
16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Theory of computation: What is a computer? FSM, Automata

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

What is a
computer?
What is a

computer?

Models of Computation

§ If you can’t measure it it has no value…
§ Quantitative (numerical)
§ Qualitative

§ Can we model a computer as we know it today?

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Models of Computation

RegularFinite state automata

Context-freePushdown automata

Context-sensitiveLinear bounded automata

Phrase StructureTuring Machines

Uncomputable
Complex

Crude
Grammars/LanguagesMachines

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Machines

§ Think of a black box which takes inputs from the
environment and produces some kind of
observable response. Examples are e.g., vending
machine, dish washer, automatic door opener
§ A finite machine has a finite memory. It can only

distinguish between a finite number of input
histories.
§ Each class of equivalent histories corresponds to a

state of the machine.

A Finite State Automata (FSA) is an abstract finite machine

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automata
(Merriam-Webster)

One entry found for automaton.

Main Entry: au·tom·a·ton
Pronunciation: o-'tä-m&-t&n, -m&-"tän
Function: noun
Inflected Form(s): plural -atons or au·tom·a·ta /-m&-t&, -m&-"tä/
Etymology: Latin, from Greek, neuter of automatos
Date: 1645
1 : a mechanism that is relatively self-operating; especially :
ROBOT
2 : a machine or control mechanism designed to follow
automatically a predetermined sequence of operations or respond to
encoded instructions
3 : an individual who acts in a mechanical fashion

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Theory of Computation

1. Finite state automata: deterministic and non-
deterministic state machines, regular expressions
and languages. Techniques for identifying and
describing regular languages; techniques for
showing that a language is not regular. Properties
of such languages.

2. Context-free languages: Context-free
grammars, parse trees, derivations and
ambiguity. Relation to pushdown automata.
Properties of such languages and techniques for
showing that a language is not context-free.

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Theory of Computation

3. Turing Machines: Basic definitions and relation
to the notion of an algorithm or program. Power
of Turing Machines.

4. Undecidability: Recursive and recursively
enumerable languages. Universal Turing
Machines. Power of Turing Machines.

5. Computational Complexity: Decidable
problems for which no sufficient algorithms are
known. Polynomial time computability. The
notion of NP-completeness and problem
reductions. Example of hard problems.

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automata

§ A simple finite automaton; an on/off-switch

§ Circles represent states. In this case named On and Off.
§ Edges (arcs) represent transitions or input to the system.
§ Start arrow indicates which state we start in

Off On

push

push

start

Initially the switch is Off. When the switch
encounters a Push it changes state into the On state.
When another Push is encountered we switch into
the Off state and so on.

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automata

§ Software to design and verify circuit behavior
§ Lexical analyzer of a typical compiler
§ Parser for natural language processing
§ An efficient scanner for patterns in large bodies of

text (e.g. text search on the web)
§ Verification of protocols (e.g. communications,

security).
§ …

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Moore and Mealy Machines

§ Two types of machines: Moore and Mealy. The
difference lies in the outputs.
§ Mealy Machines
§ The output is a function of the present state and all the

inputs
§ Input change causes an immediate output change

§ Moore Machines
§ The output is a function of the present state only
§ Outputs change synchronously with state changes

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automata

0 1start

Lab 1
Lab 2

Lab 1
Lab 2

 • Lab 1
• Lab 2
• Lab 1
• Lab 2

, 2

3

L

4

a

5

b

6

space

any non-tag

any non-tag

7

8 ,

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite State Automata

aba!
abba!
abbba!
…

ab+a!

q0

a
q1 q2 q3 q4

b

b

a !

A finite automaton called M1
The figure is called the state diagram of M1
It has 5 states labeled q0, q1, q2, q3, q4,
The start state is labeled q0
The accept state q2, is the one with double circles
The arrows going from one state to another are called transitions

Accept

Rejectabba!

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal Definition of a Finite Automaton

§ An FSA is a 5-tuple (Q, Σ, δ, q0, F)
1. Q is a finite set called the states
2. Σ is a finite set called the alphabet
3. δ: Q x Σà Q is the transition function
4. q0 ∈ Q is the start state
5. F ⊆ Q is the set of accept states (final states)

q1 q3q2

1

10
0

0,1

Q = {q1, q2, q3}
Σ = {0, 1}
δ is described as

q1 is the start state
F = {q2}

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal Definition of a Finite Automaton

§ If A is the set of all strings that machine M
accepts, we say that A is the language of machine
M and write L(M)=A

§ We say that M recognizes A
(or that M accepts A.)

§ A machine may accept several strings, but it only
recognizes one language.

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automaton M2

§ State diagram of finite automaton M2

q1 q2

1
10

0

M2 = ({q1, q2}, {0, 1}, δ, q1 ,{q2})

0 1
q1 q1 q2
q2 q1 q2

What strings does M2 accept?

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automaton M3

§ State diagram of finite automaton M3

q1 q2

1
10

0

L(M3) =(ω | ω is the empty string ∈ or ends in a 0}.

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automaton M4

s

q1

q2

a

b

b a

r1

r2

a b

b

a

Alphabet ∑ = {a, b}

What does M4 accept?

All strings that start and
end with a, or that start
and end with b. In other
words, M4 accepts strings
that start and end with the
same symbol.

a b

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automaton M5

Alphabet ∑ = {<reset>, 0, 1, 2}

What does M5 accept?

q1

q0 q2

1
212,

 <
re

se
t>

0, <reset>

0
2

1, <reset?

0

M5 keeps a running count of
the sum of the numerical
input symbols it reads,
modulo 3. Every time
it receives the <reset>
symbol it resets the
count to 0.

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite Automaton M6

§ Is it possible to describe all finite automata by a
state diagram?

§ No: if diagram is to large to draw
§ No: if description depends on some unspecified

parameter

Bi = (Qi, Σ, δi, q0, {q0})

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal Definition of Computation

§ Let M = (Q, Σ, δi, q0, F) be a finite automaton
§ Let w = w1w2…wn be a string over the alphabet Σ

§ Then M accepts w if a sequence of states r0, r1, …, rn
exists in Q with the following three conditions:
1. r0 = q0

2. δ(ri, wi+1) = ri+1 for i = 0, …, n-1
3. rn ∈ F

§ M recognizes language A if A = {w | M accepts w}

16.070 — April 9/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Regular Language

§ A language is called a regular language if some
finite automaton recognizes it.

