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Theory of computation: What is a computer? FSM, Automata
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What is a 
computer?
What is a 

computer?

Models of Computation

§ If you can’t measure it it has no value…
§ Quantitative (numerical)
§ Qualitative 

§ Can we model a computer as we know it today?
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Models of Computation

RegularFinite state automata

Context-freePushdown automata

Context-sensitiveLinear bounded automata

Phrase StructureTuring Machines

Uncomputable
Complex

Crude
Grammars/LanguagesMachines
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Finite Machines

§ Think of a black box which takes inputs from the 
environment and produces some kind of 
observable response. Examples are e.g., vending 
machine, dish washer, automatic door opener

§ A finite machine has a finite memory. It can only 
distinguish between a finite number of input 
histories.

§ Each class of equivalent histories corresponds to a 
state of the machine.

A Finite State Automata (FSA) is an abstract finite machine
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Finite Automata
(Merriam-Webster)

One entry found for automaton. 

Main Entry: au·tom·a·ton 
Pronunciation: o-'tä-m&-t&n, -m&-"tän
Function: noun
Inflected Form(s): plural -atons or au·tom·a·ta /-m&-t&, -m&-"tä/
Etymology: Latin, from Greek, neuter of automatos
Date: 1645
1 : a mechanism that is relatively self-operating; especially : 
ROBOT
2 : a machine or control mechanism designed to follow 
automatically a predetermined sequence of operations or respond to 
encoded instructions
3 : an individual who acts in a mechanical fashion



16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Theory of Computation

1. Finite state automata: deterministic and non-
deterministic state machines, regular expressions 
and languages. Techniques for identifying and 
describing regular languages; techniques for 
showing that a language is not regular. Properties 
of such languages.

2. Context-free languages: Context-free 
grammars, parse trees, derivations and 
ambiguity. Relation to pushdown automata. 
Properties of such languages and techniques for 
showing that a language is not context-free.
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Theory of Computation

3. Turing Machines: Basic definitions and relation 
to the notion of an algorithm or program. Power 
of Turing Machines.

4. Undecidability: Recursive and recursively 
enumerable languages. Universal Turing 
Machines. Power of Turing Machines.

5. Computational Complexity: Decidable 
problems for which no sufficient algorithms are 
known. Polynomial time computability. The 
notion of NP-completeness and problem 
reductions. Example of hard problems.
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Finite Automata

§ A simple finite automaton; an on/off-switch

§ Circles represent states. In this case named On and Off. 
§ Edges (arcs) represent transitions or input to the system.
§ Start arrow indicates which state we start in

Off On

push

push

start

Initially the switch is Off. When the switch 
encounters a Push it changes state into the On state. 
When another Push is encountered we switch into 
the Off state and so on.
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Finite Automata

§ Software to design and verify circuit behavior
§ Lexical analyzer of a typical compiler
§ Parser for natural language processing
§ An efficient scanner for patterns in large bodies of 

text (e.g. text search on the web)
§ Verification of protocols (e.g. communications, 

security).
§ …
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Moore and Mealy Machines

§ Two types of machines: Moore and Mealy. The 
difference lies in the outputs.

§ Mealy Machines
§ The output is a function of the present state and all the 

inputs
§ Input change causes an immediate output change

§ Moore Machines
§ The output is a function of the present state only
§ Outputs change synchronously with state changes
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Finite Automata

0 1start

<ul> 
<li>Lab 1 </li> 
<li>Lab 2 </li>

</ul>

<ul> 
<li>Lab 1 </li> 
<li>Lab 2 </li>

</ul> • Lab 1
• Lab 2
• Lab 1
• Lab 2

<ol>, <ul> 2<li>

3

L

4

a
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b
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space

any non-tag

any non-tag

</li>7

<li>

8 <ol>, <ul>
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Finite State Automata

aba!
abba!
abbba!
…

ab+a!

q0

a
q1 q2 q3 q4

b

b

a !

A finite automaton called M1
The figure is called the state diagram of M1
It has 5 states labeled q0, q1, q2, q3, q4,
The start state is labeled q0
The accept state q2, is the one with double circles
The arrows going from one state to another are called transitions

Accept

Rejectabba!
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Formal Definition of a Finite Automaton

§ An FSA is a 5-tuple (Q, Σ, δ, q0, F)
1. Q is a finite set called the states
2. Σ is a finite set called the alphabet
3. δ: Q x Σà Q is the transition function
4. q0 ∈ Q is the start state
5. F ⊆ Q is the set of accept states (final states)

q1 q3q2

1

10
0

0,1

Q = {q1, q2, q3}
Σ = {0, 1}
δ is described as

q1 is the start state
F = {q2}

0   1
q1 q1 q2
q2 q3 q2
q3 q2 q2 
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Formal Definition of a Finite Automaton

§ If A is the set of all strings that machine M 
accepts, we say that A is the language of machine 
M and write L(M)=A

§ We say that M recognizes A
(or that M accepts A.)

§ A machine may accept several strings, but it only 
recognizes one language.



16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automaton M2

§ State diagram of finite automaton M2

q1 q2

1
10

0

M2 = ({q1, q2}, {0, 1}, δ, q1 ,{q2})

0   1
q1 q1 q2
q2 q1 q2

What strings does M2 accept?
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Finite Automaton M3

§ State diagram of finite automaton M3

q1 q2

1
10

0

L(M3) =(ω | ω is the empty string ∈ or ends in a 0}.
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Finite Automaton M4

s

q1

q2

a

b

b a

r1

r2

a b

b

a

Alphabet ∑ = {a, b}

What does M4 accept?

All strings that start and 
end with a, or that start 
and end with b. In other 
words, M4 accepts strings 
that start and end with the 
same symbol.

a b
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Finite Automaton M5

Alphabet ∑ = {<reset>, 0, 1, 2}

What does M5 accept?

q1

q0 q2

1
212,

 <
re

se
t>

0, <reset>

0
2

1, <reset?

0

M5 keeps a running count of 
the sum of the numerical 
input symbols it reads, 
modulo 3. Every time
it receives the <reset> 
symbol it resets the 
count to 0.
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Finite Automaton M6

§ Is it possible to  describe all finite automata by a 
state diagram?

§ No: if diagram is to large to draw
§ No: if description depends on some unspecified 

parameter

Bi = (Qi, Σ, δi, q0, {q0})
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Formal Definition of Computation

§ Let M = (Q, Σ, δi, q0, F) be a finite automaton
§ Let w = w1w2…wn be a string over the alphabet Σ

§ Then M accepts w if a sequence of states r0, r1, …, rn
exists in Q with the following three conditions:
1. r0 = q0

2. δ(ri, wi+1) = ri+1 for i = 0, …, n-1
3. rn ∈ F

§ M recognizes language A if A = {w | M accepts w}



16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Regular Language

§ A language is called a regular language if some 
finite automaton recognizes it.


