16.070
 Introduction to Computers \& Programming

Algorithms: Recurrence

Prof. Kristina Lundqvist
Dept. of Aero/Astro, $\mathcal{M I T}$

Recurrence

- If an algorithm contains a recursive call to itself, its running time can often be described by a recurrence
- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- Many natural functions are easily expressed as recurrences
- $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+1$;
$\mathrm{a}_{1}=1 \quad \Rightarrow \quad \mathrm{a}_{\mathrm{n}}=\mathrm{n}$
(linear)
- $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+2 \mathrm{n}-1$;
$\mathrm{a}_{1}=1 \quad \Rightarrow \quad \mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}$
(polynomial)
- $\mathrm{a}_{\mathrm{n}}=2 \mathrm{a}_{\mathrm{n}-1}$;
$a_{1}=1 \quad \Rightarrow \quad a_{n}=2^{n}$
(exponential)
- $\mathrm{a}_{\mathrm{n}}=\mathrm{na} \mathrm{a}_{\mathrm{n}-1}$;
$\mathrm{a}_{1}=1 \quad \Rightarrow \quad \mathrm{a}_{\mathrm{n}}=\mathrm{n}!\quad$ (others...)

Recurrence

- Recursion is Mathematical Induction

- In both, we have general and boundary conditions, with the general condition breaking the problem into smaller and smaller pieces.
- The initial or boundary condition terminate the recursion.

Recurrence Equations

- A recurrence equation defines a function, say $\mathbf{T}(\mathbf{n})$. The function is defined recursively, that is, the function $T($. appear in its definition. (recall recursive function call). The recurrence equation should have a base case.

For example:

base case
for convenience, we sometime write the recurrence equation as:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2) \\
& \mathrm{T}(0)=\mathrm{T}(1)=1
\end{aligned}
$$

Recurrences

- The expression:
$T(n)=\left\{\begin{array}{cc}c & n=1 \\ 2 T\left(\frac{n}{2}\right)+c n & n>1\end{array}\right.$
is a recurrence.
- Recurrence: an equation that describes a function in terms of its value on smaller functions

Recurrence Examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

Calculating Running Time

Throuch Recurrence Foruation (1/2)

Algorithm $\mathrm{A} \min 1(a[1], a[2], \ldots, a[n])$:

1. If $\mathrm{n}==1$, return $a[1]$
2. $m:=\min \mathbf{1}(a[1], a[2], \ldots, a[n-1])$
3. If $m>a[n]$, return $a[n]$, else return m

- Now, let's count the number of comparisons
- Let $T(n)$ be the total number of comparisons (in step 1 and 3).

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=1+\mathrm{T}(\mathrm{n}-1)+1 ; \\
& \mathrm{T}(1)=1 ;
\end{aligned}
$$

$$
T(n)=n+1, \quad \text { if } n>1
$$

Calculating Running Time

Thmouch Recurmence Fomation (21 2)

Algorithm $\mathrm{B} \min 2(a[1], a[2], \ldots, a[n])$:

1. If $n==1$ return the minimum of $a[1]$;
2. Let $\mathrm{m} 1:=\min 2(a[1], \quad a[2], \quad \ldots, a[n / 2])$;

Let $\mathrm{m} 2:=\boldsymbol{\operatorname { m i n }} 2(a[n / 2+1], a[n / 2+2], \ldots ., a[n])$;
3. If $m 1>m 2$ return $m 1$ else return $m 2$

- For $\left.n>2, \begin{array}{l}T(n)=T(n / 2)+T(n / 2)+1, \\ \\ T(1)=1\end{array}\right\} T(n)=$?
- To be precise, $T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1$, but for convenient, we ignore the "ceiling" and "floor" and assume n is a power of 2 .

More Recurrence equations

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 \text { * } \mathrm{T}(\mathrm{n} / 2)+1 \text {, } \\
& \mathrm{T}(1)=1 . \longleftrightarrow \text { Base case; } \\
& \text { initial condition. }
\end{aligned}
$$

$T(n)=T(n-1)+n$, $T(1)=1$.

$$
\begin{aligned}
& T(n)=2^{*} T(n / 2)+n, \\
& T(1)=1 .
\end{aligned}
$$

$T(n)=T(n / 2)+1$, $T(1)=0$.

Selection Sort
Merge Sort

Binary search

Solve a recurrence relation

We can use mathematical induction to prove that a general function solves for a recursive one. Guess a solution and prove it by induction.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1 ; \mathrm{T}_{0}=0 \\
& \mathrm{n}=0
\end{aligned} 1 \begin{array}{lllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mathrm{~T}_{\mathrm{n}} & =0 & 1 & 3 & 7 & 15 & 31 & 63 & \ldots \\
\hline
\end{array}
$$

Guess what the solution is?

$$
\mathrm{T}_{\mathrm{n}}=2^{\mathrm{n}}-1
$$

Solve a recurrence relation

Prove: $\mathrm{T}_{\mathrm{n}}=2^{\mathrm{n}}-1$ by induction:

1. Show the base case is true: $\mathrm{T}_{0}=2^{0}-1=0$
2. Now assume true for $\mathbf{T}_{\mathbf{n}-1}$
3. Substitute in T_{n-1} in recurrence for T_{n}

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =2 \mathrm{~T}_{\mathrm{n}-1}+1 \\
& =2\left(2^{\mathrm{n}-1}-1\right)+1 \\
& =2^{\mathrm{n}}-1
\end{aligned}
$$

Solving Recurrences

There are 3 general methods for solving recurrences

1. Substitution: "Guess \& Verify": guess a solution and verify it is correct with an inductive proof
2. Iteration: "Convert to Summation": convert the recurrence into a summation (by expanding some terms) and then bound the summation
3. Apply "Master Theorem": if the recurrence has the form

$$
T(n)=\mathbf{a} T(\mathbf{n} / \mathbf{b})+\mathbf{f}(\mathbf{n})
$$

then there is a formula that can (often) be applied.
Recurrence formulas are notoriously difficult to derive, but easy to prove valid once you have them

Simplications

- There are two simplications we apply that won't affect asymptotic analysis
- ignore floors and ceilings
- assume base cases are constant, i.e., $T(n)=\Theta(1)$ for n small enough

Solving Recurrences: Substitution

- This method involves guessing form of solution
- use mathematical induction to find the constants and verify solution
- use to find an upper or a lower bound (do both to obtain a tight bound)

The Substitution method

Solve: $T(n)=2 T(\lfloor n / 2\rfloor)+n$

- Guess: $T(n)=\mathbf{O}(n \lg n)$, that is: $T(n) \leq c n \lg n$
- Prove:
- Base case: assume constant size inputs take const time
- $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn} \lg \mathrm{n}$ for a choice of constant $\mathrm{c}>0$
- Assume that the bound holds for $\lfloor\mathrm{n} / 2\rfloor$, that is, that $T(\lfloor n / 2\rfloor) \leq c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor)$ Substituting into the recurrence yields:

$$
T(n)
$$

$$
\begin{aligned}
& \leq 2(c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor))+n \\
& \leq \mathrm{cn} \lg (\mathrm{n} / 2)+\mathrm{n} \\
& =\mathrm{cn} \lg \mathrm{n}-\mathrm{cn} \lg 2+\mathrm{n} \\
& =\mathrm{cn} \lg \mathrm{n}-\mathrm{cn}+\mathrm{n} \\
& \leq \mathrm{cn} \lg \mathrm{n}
\end{aligned}
$$

Where last step holds as long as $\mathrm{c} \geq 1$

Example

Example: $T(n)=4 T(n / 2)+n$ (upper bound) guess $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{3}\right)$ and try to show $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{3}$ for some c > 0 (we'll have to find c)
basis?
assume $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{3}$ for $\mathrm{k}<\mathrm{n}$, and prove $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{3}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \\
& \leq 4\left(\mathrm{c}(\mathrm{n} / 2)^{3}+\mathrm{n}\right. \\
& =\mathrm{c} / 2 \mathrm{n}^{3}+\mathrm{n} \\
& =\mathrm{cn}^{3}-\left(\mathrm{c} / 2 \mathrm{n}^{3}-\mathrm{n}\right) \\
& \leq \mathrm{cn}^{3}
\end{aligned}
$$

where the last step holds if $\mathrm{c}>2$ and $\mathrm{n}>1$
We find values of c and $\mathrm{n}_{\mathbf{0}}$ by determining when $\mathrm{c} / 2 \mathrm{n}^{3}-\mathrm{n} \geq 0$

Solving Recurrences by Guessing (1/3)

- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})$
$\rightarrow \quad \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n}$
$\rightarrow \quad$???

Solving Recurrences by Guessing (2/ 3)

- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})$
$\rightarrow \quad \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n}$
$\rightarrow \quad \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
$-\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor+17)+\mathrm{n} \quad \rightarrow \quad$???

Solving Recurrences by Guessing (3/3)

- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})$
$\rightarrow \quad \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n}$
$\rightarrow \quad \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor+17)+\mathrm{n} \quad \rightarrow \quad \Theta(\mathrm{n} \lg \mathrm{n})$

Recursion-Trees

- Although the substitution method can provide a succinct proof that a solution to a recurrence is correct, it is sometimes difficult to come up with a good guess.
- Drawing out a recursion-tree is a good way to devise a good guess.

Recursion Trees

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}, \mathrm{~T}(1)=1
$$

Solving Recurrences: Iteration

- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation
- We will show several examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})=$
$\mathrm{c}+\mathrm{s}(\mathrm{n}-1)$
$\mathrm{c}+\mathrm{c}+\mathrm{s}(\mathrm{n}-2)$
$2 \mathrm{c}+\mathrm{s}(\mathrm{n}-2)$
$2 \mathrm{c}+\mathrm{c}+\mathrm{s}(\mathrm{n}-3)$
$3 c+s(n-3)$
$\mathrm{kc}+\mathrm{s}(\mathrm{n}-\mathrm{k})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathbf{n}>=\mathbf{k}$ we have
- $\mathrm{s}(\mathrm{n})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})$
- What if $\mathbf{k}=\mathbf{n}$?
- $\mathrm{s}(\mathrm{n})=\mathrm{cn}+\mathrm{s}(0)=\mathrm{cn}$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have
- $\mathrm{s}(\mathrm{n})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})$
- What if $\mathrm{k}=\mathrm{n}$?
- $\mathrm{s}(\mathrm{n})=\mathrm{cn}+\mathrm{s}(0)=\mathrm{cn}$
- So

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- Thus in general
- $\mathrm{s}(\mathrm{n})=\mathrm{cn}$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$
$=\mathrm{n}+\mathrm{s}(\mathrm{n}-1)$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{s}(\mathrm{n}-2)$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{s}(\mathrm{n}-3)$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\mathrm{s}(\mathrm{n}-4)$
= ...
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{s}(\mathrm{n}) \\
= & \mathrm{n}+\mathrm{s}(\mathrm{n}-1) \\
= & \mathrm{n}+\mathrm{n}-1+\mathrm{s}(\mathrm{n}-2) \\
= & \mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{s}(\mathrm{n}-3) \\
= & \mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\mathrm{s}(\mathrm{n}-4) \\
= & \ldots \\
= & \mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k}) \\
= & \sum_{i=n-k+1}^{n} i+s(n-k)
\end{aligned}
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?
$\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}
$$

- Thus in general

$$
s(n)=n \frac{n+1}{2}
$$

$$
T(n)=\left\{\begin{array}{cl}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

- $\mathrm{T}(\mathrm{n})=$

$$
\begin{aligned}
& 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{c} \\
& 2(2 \mathrm{~T}(\mathrm{n} / 2 / 2)+\mathrm{c})+\mathrm{c} \\
& 2^{2} \mathrm{~T}\left(\mathrm{n} / 2^{2}\right)+2 \mathrm{c}+\mathrm{c} \\
& 2^{2}\left(2 \mathrm{~T}\left(\mathrm{n} / 2^{2} / 2\right)+\mathrm{c}\right)+3 \mathrm{c} \\
& 2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+4 \mathrm{c}+3 \mathrm{c} \\
& 2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+7 \mathrm{c} \\
& 2^{3}\left(2 \mathrm{~T}\left(\mathrm{n} / 2^{3} / 2\right)+\mathrm{c}\right)+7 \mathrm{c} \\
& 2^{4} \mathrm{~T}\left(\mathrm{n} / 2^{4}\right)+15 \mathrm{c}
\end{aligned}
$$

$$
2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\left(2^{\mathrm{k}}-1\right) \mathrm{c}
$$

- So far for $n>2 k$ we have
- $\mathrm{T}(\mathrm{n})=2^{\mathrm{k}} \mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\left(2^{\mathrm{k}}-1\right) \mathrm{c}$
- What if $\mathrm{k}=\lg \mathrm{n}$?
- $T(n)=2^{\lg n} T\left(n / 2^{\lg n}\right)+\left(2^{\lg n}-1\right) c$
$=\mathrm{n} T(\mathrm{n} / \mathrm{n})+(\mathrm{n}-1) \mathrm{c}$
$=n T(1)+(n-1) c$
$=\mathrm{nc}+(\mathrm{n}-1) \mathrm{c}=(2 \mathrm{n}-1) \mathrm{c}$

Solving Recurrences: Iteration

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- $\mathrm{T}(\mathrm{n})=$

$$
\begin{aligned}
& \mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{cn} \\
& \mathrm{a}(\mathrm{aT}(\mathrm{n} / \mathrm{b} / \mathrm{b})+\mathrm{cn} / \mathrm{b})+\mathrm{cn} \\
& \mathrm{a}^{2} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{2}\right)+\mathrm{cna} / \mathrm{b}+\mathrm{cn} \\
& \mathrm{a}^{2} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{2}\right)+\mathrm{cn}(\mathrm{a} / \mathrm{b}+1) \\
& \mathrm{a}^{2}\left(\mathrm{aT}\left(\mathrm{n} / \mathrm{b}^{2} / \mathrm{b}\right)+\mathrm{cn} / \mathrm{b}^{2}\right)+\mathrm{cn}(\mathrm{a} / \mathrm{b}+1) \\
& \mathrm{a}^{3} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{3}\right)+\mathrm{cn}\left(\mathrm{a}^{2} / \mathrm{b}^{2}\right)+\mathrm{cn}(\mathrm{a} / \mathrm{b}+1) \\
& \mathrm{a}^{3} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{3}\right)+\mathrm{cn}\left(\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)
\end{aligned}
$$

$$
\mathrm{a}^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{\mathrm{k}}\right)+\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}-1} / \mathrm{b}^{\mathrm{k}-1}+\mathrm{a}^{\mathrm{k}-2} / \mathrm{b}^{\mathrm{k}-2}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So we have
- $T(n)=a^{k} T\left(n / b^{k}\right)+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- For $k=\log _{b} n$
- $\mathrm{n}=\mathrm{b}^{\mathrm{k}}$
- $T(n)=a^{k} T(1)+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=a^{k} c+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=c a^{k}+\operatorname{cn}\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=\mathrm{cna}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}-1} / \mathrm{b}^{\mathrm{k}-1}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
$=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}=\mathrm{b}$?
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}(\mathrm{k}+1)$

$$
\begin{aligned}
& =\mathrm{cn}\left(\log _{\mathrm{b}} \mathrm{n}+1\right) \\
& =\Theta(\mathrm{n} \log \mathrm{n})
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
- What if $\mathrm{a}<\mathrm{b}$?

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
- What if $\mathrm{a}<\mathrm{b}$?
- Recall that $\Sigma\left(\mathrm{x}^{\mathrm{k}}+\mathrm{x}^{\mathrm{k}-1}+\ldots+\mathrm{x}+1\right)=\left(\mathrm{x}^{\mathrm{k}+1}-1\right) /(\mathrm{x}-1)$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}<\mathrm{b}$?
- Recall that $\sum\left(\mathrm{x}^{\mathrm{k}}+\mathrm{x}^{\mathrm{k}-1}+\ldots+\mathrm{x}+1\right)=\left(\mathrm{x}^{\mathrm{k}+1}-1\right) /(\mathrm{x}-1)$
- So:

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\frac{1-(a / b)^{k+1}}{1-(a / b)}<\frac{1}{1-a / b}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
- What if $\mathrm{a}<\mathrm{b}$?
- Recall that $\Sigma\left(\mathrm{x}^{\mathrm{k}}+\mathrm{x}^{\mathrm{k}-1}+\ldots+\mathrm{x}+1\right)=\left(\mathrm{x}^{\mathrm{k}+1}-1\right) /(\mathrm{x}-1)$
- So:

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\frac{1-(a / b)^{k+1}}{1-(a / b)}<\frac{1}{1-a / b}
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta(1)=\Theta(\mathrm{n})$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $a>b$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right)$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right)$

$$
=c n \cdot \Theta\left(a^{\log n} / b^{\log n}\right)=c n \cdot \Theta\left(a^{\log n} / n\right)
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right)$

$$
=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right)
$$

recall logarithm fact: $a^{\log n}=n^{\log a}$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right)$

$$
\begin{gathered}
=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right) \\
\text { recall logarithm fact: } a^{\log \mathrm{n}}=n^{\log a} \\
=\mathrm{cn} \cdot \Theta\left(\mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right)=\Theta\left(\mathrm{cn} \cdot \mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right)
\end{gathered}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right)$

$$
\begin{aligned}
& =\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right) \\
& \quad \text { recall logarithm fact: a } a^{\log n}=n^{\log a} \\
& =\mathrm{cn} \cdot \Theta\left(\mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right)=\Theta\left(\mathrm{cn} \cdot \mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right) \\
& =\Theta\left(\mathrm{n}^{\log \mathrm{a}}\right)
\end{aligned}
$$

- So...

$$
T(n)=\left\{\begin{array}{cc}
\Theta(n) & a<b \\
\Theta\left(n \log _{b} n\right) & a=b \\
\Theta\left(n^{\log _{b} a}\right) & a>b
\end{array}\right.
$$

The Master Method

- Provides a "cookbook" method for solving recurrences of the form
- $\mathbf{T}(\mathbf{n})=\mathbf{a} \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{f}(\mathbf{n})$, where $\mathrm{a} \geq 1$ and $\mathrm{b}>1$ are constants and $f(n)$ is an asymptotically positive function.
- The Master method requires memorization of three cases, but then the solution of many recurrences can be determined quite easily, often without pencil and paper.

The Master Method

- Given: a divide and conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(\mathrm{n})$
- Then, the Master Method gives us a cookbook for the algorithm's running time:

ing Recurrences: The Master Metho

- Master Theorem: Let $\mathrm{a}>1$ and $\mathrm{b}>1$ be constants, let $\mathrm{f}(\mathrm{n})$ be a function, and let $T(n)$ be defined on nonnegative integers as:

$$
\mathrm{T}(\mathrm{n})=\mathrm{a} \mathrm{~T}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})
$$

Then, $\mathrm{T}(\mathrm{n})$ can be bounded asymptotically as follows:

1. $T(n)=\Theta\left(n^{\log _{b} a}\right)$ If $f(n)=\Theta\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$
2. $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ If $f(n)=\Theta\left(n^{\log _{b} a}\right)$
3. $T(n)=\Theta(f(n))$ If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant ε >0 and if $\mathrm{af}(\mathrm{n} / \mathrm{b}) \leq \mathrm{cf}(\mathrm{n})$ for some constant $\mathrm{c}<1$ and all suciently large n.

The Master Theorem

$$
\begin{aligned}
& \text { if } \mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n}) \text { then } \\
& \Theta\left(n^{\log _{b} a}\right) \\
& \boldsymbol{f}(n)=\boldsymbol{O}\left(n^{\log _{b} a-\varepsilon}\right) \\
& \Theta\left(n^{\log _{b} a} \log n\right) \\
& \boldsymbol{f}(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \Theta(\boldsymbol{f (n)})
\end{aligned} \begin{aligned}
& \boldsymbol{f (n) = \Omega (n ^ { \operatorname { l o g } _ { b } a + \varepsilon }) \text { AND }} \begin{array}{l}
a f(n / b)<\boldsymbol{c f}(n) \text { for large } n
\end{array}
\end{aligned}
$$

Intuition: compare $f(n)$ with $\Theta\left(n^{\log _{\mathrm{o}} \mathrm{a}}\right)$

- case 1: $\mathrm{f}(\mathrm{n})$ is `polynomially smaller than’ $\Theta\left(\mathrm{n}^{\log _{b} \mathrm{a}}\right)$
- case 2: $\mathrm{f}(\mathrm{n})$ is `asymptotically equal to’ $\quad \Theta\left(\mathrm{n}^{\log _{b} \mathrm{a}}\right)$
- case 3: $\mathrm{f}(\mathrm{n})$ is `polynomially larger than' $\Theta\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\right)$

General Case for Master Theorem

- In general (Master Theorem, CLR, p.62), T(1) = d, and for $\mathrm{n}>1$,

$$
T(n)=a T(n / b)+c n
$$

has solution
if $\mathrm{a}<\mathrm{b}, \mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$;
if $a=b, T(n)=O(n \log n)$;
if $\mathrm{a}>\mathrm{b}, \mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\right)$

Case I

Example: $T(n)=9 T(n / 3)+n$

- $\mathrm{a}=9, \mathrm{~b}=3, \mathrm{f}(\mathrm{n})=\mathrm{n}, \quad \mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}=\mathrm{n}^{\log _{3} 9}=\mathrm{n}^{2}$
- compare $f(n)=n$ with $\quad n^{\log _{b} a}=n^{2}$
- $n=O\left(n^{2-\varepsilon}\right)\left(f(n)\right.$ is polynomially smaller than $\left.n^{\log _{b} a}\right)$
- case 1 applies:

$$
T(n)=\Theta\left(n^{\log _{\mathrm{b}} \mathrm{a}}\right)=\Theta\left(\mathrm{n}^{2}\right)
$$

Case II

Example: $T(n)=T(2 n / 3)+1$

- $a=1, b=3 / 2, f(n)=1 n^{\log _{b} a}=n^{\log _{3 / 2} 1}=n^{0}=1$
- compare $f(n)=1$ with $n^{\log _{b} a}=1$
- $1=\Theta(1)\left(\mathrm{f}(\mathrm{n})\right.$ is asymptotically equal to $\mathrm{n}^{\log _{b} \mathrm{a}}$
- case 2 applies:

$$
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)=\Theta(\log n)
$$

Case III

Example: $T(n)=3 T(n / 4)+n \log n$

- $a=3, b=4, f(n)=n \log n$,

$$
\mathrm{n}^{\log _{\mathrm{b}} a}=\mathrm{n}^{\log _{4} 3}=\mathrm{n}^{0.793}
$$

- compare $f(n)=n \log n$ with $n^{\log _{b} a}=n^{0.793}$
- $n \log n=\Omega\left(n^{0.793-\varepsilon}\right) f(n)$ is polynomially larger than $n^{\log _{b} a}$
- case 3 might apply: need to check `regularity' of $f(n)$
- find $\mathrm{c}<1$ s.t. $\mathrm{af}(\mathrm{n} / \mathrm{b}) \leq \mathrm{cf}(\mathrm{n})$ for large enough n
- ie. $\frac{3 n}{4} \log \frac{\mathrm{n}}{4} \leq \mathrm{cn} \log \mathrm{n} \quad$ Which is true for $\mathrm{c}=3 / 4$
- case 3 applies: $T(n)=\Theta(f(n))=\Theta(n \log n)$

