16.070

Introduction to Computers & Programming

Algorithms: Recurrence

Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT

Recurrence

- If an algorithm contains a **recursive** call to itself, its running time can often be described by a **recurrence**
- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
 - Many natural functions are easily expressed as recurrences

■
$$a_n = a_{n-1} + 1;$$
 $a_1 = 1 => a_n = n$ (linear)

■ $a_n = a_{n-1} + 2n - 1;$ $a_1 = 1 => a_n = n^2$ (polynomial)

■ $a_n = 2a_{n-1};$ $a_1 = 1 => a_n = 2^n$ (exponential)

■ $a_n = n \ a_{n-1};$ $a_1 = 1 => a_n = n!$ (others...)

Recurrence

- Recursion is Mathematical Induction
- In both, we have general and boundary conditions, with the general condition breaking the problem into smaller and smaller pieces.
- The *initial* or **boundary** condition terminate the recursion.

Recurrence Equations

A recurrence equation defines a function, say **T**(**n**). The function is defined **recursively**, that is, the function **T**(.) appear in its definition. (recall recursive function call). The recurrence equation should have a **base case**.

For example:

base case

$$T(n) = \begin{cases} T(n-1)+T(n-2), & \text{if } n>1\\ 1, & \text{if } n=1 \text{ or } n=0 \end{cases}$$

for *convenience*, we sometime write the recurrence equation as:

$$T(n) = T(n-1)+T(n-2)$$

 $T(0) = T(1) = 1$

Recurrences

The expression:

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + cn & n > 1 \end{cases}$$

is a recurrence.

 Recurrence: an equation that describes a function in terms of its value on smaller functions

Recurrence Examples

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

$$s(n) = \begin{cases} 0 & n = 0 \\ n + s(n-1) & n > 0 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

Calculating Running Time Through Recurrence Equation (1/2)

Algorithm A min1(a[1],a[2],...,a[n]):

- 1. If n == 1, return a[1]
- 2. $m := \min\{(a[1], a[2], ..., a[n-1])\}$
- 3. If m > a[n], return a[n], else return m
- Now, let's count the number of comparisons
- Let T(n) be the total number of comparisons (in step 1 and 3).

$$T(n) = 1 + T(n-1) + 1;$$

 $T(1) = 1;$
 $T(n) = n + 1, \text{ if } n > 1$

Calculating Running Time Through Recurrence Equation (2/2)

Algorithm B $\min 2(a[1], a[2], ..., a[n])$:

- 1. If n == 1 return the minimum of a[1];
- 2. Let $m1 := \min 2(a[1], a[2], ..., a[n/2]);$ Let $m2 := \min 2(a[n/2+1], a[n/2+2], ..., a[n]);$
- 3. If m1 > m2 return m1 else return m2
- For n>2, T(n) = T(n/2) + T(n/2) + 1, T(n) = ?T(1)=1
- To be precise, $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$, but for convenient, we ignore the "ceiling" and "floor" and assume n is a power of 2.

More Recurrence equations

$$T(n) = 2 * T(n/2) + 1,$$

 $T(1) = 1.$ Base case;
initial condition.

$$T(n) = T(n-1) + n,$$

 $T(1) = 1.$ Selection Sort

$$T(n) = 2* T(n/2) + n,$$
 Merge Sort $T(1) = 1.$

$$T(n) = T(n/2) + 1$$
, Binary search $T(1) = 0$.

Solve a recurrence relation

We can use mathematical induction to prove that a general function solves for a recursive one. Guess a solution and prove it by induction.

$$T_n = 2T_{n-1} + 1$$
; $T_0 = 0$

$$n = 0$$
 1 2 3 4 5 6 7 8
 $T_n = 0$ 1 3 7 15 31 63 ...

Guess what the solution is?

$$T_n = 2^n - 1$$

Solve a recurrence relation

Prove: $T_n = 2^n - 1$ by induction:

- 1. Show the base case is true: $T_0 = 2^0 1 = 0$
- 2. Now assume true for T_{n-1}
- 3. **Substitute** in T_{n-1} in recurrence for T_n

$$T_n = 2T_{n-1} + 1$$

$$= 2(2^{n-1} - 1) + 1$$

$$= 2^n - 1$$

Solving Recurrences

There are 3 general methods for solving recurrences

- 1. Substitution: "Guess & Verify": guess a solution and verify it is correct with an inductive proof
- 2. Iteration: "Convert to Summation": convert the recurrence into a **summation** (by expanding some terms) and then bound the summation
- 3. Apply "Master Theorem": if the recurrence has the form

$$T(n) = aT(n/b) + f(n)$$

then there is a formula that can (often) be applied.

Recurrence formulas are notoriously **difficult to derive**, but **easy to prove valid** once you have them

Simplications

- There are two simplications we apply that won't affect asymptotic analysis
 - ignore floors and ceilings
 - assume base cases are constant, i.e., $T(n) = \Theta(1)$ for n small enough

Solving Recurrences: Substitution

- This method involves guessing form of solution
- use mathematical induction to find the constants and verify solution
- use to find an upper or a lower bound (do both to obtain a tight bound)

The Substitution method

Solve:
$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

- Guess: $T(n) = O(n \lg n)$, that is: $T(n) \le cn \lg n$
- Prove:
 - Base case: assume constant size inputs take const time
 - $T(n) \le cn \lg n$ for a choice of constant c > 0
- Assume that the bound holds for $\lfloor n/2 \rfloor$, that is, that $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$ Substituting into the recurrence yields:

$$T(n) \leq 2(c \lfloor n/2 \rfloor \lg (\lfloor n/2 \rfloor)) + n$$

$$\leq cn \lg(n/2) + n$$

$$= cn \lg n - cn \lg 2 + n$$

$$= cn \lg n - cn + n$$

$$\leq cn \lg n$$

Where last step holds as long as c 3 1

Example

```
Example: T(n) = 4T(n/2) + n (upper bound)
   guess T(n) = O(n^3) and try to show T(n) \le cn^3 for some
   c > 0 (we'll have to find c)
basis?
   assume T(k) \le ck^3 for k < n, and prove T(n) \le cn^3
  T(n) = 4T(n/2) + n
        \leq 4(c(n/2)^3 + n
        = c/2n^3 + n
        = cn^3 - (c/2n^3 - n)
        < cn^3
where the last step holds if c > 2 and n > 1
```

We find values of c and n_0 by determining when $c/2n^3 - n \ge 0$

Solving Recurrences by Guessing (1/3)

- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:

■
$$T(n) = 2T(n/2) + \Theta(n)$$
 \rightarrow $T(n) = \Theta(n \lg n)$

■
$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$
 \rightarrow ???

Solving Recurrences by Guessing (2/3)

- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:

■
$$T(n) = 2T(n/2) + \Theta(n)$$
 \rightarrow $T(n) = \Theta(n \lg n)$
■ $T(n) = 2T(\lfloor n/2 \rfloor) + n$ \rightarrow $T(n) = \Theta(n \lg n)$
■ $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ \rightarrow ???

Solving Recurrences by Guessing (3/3)

- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:

■
$$T(n) = 2T(n/2) + \Theta(n)$$
 \rightarrow $T(n) = \Theta(n \lg n)$
■ $T(n) = 2T(\lfloor n/2 \rfloor) + n$ \rightarrow $T(n) = \Theta(n \lg n)$
■ $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ \rightarrow $\Theta(n \lg n)$

Recursion-Trees

- Although the substitution method can provide a succinct proof that a solution to a recurrence is correct, it is sometimes difficult to come up with a good guess.
- Drawing out a recursion-tree is a good way to devise a good guess.

Recursion Trees

$$T(n) = 2 T(n/2) + n^2, T(1) = 1$$

Solving Recurrences: Iteration

- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation
- We will show several examples

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

$$s(n) = c + s(n-1)$$

$$c + c + s(n-2)$$

$$2c + s(n-2)$$

$$2c + c + s(n-3)$$

$$3c + s(n-3)$$
...
$$kc + s(n-k) = ck + s(n-k)$$

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

- So far for $\mathbf{n} >= \mathbf{k}$ we have
 - s(n) = ck + s(n-k)

- What if $\mathbf{k} = \mathbf{n}$?
 - s(n) = cn + s(0) = cn

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

- So far for $n \ge k$ we have
 - s(n) = ck + s(n-k)
- What if k = n?
 - s(n) = cn + s(0) = cn
- So

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

- Thus in general
 - s(n) = cn

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

•
$$s(n)$$

= $n + s(n-1)$
= $n + n-1 + s(n-2)$
= $n + n-1 + n-2 + s(n-3)$
= $n + n-1 + n-2 + n-3 + s(n-4)$
= ...
= $n + n-1 + n-2 + n-3 + ... + n-(k-1) + s(n-k)$

$$s(n) = \begin{cases} 0 & n = 0 \\ n + s(n-1) & n > 0 \end{cases}$$

•
$$s(n)$$

= $n + s(n-1)$
= $n + n-1 + s(n-2)$
= $n + n-1 + n-2 + s(n-3)$
= $n + n-1 + n-2 + n-3 + s(n-4)$
= ...
= $n + n-1 + n-2 + n-3 + ... + n-(k-1) + s(n-k)$
= $\sum_{i=n-k+1}^{n} i + s(n-k)$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

• So far for $n \ge k$ we have

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

So far for $n \ge k$ we have

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

• What if k = n?

$$s(n) = \begin{cases} 0 & n = 0 \\ n + s(n-1) & n > 0 \end{cases}$$

• So far for $n \ge k$ we have

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

• What if k = n?

$$\sum_{i=1}^{n} i + s(0) = \sum_{i=1}^{n} i + 0 = n \frac{n+1}{2}$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

• So far for $n \ge k$ we have

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

• What if k = n?

$$\sum_{i=1}^{n} i + s(0) = \sum_{i=1}^{n} i + 0 = n \frac{n+1}{2}$$

Thus in general
$$s(n) = n \frac{n+1}{2}$$

$$T(n) = \begin{cases} c & n=1\\ 2T\left(\frac{n}{2}\right) + c & n>1 \end{cases}$$

T(n) =

$$2T(n/2) + c$$

 $2(2T(n/2/2) + c) + c$
 $2^2T(n/2^2) + 2c + c$
 $2^2(2T(n/2^2/2) + c) + 3c$
 $2^3T(n/2^3) + 4c + 3c$
 $2^3T(n/2^3) + 7c$
 $2^3(2T(n/2^3/2) + c) + 7c$
 $2^4T(n/2^4) + 15c$
...
 $2^kT(n/2^k) + (2^k - 1)c$

$$T(n) = \begin{cases} c & n=1\\ 2T\left(\frac{n}{2}\right) + c & n>1 \end{cases}$$

- So far for n > 2k we have
 - $T(n) = 2^k T(n/2^k) + (2^k 1)c$
- What if $k = \lg n$?

■
$$T(n) = 2^{\lg n} T(n/2^{\lg n}) + (2^{\lg n} - 1)c$$

= $n T(n/n) + (n - 1)c$
= $n T(1) + (n-1)c$
= $n C + (n-1)c = (2n - 1)c$

Solving Recurrences: Iteration

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

T(n) =
$$aT(n/b) + cn$$

$$a(aT(n/b/b) + cn/b) + cn$$

$$a^{2}T(n/b^{2}) + cna/b + cn$$

$$a^{2}T(n/b^{2}) + cn(a/b + 1)$$

$$a^{2}(aT(n/b^{2}/b) + cn/b^{2}) + cn(a/b + 1)$$

$$a^{3}T(n/b^{3}) + cn(a^{2}/b^{2}) + cn(a/b + 1)$$

$$a^{3}T(n/b^{3}) + cn(a^{2}/b^{2} + a/b + 1)$$
...
$$a^{k}T(n/b^{k}) + cn(a^{k-1}/b^{k-1} + a^{k-2}/b^{k-2} + ... + a^{2}/b^{2} + a/b + 1)$$

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So we have
 - $T(n) = a^{k}T(n/b^{k}) + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$
- For $k = \log_b n$
 - $n = b^k$

$$T(n) = a^{k}T(1) + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= a^{k}c + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= ca^{k} + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= cna^{k}/b^{k} + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= cn(a^{k}/b^{k} + ... + a^{2}/b^{2} + a/b + 1)$$

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a = b?
 - T(n) = $\operatorname{cn}(k+1)$ = $\operatorname{cn}(\log_b n + 1)$ = $\Theta(n \log n)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - T(n) = $cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
 - Recall that $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
 - Recall that $\sum (x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$
 - So:

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \frac{1 - (a/b)^{k+1}}{1 - (a/b)} < \frac{1}{1 - a/b}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
 - Recall that $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$
 - So:

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \frac{1 - (a/b)^{k+1}}{1 - (a/b)} < \frac{1}{1 - a/b}$$

■
$$T(n) = cn \cdot \Theta(1) = \Theta(n)$$

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - T(n) = $cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$T(n) = cn \cdot \Theta(a^k / b^k)$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$T(n) = cn \cdot \Theta(a^k / b^k)$$

$$= cn \cdot \Theta(a^{\log n} / b^{\log n}) = cn \cdot \Theta(a^{\log n} / n)$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

■
$$T(n) = cn \cdot \Theta(a^k / b^k)$$

= $cn \cdot \Theta(a^{\log n} / b^{\log n}) = cn \cdot \Theta(a^{\log n} / n)$
recall logarithm fact: $a^{\log n} = n^{\log a}$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

■
$$T(n) = cn \cdot \Theta(a^k / b^k)$$

$$= cn \cdot \Theta(a^{\log n} / b^{\log n}) = cn \cdot \Theta(a^{\log n} / n)$$

$$= cn \cdot \Theta(a^{\log n} / b^{\log n}) = cn \cdot \Theta(a^{\log n} / n)$$

$$= cn \cdot \Theta(n^{\log a} / n) = \Theta(cn \cdot n^{\log a} / n)$$

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with $k = \log_b n$
 - $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$$

$$\begin{split} & \quad T(n) = cn \cdot \Theta(a^k \, / \, b^k) \\ & = cn \cdot \Theta(a^{\log n} \, / \, b^{\log n}) = cn \cdot \Theta(a^{\log n} \, / \, n) \\ & \quad \mathit{recall logarithm fact: } a^{\log n} = n^{\log a} \\ & = cn \cdot \Theta(n^{\log a} \, / \, n) = \Theta(cn \cdot n^{\log a} \, / \, n) \\ & = \Theta(n^{\log a}) \end{split}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So...

$$T(n) = \begin{cases} \Theta(n) & a < b \\ \Theta(n \log_b n) & a = b \\ \Theta(n^{\log_b a}) & a > b \end{cases}$$

The Master Method

- Provides a "cookbook" method for solving recurrences of the form
 - T(n) = aT(n/b) + f(n), where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function.
 - The Master method requires memorization of three cases, but then the solution of many recurrences can be determined quite easily, often without pencil and paper.

The Master Method

- Given: a *divide and conquer* algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Method gives us a cookbook for the algorithm's running time:

Solving Recurrences: The Master Method

Master Theorem: Let a > 1 and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers as:

$$T(n) = aT(n/b) + f(n),$$

Then, T(n) can be bounded asymptotically as follows:

1.
$$T(n) = \Theta(n^{\log_b a})$$
 If $f(n) = \Theta(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$

2.
$$T(n) = \Theta(n^{\log_b a} \log n)$$
 If $f(n) = \Theta(n^{\log_b a})$

3. $T(n) = \Theta(f(n))$ If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some constant c < 1 and all succently large n.

The Master Theorem

if
$$T(n) = aT(n/b) + f(n)$$
 then
$$\Theta(n^{\log_b a}) \qquad f(n) = O(n^{\log_b a - e})$$

$$\Theta(n^{\log_b a} \log n) \qquad f(n) = \Theta(n^{\log_b a})$$

$$O(f(n)) \qquad f(n) = \Omega(n^{\log_b a + e}) \text{AND}$$

$$af(n/b) < cf(n) \text{ for large } n$$

Solving Recurrences: The Master Method (cont.)

Intuition: compare f(n) with $\Theta(n^{\log_b a})$

- case 1: f(n) is `polynomially smaller than' Θ(n^{log₀ a})
- case 2: f(n) is `asymptotically equal to' $\Theta(n^{\log_b a})$
- case 3: f(n) is 'polynomially larger than' $\Theta(n^{\log_b a})$

General Case for Master Theorem

■ In general (Master Theorem, CLR, p.62), T(1) = d, and for n >1,

$$T(n) = aT(n/b) + cn$$

has solution

if a T(n) = O(n);
if a = b,
$$T(n) = O(n \log n)$$
;
if a >b, $T(n) = O(n^{\log_b a})$

Case I

Example: T(n) = 9T(n/3) + n

- a = 9,b = 3,f(n) = n, $n^{\log_b a} = n^{\log_3 9} = n^2$
- compare f(n) = n with $n^{\log_b a} = n^2$
- $n = O(n^{2-e})$ (f(n) is polynomially smaller than $n^{\log_b a}$)
- case 1 applies:

$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^{\log_{\mathsf{b}} \mathsf{a}}) = \Theta(\mathsf{n}^2)$$

Case II

Example: T(n) = T(2n/3) + 1

- $a = 1, b = 3/2, f(n) = 1, n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$
- compare f(n) = 1 with $n^{\log_b a} = 1$
- $1 = \Theta(1)$ (f(n) is asymptotically equal to $n^{\log_b a}$
- case 2 applies:

$$T(n) = \Theta(n^{\log_b a} \log n) = \Theta(\log n)$$

Case III

Example: $T(n) = 3T(n/4) + n \log n$

$$a = 3, b = 4, f(n) = n \log n,$$
 $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$

- compare $f(n) = n \log n$ with $n^{\log_b a} = n^{0.793}$
- $nlogn = \Omega(n^{0.793-\epsilon})$ f(n) is polynomially larger than $n^{log_b a}$
- case 3 might apply: need to check `regularity' of f(n)
 - find c < 1 s.t. $af(n/b) \le cf(n)$ for large enough n

• ie.
$$\frac{3n}{4} \log \frac{n}{4} \le \text{cnlogn}$$
 Which is true for $c = \frac{3}{4}$

• case 3 applies: $T(n) = \Theta(f(n)) = \Theta(n \log n)$