16.070
Introduction to Computers & Programming

Algorithms: Recurrence

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

‘Recurrence

= |If an algorithm contains a recursive call to itself, its
running time can often be described by arecurrence

= A recurrenceisan eguation or inequality that
describes afunction in terms of its value on smaller
INputs.

= Many natural functions are easily expressed as recurrences

= q,=3,+1; a=1 => g=n (linea)
=a,=a.,t2n-1; a=1 => a=r (polynomial)
" 3 =2a,; a=1 => a=2" (exponential)
=a=na,; a=1 => a-=n (others...)

‘Recurrence

= Recursion is Mathematical | nduction

= In both, we have general and boundary conditions,

with the general condition breaking the problem
Into smaller and smaller pieces.

= Theinitial or boundary condition terminate the
recursion.

‘Recurrence Equations

= A recurrence equation defines afunction, say T(n).
The function is defined recur sively, that is, the function T(.)
appear in its definition. (recall recursive function call).
The recurrence eguation should have a base case.

For example:
T(n) = . T(n-1)+T(n-2), If n>1
1, if n=1or n=0
e
base case

for convenience, we sometime write the recurrence equation as:
T(n) = T(n-1)+T(n-2)
TO)=T1)=1

= The expression:

| C n=1
'1:

O o
12T¢c-++cn n>1
1 e2g

IS arecurrence.

= Recurrence: an equation that describes a function in terms of its
value on smaller functions

Recurrence Examples

| 0 n=0
s(n) =i
ic+s(n-1) n>0

| 0 n=0
s(n) =i
in+s(n-1) n>0

Calculating Running-Time

Algorithm A minl(a[l],a[2],....aln]):
1.If n==1, return a[1]
2.m :=minl(al1],a2],...,a[n-1])
3.1fm > aln], returnaln], elsereturnm

= Now, let’s count the number of comparisons
= Let T(n) bethetotal number of comparisons (in step 1 and 3).

T(N=1+T(n-1) + L Tn)=n+1, ifn>1
T(1) =1,

— Calcufatimng Runnmg Time

s afa BFa a
|\

Algorithm B min2(al1],a[2],...,a[n]):
1. If n==1 retun theminimum of a[1];
2. Let ml:=min2(all], al 2], ., anl2]);
Let m2:=min2(a[n/2+1],aln/2+2],....,a[n]);
3. If ml>m2 return ml ese return m2

= Forn>2, T(n)=T(n/2)+ T(n/2) + 1},$ T(n) = 2
T(1)=1

= Tobeprecise, T(n)=T(en/20) + T(&v/20) + 1,
but for convenient, we ignore the “ceiling” and “floor”
and assume n Is apower of 2.

T(n) =2*T(n/2) + 1,

T =1 < —_ Base case;
Initial condition.

T(n) =T(n-1) +n, Selection Sort

T(1) = 1.

T(n) =2*T(n/2) +n, Merge Sort
T(1) = 1.

T(n) = T(n/2) + 1, Binary search
T(1) = 0.

We can use mathematical induction to prove that a general

function solves for a recursive one. Guess a solution and prove
It by induction.

T,=2T.,+1; T,=0

[
o

2 3 4 5 6 7 8
T =0 1 3 7 15 31 63

Guess what the solution 1S?
T,=2"-1

Prove: T,=2"-1 Dby induction:

1. Show the base caseistrue: T,=2-1=0
2. Now assumetruefor T, ,

3. Substitutein T, ; inrecurrence for T,

T, = 2T ,+1
2(21-1)+1
2n-1

“Solving Recurrences

There are 3 general methods for solving recurrences

1. Substitution: * Guess & Verify”: guess a solution
and verify it is correct with an inductive proof

2. lteration: “ Convert to Summation”: convert the
recurrence into asummation (by expanding some
terms) and then bound the summation

3. Apply “Master Theorem”: If the recurrence has the
form

T(n) =aT (n/b) +f(n)
then there is aformulathat can (often) be applied.

Recurrence formulas are notorioudly difficult to derive,
but easy to prove valid once you have them

= There aretwo simplicationswe apply that won't
affect asymptotic analysis
= ignore floors and cellings

= assume base cases are constant, i.e., T(n) = Q(1) for n
small enough

This method involves guessing form of solution

use mathematical induction to find the constants
and verify solution

use to find an upper or alower bound (do both to
obtain atight bound)

Solve: T(n) = 2T (a/20) + n
= Guess. T(n) =0O(nlgn),thatis. T(n) £cnlign
= Prove:
= Base case: assume constant size inputs take const time

= T(n)Ecnlgn for achoice of constant c> 0

= Assume that the bound holds for en/2q, that is,
that T(en/20) £ ¢ en/2a1g(en/20)
Substituting into the recurrence yields:
T(Nn) £ 2(can/2alg (en/20) + n
£ cnlg(n/2) +n
=cnlgn—-cnig2+n

=cnlgn-cn+n Where last step
holds as long as
£cnlgn cs 1

Example: T(n) = 4T(n/2) + n (upper bound)
guess T(n) = O(n?) and try to show T(n) < cn3for some
c >0 (we'lll haveto find c)
basis ?
assume T(k) < ck3for k < n, and prove T(n) < cn?
T(n) =4T(n/2) + n
<4(c(n/2)3+n
=c/2n+n
=cn3 -(c/2r - n)
<cm
wherethelast step holdsif c>2andn>1
We find values of ¢ and ny by determining when ¢/2n®- n> 0

= Guess the form of the answer, then use induction to find
the constants and show that solution works

= Examples:
= T(n) =2T(n/2) + Q(N) > T(nN)=Q(nlgn)
= T(n) = 2T(é&n/20) + n > ?77?

‘ S0IVIng Recurrences by Guessing (243)

= Guess the form of the answer, then use induction to find
the constants and show that solution works

= Examples:
= T(n) =2T(n/2) + Q(n) - T(n) =Q(nlgn)
= T(n) = 2T(én/20) + n - T(n) =Q(nlgn)

= T(N) = 2T(EV20+ 17) +n > 272

‘ S0IVINg Recurrences by Guessing (SZ£3)

= Guess the form of the answer, then use induction to find
the constants and show that solution works

= Examples:
= T(n) = 2T(n/2) + Q(n) 2 T(n) =Q(nlgn)
= T(n) =2T(é&/20) + n - T(n) =Q(nlgn)

= T(n) = 2T(én/20+ 17) + n - Q(nlign)

- Recursion-Trees

= Although the substitution method can provide a
succinct proof that a solution to arecurrenceis

correct, it is sometimes difficult to come up with a
good guess.

= Drawing out arecursion-tree is a good way to
devise a good guess.

TN)=2T(n/2)+r?, T(1) =1

/TK /2\

T(n/4) Tm/A4) Tm/A4) T(n/4) (n/4)? (/4% (n/d)? (n/4)?

/NN /NN AWANWA

= Expand the recurrence

= Work some algebrato express as a
summation

= Evauate the summation
= We will show several examples

= §(n) =
c +s(n-1)
c + c+ s(n-2)
2C + s(n-2)
2C + ¢ + S(n-3)
3c + s(n-3)

kc + s(n-k) = ck + s(n-k)

= Sofar for n >= k we have
= 5(n) = ck + s(n-k)

= What if k =n?
= 5(n)=cn+3(0) =cn

= Sofar for n >=k we have
= 5(n) = ck + s(n-k)

= What if k =n?
= 5(n) =cn+ g0) =cn
= 30
| 0 n=0
s(n) =1
I

c+s(n-1) n>0

= Thusin general
= 5(n) =cn

" s(n)

n+ s(n-1)

= n+nl+gsn2
n+nl+n2+sn-3)
n+nl+n2+n3+s(n4)

n+nl+n2+n3+...+n(k-1) + s(nk)

=)

n+ s(n-1)

= n+nl+s(n2)
n+nl+n2+s(n-3)
n+nl+n2+n3+s(n4)

n+nl+n2+n3+...+n(k-1) + s(nk)

éni + s(n- k)

I=n- k+1

= Sofar for n >= k we have

éi + s(n- k)

I=n- k+1

= Sofar for n >= k we have

n
Qi + s(n-k)
I=n- k+1
= What if k =n?

= Sofar for n >= k we have

Qi + s(n-k)
I=n- k+1

= What if k = n?
. - +1
é|+s(0):é|+02nn—
=1 i=1 2

= Sofar for n >= k we have

i + s(n- k)

I=n- k+1

= What if k =n?

n n 4
éi+s(0):éi+02nn—1
=1 i=1 2

* Thusin generd n+1

s(n) = nT

n T(n) =
2T(n/2) + ¢
2(2T(n/2/2) + c) + ¢
2°T(n/22) + 2c+C
2°(2T(n/22/12) + ¢) + 3c
23T(n/23) + 4¢c + 3c
23T(n/23) + 7c
23(2T(n/23/2) + ¢) + 7c
24T(n/24) + 15¢

AT(V29) + (2% - 1)c

= Sofar for n> 2k we have
= T(n) = 2kT(n/2¥) + (2k - 1)c

= What if k =Ign?
= T(n) =29 T(n/2le") + (29" - 1)c
=nT(M/n)+(n-1)c
=nT(1) + (n-1)c
=nc+ (nrl)c=(2n-1)c

T(n) =

N\
l‘l
7

cal
1

C n=1

o
<D

5
-+cn n>1

%}

i. C n=1

SRT() =10 cn n>188
T ebg
= T(n) =
aT(n/b) + cn
a(aT(n/b/b) + cn/b) + cn
&T(n/b?) + cna/b + cn
&T(n/b?) + cn(alb + 1)

a(ar(n/b?b) + cn/b?) + cn(alb + 1)
aT(n/b%) + cn(a?/b?) + cn(alb + 1)
aT(n/b3) + cn(a?/b? + alb + 1)

aT(n/bY) + cn(@/bkt + a?/bk2 + ... + &/b?+ab+ 1)

i. C n=1

SRT() =10 cn n>188

t ébg

= Sowe have
= T(n) = &T(n/b¥) + cn(aYbk1+ ... + &/b?2+ alb + 1)
= Fork=log,n
= n=hk
= T(n) =&T(1) +cn(aybki+ ... +a&/b?+ab+1)
= dc+on(at/bt+ .+ &b+ alb + 1)
= ca+ en(at/bkt+ .+ &b+ alb + 1)
= cna/b* + ecn(a<t/bi+ ... + &/b?+alb + 1)
=cn(a/b+ ... + &/b>+ alb + 1)

i. C n=1

T =1ar® % cn n>188

t ébg

= Sowithk =log,n
= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)
= What if a=b?
= T(n) =cn(k + 1)
=cn(log, n + 1)
=Q(nlogn)

i_ C n=1

T(n)= _|aT§19+Cn n>18=

1 ebg

= Sowithk =log,n
= T(n) =cn(ak/bk+ ... + &/b?+ alb + 1)
= What if a< b?

i. C n=1

T =1ar®%cn n>1

t ébg

= Sowithk =log,n
= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)
= What if a< b?
= Recall that S(xk + xk1 + .. +x+ 1) = (xk+1-1)/(x-1)

So withk =log,n

= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)

What If a< b?

= Recall that S (xk + xk1+ ..

+x +1) = (x1-1)/(x-1)

= Sowithk =log,n
= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)

= What if a< b?
= Recall that S(xk + xk1+ .. +x + 1) = (X1 -1)/(x-1)
= 30:
a: +a||:-1 +.“+§+1 _ (a/b)k+1 -1 _ 1- (a/b)k+1 . 1
b* b*! b (a/b)- 1 1- (a/b) 1- a/b

" T(n) =cn-Q(1) = Q(n)
o semisem—eelclses—kesde |

i_ C n=1

T(n)= _|aT§19+Cn n>18=

1 ebg

= Sowith k =log, n
= T(n) =cn(ak/bk+ ... + &/b?+ alb + 1)
= What if a> b?

i_ C n=1

! T(n)z_l'_aT?_]9+cn n>18

1 ebg

= Sowith k =log, n
= T(n) =cn(ak/bk+ ... + &/b?+ alb + 1)

= What iIf a> Db?
oK gkl . a ~ (a/b)k+1 -1 K
T A R Qi)

i_ C n=1

! T(n)z_l'_aT?_]9+cn n>18

1 ebg

= Sowith k =log, n
= T(n) =cn(ak/bk+ ... + &/b?+ alb + 1)

= What iIf a> Db?
oK gkl . a ~ (a/b)k+1 -1 K
T A R Qi)

= T(n) =cn- Qa/b¥

i. C n=1

SRT() =10 cn n>188

t ébg

= Sowith k =log, n
= T(n) =cn(ak/bk+ ... + &/b?+ alb + 1)

= What if a> b?
L . a ~ (a/b)k+1 1 .
R Y))

= T(n) =cn- Q(a/b¥
=Ccn - Q(ac9n/ bleen) =cn - Q(a@°s"/ n)

im‘) argl Sren n>1:

= Sowith k =log, n
= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)

= What iIf a>b?
ak ak-l E ~ (a/b)k+1 _)
R AN e

= T(n)=cn-Qa/h
=Cn- Q(dogn/ blogn) =cCcn- Q(alogn/ n)
recall logarithmfact: al°9" = nlcga

i. C n=1

N T(n)z.".aTéam;9+cn n>18=

t ébg

= Sowith k =log, n
= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)

= What if a> b?
a* at a . _ (ab)t-1 _ k
b +bk-1 +.--+ b+1 = (a/b)- T T Q((a/b))

E T(n) =cn - Q(ak/ bX

= cN - Q(@®n/ beer) = en - Q(a*" /)
recall logarithmfact: al°9" = nlcga
=Cch- Q(nloga/ n) — Q(Cn . nloga/ n)

iﬂn) 'aT ——+Cn n>1:

= Sowith k =log, n
= T(n) =cn(a/bk+ ... + &/b2+ alb + 1)

= What if a> b?
a* at a . _ (ab)t-1 _ k
b +bk-1 +.--+ b+1 = (a/b)- T T Q((a/b))

B T(n) =cn - Q(ak/ bX
=Ch- Q(alogn/ blogn) =cn - Q(alogn/ n)
recall logarithmfact: al°9" = nlcga
=cnh- Q(nloga/ n) — Q(Cn . nloga/ n)

= Q(nlog a)
o oanioms ol edeomie

C n=1
wo
G

" X0...
i Q(n) a<b
T(n) =1 Q(nlog, n) =b
0 Qn'°9ba) a>b

" The Master Method ‘

* Provides a“cookbook” method for solving
recurrences of the form

* T(n)=aTl(n/b) +f(n), wherea® 1landb>1are
constants and f(n) is an asymptotically positive
function.

* The Master method requires memorization of three
cases, but then the solution of many recurrences can be
determined quite easily, often without pencil and paper.

= The Master Method ‘

= Glven: adivide and conguer algorithm

= An algorithm that divides the problem of sizeninto a
subproblems, each of size n/b

= et the cost of each stage (i.e., the work to divide the
problem + combine solved subproblems) be described
by the function f(n)

= Then, the Master Method gives us a cookbook for
the algorithm’ s running time:

= Master Theorem: Let a> 1 and b >1 be constants, et f(n)
be a function,and let T(n) be defined on nonnegative
Integers as.

T(n) = aT(n/b) + f(n),

Then, T(n) can be bounded asymptotilcally as follows:

1. TM)=QM™") 5 f(n)=QM"**") for some
constant e >0 0.2

2. T(n) = Q("***logn) |f T(n) =Q(N™")

3. T(n) = Qf(n)) If f(N) =WN"**°) for some constant e
>0 and if af(n/b) < cf(n) for some constant ¢ <1 and all
suciently large n.

= if '{(n) =arl(n/b) + f(n) then

! .

: Q(nlogba) f (n) — O(nlogba-e) :

'|' i
T(n)= I Q(n™21ogn) f(n) = Qn'»?) ;,e >0

! I

: (f (n)) f (n) — V\'(nlogba+e)AND :

i af (n/b) <cf (n) for largen

Intuition: compare f(n) with Q(n°%*?*)

= case 1: f(n) is “polynomially smaller than’ Q(n'°*?)
= case 2: f(n) is ‘asymptotically equal to’ Q(n"%?)
= case 3: f(n) is polynomially larger than" Q(n'%?2)

BGeneral Case for Master Theorem

= In general (Master Theorem, CLR, p.62), T(1) =d,
and for n >1,

T(n) =aT(n/b) +cn
has solution
If a<b, T(n) =0O(n);
If a=b, T(n) =0O(nlog n);
if a>b, T(n) = O(n°%?)

Example: T(n) =9T(n/3) +n

= a=9b=3f(n)=n, n°%*=n"%%=pn?

= comparef(n) =nwith ~ n°** =n’

* n=0(n%®) (f(n) is polynomially smaller than n°%*)
= casel applies:

T(n) = Q(n***) = Q(n)

— Case' Il

Example: T(n) =T(2n/3) +1
= a=1,b=3/2,f(n) =1n"** =n***" =n’ =1
= comparef(n) =1 with n°*? =1
= 1=0(1) (f(n) isasymptotically equal to n
= case 2 applies.

T(n) = Q(n***logn) = Q(logn)

log,, a

~— Case 111

Example: T(n) =3T(n/4) +nlog n
= a=3,b=4,1(n)=nlogn,

= comparef(n) =nlognwith N
= nlogn = WN®"*¢) f(n) is polynomially larger than n

log,a _ .log,3 _ ..0.793
ngb =N J4 =N

log,, a 0.793

=N

logy, a

= case 3 might apply: need to check regularity' of f(n)
= find c<1st. af(n/b) < cf(n) for large enough n

3N N
. e Zlogz£cnlogn Which is true for ¢ = %

= case 3 applies: T(n) = Q(f(n)) = Q(n log n)
o oanioms ol edeomie

