|r|r|}
\hline\(N\) & 4 \\
return & \(?\) \\
\hline
\end{tabular}
function Factorial (N : in Natural)
    return Positive is
```



```
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

Factorial(4) resumes, and computes its return-value:

```
Factorial(4)
```



```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```


Behavior

Factorial(4) terminates, returning 24 to its caller.

```
Factorial(4)
```

N	4
return	24

```
function Factorial (N : in Natural)
    return Positive is
    begin - factorial
        if N > 1 then
            return N * Factorial(N-1);
        else
            return 1;
        end if;
    end Factorial;
```

- If we time the for-loop version and the recursive version, the for-loop version will usually win, because the overhead of a function call is far more time-consuming than the time to execute a loop.
- However, there are problems where the recursive solution is more efficient than a corresponding loop-based solution.

For example the exponentiation problem:
Given two values x and n, compute x^{n}.
Example: $3^{3}==27$

Dual procedure recursion

- Sometimes have algorithms with multiple states
- Example:

$$
\begin{gathered}
\mathrm{p}(\mathrm{x})=\mathrm{p}(\mathrm{x}-1)+\mathrm{q}(\mathrm{x} / 2)\{\mathrm{x}>1\} \\
2 \\
\mathrm{q}(\mathrm{x})==1\} \\
\mathrm{q}(\mathrm{x}-3) * \mathrm{p}(\mathrm{x}-5) \\
\mathrm{x} / 3 \quad\{\mathrm{x}>3\} \\
\end{gathered} \quad\{\mathrm{x}<=3\}
$$

- This involves two recursive functions
- directly recursive:
- p calls itself
- q calls itself
- also indirectly recursive
- p calls q which call p again
- q calls p which call q again
- Ada requires that things must be declared before they can be used
- You cannot both define p before q and define q before p .
- must predefine one or both of the functions

Dual procedure recursion

```
-- first declare q, so p can refer to it
function q (x: in float) return float;
-- now define p. Full definition is possible
function p (x: in float) return float is
begin
    if (x<=1) then
        return 2;
    end if;
    return p(x-1) + q(x/2);
end p;
-- now provide full definition of q
function q(x: in float) return float is
begin
    if (x<=3) then
        return x/3;
    end if;
    return q(x-3) * p(x-5);
end q;
```


Merge sort

- Merge sort is a more efficient sorting algorithm than either selection sort or bubblesort
- Where bubblesort and select sort are $\mathbf{O}\left(\mathbf{n}^{2}\right)$, merge sort is $\mathbf{O}(\mathrm{n} \log \mathrm{n})$
- The basic ides is that if you know you have 2 sorted lists, you can combine them into a single large sorted list by just looking at the first item in each list. Whichever is smaller is moved to the single list being assembled. There is then a new first item in the list from which the item was moved, and the process repeats.
- The process overall is thus:
- Split the original list into two halves
- Sort each half (using merge sort)
- Merge the two sorted halves together into a single sorted list

Algorithm

- procedure mergesort(first,last,array)
mid= (first+last)/2
mergesort(first,mid,array)
mergesort (mid+1, last, array)
rejoin_two_halves(mid, array)
end mergesort

Code 1(3)

```
procedure main is
type int_array is array(1..100) of integer;
tosort:int_array;
procedure merge (a:in out int_array; low,mid,high:in integer) is
    temp: int_array;
    choose1: boolean;
    loop_low,loop_high:integer;
begin
    loop_low:=low;
    loop_high:=high;
    for i in low..high loop
        if (loop_low>mid) then choose1:=false;
        elsif (loop_high>high) then choose1:=true;
        else choose1:= a(loop_low)<a(loop_high);
        end if; -- choose which side
```


Code 2(3)

```
    if choose1 then -- choose from low side
    temp(i):=a(loop_low);
    loop_low:=loop_low+1;
    else
        temp(i):=a(loop_high); -- choose from high side
        loop_high:=loop_high+1;
    end if;
end loop;
a:=temp;
end merge;
```


Code 3(3)

```
procedure mergesort(a: in out int_array;low,high:integer) is
    mid:integer;
begin
    if low<high then
        mid:= (high+low)/2;
        mergesort(a,low,mid);
        mergesort(a,mid+1,high);
        merge(a, low,mid,high);
    end if;
end mergesort;
begin
-- something happens here to get the initial values of tosort
    -- then use mergesort to sort the array mergesort (tosort,1,100);
end main;
```


A Legend

Legend has it that there were three diamond needles set into the floor of the temple of Brahma in Hanoi.

Stacked upon the leftmost needle were 64 golden disks, each a different size, stacked in concentric order:

A Legend (Ct'd)

The priests were to transfer the disks from the first needle to the second needle, using the third as necessary.

But they could only move one disk at a time, and could never put a larger disk on top of a smaller one.
When they completed this task, the world would end!

To Illustrate

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

Since we can only move one disk at a time, we move the top disk from A to B.

Example

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

We then move the top disk from A to C .

Example (C $\mathrm{C}^{\prime} \mathrm{d}$)

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

We then move the top disk from B to C.

Example (Ct'd)

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

We then move the top disk from A to B .

Example (Ct'd)

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

We then move the top disk from C to A .

Example (C $\mathrm{C}^{\prime} \mathrm{d}$)

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

We then move the top disk from C to B .

Example (Ct'd)

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

We then move the top disk from A to B.

Example (Ct'd)

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...

and we're done!
The problem gets more difficult as the number of disks increases...

O ur Problem

Today's problem is to write a program that generates the instructions for the priests to follow in moving the disks.

While quite difficult to solve iteratively, this problem has a simple and elegant recursive solution.

Example

- Consider six disks instead of 64
- Suppose the problem is to move the stack of six disks from needle 1 to needle 2 .
- Part of the solution will be to move the bottom disk from needle 1 to needle 2 , as a single move.
- Before we can do that, we need to move the five disks on top of it out of the way.
- After we have moved the large disk, we then need to move the five disks back on top of it to complete the solution.

Example

- We have the following process:
- Move the top five disks to stack 3
- Move the disk on stack 1 to stack 2
- Move the disks on stack 3 to stack 2
- Notice that part of solving the six disk problem, is to solve the five disk problem (with a different destination needle). Here is where recursion comes in.

Algorithm

- hanoi(from,to, other, number)
-- move the top number disks
-- from stack from to stack to
if number=1 then
move the top disk from stack from to stack to else
hanoi (from, other,to, number-1)
hanoi (from,to,other, 1)
hanoi (other,to, from, number-1)
end

Ada Code

```
TOT_DISK: constant INTEGER:=64;
type int_array is array(1..TOT_DISK) of integer;
type towers is record
    num:integer:=0;
    disk:int_array;
end record;
type all_towers is array(1..3) of towers;
main_tower: all_towers;
```


Ada Code

```
procedure hanoi(from,to,other, number: in integer;
    tower : in out all_towers);
    disk_move: integer;
    disk_loc : integer;
begin
    if (number=1) then
        disk_loc:= tower(from).num;
        disk_mov:=tower(from).disk(disk_loc);
        tower(from).num:=tower(from).num-1;
        put("Moving disk "); put(disk_mov);
        put(" from tower "); put(from);
        put(" to tower "); put(to);
        new_line;
        tower(to).num:=tower(to).num+1;
        disk_loc:=tower(to).num;
        tower(to).disk(disk_loc):=disk_mov;
    else
        hanoi(from,other,to,number-1,tower);
        hanoi(from,to,other,1,tower);
        hanoi(other,to,from,number-1,tower);
    end if;
end hanoi;
```


Ada Code

```
procedure main is
begin
    for i in 1..TOT_DISK loop
main_tower(1).disks(i):=i;
    end loop;
    main_tower(1).num:=TOT_DISK;
    hanoi(1,2,3,TOT_DISK,main_tower);
end main;
```


Execution

- set TOT_DISK = 3
hanoi (1, 2, 3, 3, main_tower);
hanoi (1, 3, 2, 2) hanoi (1, 2, 3, 1) move tower 1 to tower 2 hanoi (1,3,2,1) move tower 1 to tower 3 hanoi $(2,3,1,1)$ move tower 2 to tower 3 hanoi (1,2,3,1) move tower 1 to tower 2 hanoi $(3,2,1,2)$ hanoi $(3,1,2,1)$ move tower 3 to tower 1 hanoi $(3,2,1,1)$ move tower 3 to tower 2 hanoi $(1,2,3,1)$ move tower 1 to tower 2

Analysis

Let's see how many moves it takes to solve this problem, as a function of n, the number of disks to be moved.

n	Number of disk-moves required
1	1
2	3
3	7
4	15
5	31
\ldots	2^{i-1}
i	$2^{64-1}(\mathrm{a}$ big number)

Analysis (Ct'd)

How big?
Suppose that our computer and "super-printer" can generate and print 1,048,576 (2^{20}) instructions/second.
How long will it take to print the priest's instructions?

- There are 2^{64} instructions to print.
- Then it will take $2^{64} / 2^{20}=2^{44}$ seconds to print them.
- 1 minute $==60$ seconds.
- Let's take $64=2^{6}$ as an approximation of 60.
- Then it will take $\cong 2^{44} / 2^{6}=2^{38}$ minutes to print them.

Analysis (Ct'd)

Hmm. 2^{38} minutes is hard to grasp. Let's keep going...

- 1 hour == 60 minutes.
- Let's take $64=2^{6}$ as an approximation of 60 .
- Then it will take $\cong 2^{38} / 2^{6}=2^{32}$ hours to print them.
- 1 day == 24 hours.
- Let's take $32=2^{5}$ as an approximation of 24 .
- Then it will take $\cong 2^{32} / 2^{5}=2^{27}$ days to print them.

Analysis (Ct'd)

Hmm. 2^{27} days is hard to grasp. Let's keep going...

- 1 year == 365 days.
- Let's take $512=2^{9}$ as an approximation of 365 .
- Then it will take $\cong 2^{27} / 2^{9}=2^{18}$ years to print them.
- 1 century == 100 years.
- Let's take $128=2^{7}$ as an approximation of 100 .
- Then it will take $\cong 2^{18} / 2^{7}=2^{11}$ centuries to print them.

Analysis (Ct'd)

Hmm. 2^{11} centuries is hard to grasp. Let's keep going...

- 1 millenium == 10 centuries.
- Let's take $16=2^{4}$ as an approximation of 10 .
- Then it will take $\cong 2^{11} / 2^{4}=2^{7}=128$ millenia just to print the priest's instructions (assuming our computer doesn't crash, in which case we have to start all over again).
How fast can the priests actually move the disks?
I'll leave it to you to calculate the data of the apocalypse...

