16.070
 Introduction to Computers \& Programming

Theory of computation: What is a computer? FSM, Automata

Models of Computation

What is a computer?

- If you can't measure it it has no value...
- Quantitative (numerical)
- Qualitative
- Can we model a computer as we know it today?

Models of Computation

\rightarrow| Uncomputable | |
| :--- | :--- |
| Turing Machines | Phrase Structure |
| Linear bounded automata | Context-sensitive |
| Pushdown automata | Context-free |
| Finite state automata | Regular |
| Machines | |
| Grammars/Languages | |

Finite Machines

- Think of a black box which takes inputs from the environment and produces some kind of observable response. Examples are e.g., vending machine, dish washer, automatic door opener
- A finite machine has a finite memory. It can only distinguish between a finite number of input histories.
- Each class of equivalent histories corresponds to a state of the machine.

A Finite State Automata (FSA) is an abstract finite machine

Finite Automata

(Merriam-Webster)
One entry found for automaton.

Main Entry: au•tom•a•ton
Pronunciation: o-'tä-m\&-t\&n, -m\&-"tän
Function: noun
Inflected Form(s): plural -atons or au•tom•a•ta /-m\&-t\&, -m\&-"tä/
Etymology: Latin, from Greek, neuter of automatos
Date: 1645
1: a mechanism that is relatively self-operating; especially:
ROBOT
2 : a machine or control mechanism designed to follow automatically a predetermined sequence of operations or respond to encoded instructions

3 : an individual who acts in a mechanical fashion

Theory of Computation

1. Finite state automata: deterministic and nondeterministic state machines, regular expressions and languages. Techniques for identifying and describing regular languages; techniques for showing that a language is not regular. Properties of such languages.
2. Context-free languages: Context-free grammars, parse trees, derivations and ambiguity. Relation to pushdown automata. Properties of such languages and techniques for showing that a language is not context-free.

Theory of Computation

3. Turing Machines: Basic definitions and relation to the notion of an algorithm or program. Power of Turing Machines.
4. Undecidability: Recursive and recursively enumerable languages. Universal Turing Machines. Power of Turing Machines.
5. Computational Complexity: Decidable problems for which no sufficient algorithms are known. Polynomial time computability. The notion of NP-completeness and problem reductions. Example of hard problems.

Finite Automata

- A simple finite automaton; an on/off-switch

- Circles represent states. In this case named On and Off.
- Edges (arcs) represent transitions or input to the system.
- Start arrow indicates which state we start in

Finite Automata

- Software to design and verify circuit behavior
- Lexical analyzer of a typical compiler
- Parser for natural language processing
- An efficient scanner for patterns in large bodies of text (e.g. text search on the web)
- Verification of protocols (e.g. communications, security).

Moore and Mealy Machines

- Two types of machines: Moore and Mealy. The difference lies in the outputs.
- Mealy Machines
- The output is a function of the present state and all the inputs
- Input change causes an immediate output change
- Moore Machines
- The output is a function of the present state only
- Outputs change synchronously with state changes

Finite Automata

Finite State Automata

A finite automaton called M_{1}
The figure is called the state diagram of M_{1}
It has 5 states labeled $\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}$,
The start state is labeled q_{0}
The accept state q_{2}, is the one with double circles
The arrows going from one state to another are called transitions

Formal Definition of a Finite Automaton

- An FSA is a 5-tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$

1. Q is a finite set called the states
2. Σ is a finite set called the alphabet
3. $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is the transition function
4. $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
5. $\mathrm{F} \subseteq \mathrm{Q}$ is the set of accept states (final states)

$$
\begin{aligned}
& Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& \delta \text { is described as }
\end{aligned}
$$

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

Formal D efinition of a Finite Automaton

- If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write $L(M)=A$
- We say that M recognizes A (or that \mathbf{M} accepts A.)
- A machine may accept several strings, but it only recognizes one language.

Finite Automaton M_{2}

- State diagram of finite automaton M_{2}

$$
M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right)
$$

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{2}

What strings does $\mathbf{M}_{\mathbf{2}}$ accept?

Finite Automaton M_{3}

- State diagram of finite automaton M_{3}

$L\left(M_{3}\right)=(\omega \mid \omega$ is the empty string \in or ends in a 0$\}$.

Finite Automaton M_{4}

Alphabet $\Sigma=\{a, b\}$

What does M_{4} accept?

All strings that start and end with a, or that start and end with b. In other words, M4 accepts strings that start and end with the
 same symbol.

Finite Automaton M_{5}

Alphabet $\sum=\{<$ reset>, $0,1,2\}$

What does M_{5} accept?
M_{5} keeps a running count of the sum of the numerical input symbols it reads, modulo 3. Every time it receives the <reset> symbol it resets the count to 0 .

$$
0, \text { <reset> } \quad 1,<\text { reset? }
$$

Finite Automaton M_{6}

- Is it possible to describe all finite automata by a state diagram?
- No: if diagram is to large to draw
- No: if description depends on some unspecified parameter

$$
\mathrm{B}_{\mathrm{i}}=\left(\mathrm{Q}_{\mathrm{i}}, \Sigma, \delta_{\mathrm{i}}, \mathrm{q}_{0},\left\{\mathrm{q}_{0}\right\}\right)
$$

Formal D efinition of Computation

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta_{\mathrm{i}}, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a finite automaton
- Let $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$ be a string over the alphabet Σ
- Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ exists in Q with the following three conditions:

1. $\mathrm{r}_{0}=\mathrm{q}_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0, \ldots, n-1$
3. $r_{n} \in F$

- $\quad M$ recognizes language A if $A=\{w \mid M$ accepts $w\}$

Regular Language

- A language is called a regular language if some finite automaton recognizes it.

