16.070 Introduction to Computers & Programming

Theory of computation: What is a computer? FSM, Automata

Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Models of Computation

- If you can't measure it it has no value...
 - Quantitative (numerical)
 - Qualitative
- Can we model a computer as we know it today?

Models of Computation

Uncomputable		
Turing Machines	Phrase Structure	Complex
Linear bounded automata	Context-sensitive	
Pushdown automata	Context-free	
Finite state automata	Regular	Crude

Machines Grammars/Languages

Finite Machines

- Think of a *black box* which takes inputs from the environment and produces some kind of observable response. Examples are e.g., vending machine, dish washer, automatic door opener
- A finite machine has a finite memory. It can only distinguish between a finite number of input *histories*.
- Each class of equivalent histories corresponds to a *state* of the machine.

A Finite State Automata (FSA) is an abstract finite machine

Finite Automata

(Merriam-Webster)

One entry found for **automaton**.

Main Entry: au-tom-a-ton

Pronunciation: o-'tä-m&-t&n, -m&-"tän

Function: noun

Inflected Form(s): *plural* **-atons** *or* **au-tom·a·ta** /-m&-t&, -m&-"tä/ Etymology: Latin, from Greek, neuter of *automatos* Date: 1645

1 : a mechanism that is relatively self-operating; *especially* **: <u>ROBOT</u>**

2 : a machine or control mechanism designed to follow automatically a predetermined sequence of operations or respond to encoded instructions

3 : an individual who acts in a mechanical fashion

Theory of Computation

- 1. Finite state automata: deterministic and nondeterministic state machines, regular expressions and languages. Techniques for identifying and describing regular languages; techniques for showing that a language is not regular. Properties of such languages.
- 2. Context-free languages: Context-free grammars, parse trees, derivations and ambiguity. Relation to pushdown automata. Properties of such languages and techniques for showing that a language is not context-free.

Theory of Computation

- **3. Turing Machines**: Basic definitions and relation to the notion of an algorithm or program. Power of Turing Machines.
- **4. Undecidability**: Recursive and recursively enumerable languages. Universal Turing Machines. Power of Turing Machines.
- **5. Computational Complexity**: Decidable problems for which no sufficient algorithms are known. Polynomial time computability. The notion of NP-completeness and problem reductions. Example of hard problems.

Finite Automata

• A simple finite automaton; an on/off-switch

- Circles represent **states**. In this case named *On* and *Off*.
- Edges (arcs) represent **transitions** or **input** to the system.
- Start arrow indicates which state we start in

Finite Automata

- Software to design and verify circuit behavior
- Lexical analyzer of a typical compiler
- Parser for natural language processing
- An efficient scanner for patterns in large bodies of text (e.g. text search on the web)
- Verification of protocols (e.g. communications, security).

Moore and Mealy Machines

- Two types of machines: **Moore** and **Mealy**. The difference lies in the outputs.
- Mealy Machines
 - The output is a function of the present state and all the inputs
 - Input change causes an immediate output change
- Moore Machines
 - The output is a function of the present state only
 - Outputs change synchronously with state changes

Finite Automata

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite State Automata

A finite automaton called M_1 The figure is called the *state diagram* of M_1 It has 5 *states* labeled q_0 , q_1 , q_2 , q_3 , q_4 , The *start state* is labeled q_0 The *accept state* q_2 , is the one with double circles The arrows going from one state to another are called *transitions*

Formal Definition of a Finite Automaton

- An FSA is a 5-tuple (Q, Σ , δ , q_0 , F)
 - 1. Q is a finite set called the states
 - 2. Σ is a finite set called the **alphabet**
 - 3. $\delta: Q \ge \Sigma \rightarrow Q$ is the **transition function**
 - 4. $q_0 \in Q$ is the start state
 - 5. $F \subseteq Q$ is the set of accept states (final states)

0

 \mathbf{q}_1

 \mathbf{q}_3

 \mathbf{q}_2

 \mathbf{q}_2

 \mathbf{q}_2

 \mathbf{q}_2

Formal Definition of a Finite Automaton

- If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M)=A
- We say that **M recognizes A** (or that **M accepts A**.)
- A machine may accept several strings, but it only recognizes **one** language.

Finite Automaton M₂

• State diagram of finite automaton M₂

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$

What strings does M₂ accept?

Finite Automaton M₃

State diagram of finite automaton M₃

 $L(M_3) = (\omega | \omega \text{ is the empty string } \in \text{ or ends in a } 0\}.$

Finite Automaton M₄

Alphabet $\Sigma = \{a, b\}$

What does M₄ accept?

All strings that start and end with a, or that start and end with b. In other words, M4 accepts strings that start and end with the same symbol.

Finite Automaton M₅

Alphabet $\Sigma = \{ < reset >, 0, 1, 2 \}$

What does M₅ accept?

 M_5 keeps a running count of the sum of the numerical input symbols it reads, modulo 3. Every time it receives the <reset> symbol it resets the count to 0.

Finite Automaton M₆

- Is it possible to describe all finite automata by a state diagram?
- No: if diagram is to large to draw
- No: if description depends on some unspecified parameter

$$\mathbf{B}_{i} = (\mathbf{Q}_{i}, \boldsymbol{\Sigma}, \, \boldsymbol{\delta}_{i}, \, \mathbf{q}_{0}, \, \{\mathbf{q}_{0}\})$$

Formal Definition of Computation

- Let $M = (Q, \Sigma, \delta_i, q_0, F)$ be a finite automaton
- Let $w = w_1 w_2 \dots w_n$ be a string over the alphabet Σ
- Then M accepts w if a sequence of states r₀, r₁, ..., r_n exists in Q with the following three conditions:
 - 1. $r_0 = q_0$ 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-13. $r_n \in F$
- M recognizes language A if A = {w | M accepts w}

Regular Language

• A language is called a **regular language** if some finite automaton recognizes it.