16.070
 Introduction to Computers \& Programming

Theory of computation: Sets, DFA, NFA

Prof. Kristina Lundquist
Dept. of Aero/Astro, $\mathcal{M I T}$

Set Theory

- A set is an unordered collection of objects. We use the notation $\left\{\mathrm{ob}_{1}, \mathrm{ob}_{2}, \ldots\right\}$ to denote a set where the ob_{i} are the objects in the set.
eg: The set of all positive integers is $Z^{+}=\{1,2,3, \ldots\}$
- The objects in a set are called the elements or members of the set. We say that a set contains its elements eg: $1,2,3, \ldots$ are the elements of the set Z^{+}
- A set is defined in such general terms can cause problems. For this reason, this is called Naïve Set Theory.

Useful Sets

- The Set of Natural Numbers: $N=\{0,1,2, \ldots\}$
- The Set of Integers: $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$
- The Set of Positive Integers: $Z^{+}=\{1,2,3, \ldots\}$
- The Set of Rational Numbers:

$$
Q=\{\mathrm{p} / \mathrm{q} \mid \mathrm{p} \text { and } \mathrm{q} \text { are integers and } \mathrm{q} \neq 0\}
$$

- The Set of Real Numbers: $R=\mathrm{Q} \cup \mathrm{Q}^{\prime}$
- A set with no members is called an empty set the symbol ϕ is used to denote the empty set.
- What is $\{\phi\}$?

Subset and Equivalence

- The set A is called a subset of the set B if and only if every element of A is also an element of B . The notation $\mathrm{A} \subseteq \mathrm{B}$ is used to indicate that A is a subset of B .

Restated: $\mathrm{A} \subseteq \mathrm{B}$ iff $\forall \mathrm{x}(\mathrm{x} \in \mathrm{A} \rightarrow \mathrm{x} \in \mathrm{B})$
eg: $\{1,3,5\} \subseteq\{1,2,3,4,5\}$ since every element in the first set is also a member of the second set eg: $\{6,2,4\} \subseteq\{4,6,2\}$. [In fact the two sets are equal.]

- Two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$. That is, when every member of A is also a member of B and when every member of B is also a member of A, then A and B have the same members. This is a very important technique that we use to prove that two sets are equal: show $\mathrm{A} \subseteq \mathrm{B}$ and show $\mathrm{B} \subseteq \mathrm{A}$.

n-tuples \& Cartesian Product

- The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its nth element. Two ordered n tuples are equal if and only if their first elements are equal, their second elements are equal, ..., and their nth elements are equal.
- Let A and B be sets. The Cartesian product of A and B, denoted by $\mathrm{A} \times \mathrm{B}$ is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$. That is:
$A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$
Given: $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\mathrm{A} \times \mathrm{B}=\{(1, \mathrm{a}),(1, \mathrm{~b}),(1, \mathrm{c}),(2, a),(2, b),(2, c)\}$

Union \& Intersection

- Let A and B be sets. The union of the sets A and B , denoted by $\mathrm{A} \cup \mathrm{B}$, is the set that contains those elements that are either in A or in B , or in both. That is,
$A \cup B=\{x \mid x \in A \vee x \in B\}$
The union of $\{1,3,5\}$ and $\{1,2,3\}$ is $\{1,2,3,5\}$
- _Let A and B be sets. The intersection of the sets A and B, denoted by $\mathrm{A} \cap \mathrm{B}$, is the set that contains those elements that are in both A and B . That is,
$A \cap B=\{x \mid x \in A \wedge x \in B\}$
The intersection of $\{1,3,5\}$ and $\{1,2,3\}$ is $\{1,3\}$

Functions

- Let A and B be sets. A mapping m from A to B is a subset of $A \times B$. We denote that m is a mapping from A to B by m: $\mathrm{A} \Rightarrow \mathrm{B}$
Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$.
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3$, b), (3, c) $\}$.
- $m=\{(1, a),(1, b),(2, a),(2, c)\}$ is a mapping from A to B

Kleene Star

- We can then define the Kleene Star A* of A as

$$
\mathrm{A}^{*}:=\cup_{\mathrm{n} \geq 0} \mathrm{~A}^{\mathrm{n}}
$$

Finite State Automata

- The FSA model seen so far is deterministic (DFA), exactly one transition for each given symbol and state.
- A Model of Computation consists of:
- A set of states

- An input alphabet
- A transition function that maps input symbols and current states to a next state
- A start state
- Accepting states

$$
\text { 5-tuple }\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)
$$

```
(\{On, Off\}, \{push\}, \(\{(\) On, push \() \rightarrow\) Off, (Off, push \() \rightarrow\) On \(\},\) Off, \(\{O n\})\)
```


Formal D efinition of Computation

- Let $\mathbf{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$
- Let $\mathbf{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}} \in \Sigma^{\mathrm{n}}$

- Then \mathbf{M} accepts \mathbf{w} iff there exists a sequence of states $\left(r_{0}, r_{1}, \ldots, r_{n}\right) \in \mathbf{Q}^{\mathbf{n}}$

1. $\mathrm{r}_{0}=\mathrm{q}_{0}$
2. $\delta\left(r_{i-1}, w_{i}\right)=r_{i}$ for all $i=1,2, \ldots, n$
3. $r_{n} \in F$

- We can formally define the Language $\mathbf{L}(\mathbf{M})$ accepted by automaton \mathbf{M} as: $\mathbf{L}(\mathbf{M}):=\left\{\mathbf{w} \in \Sigma^{*} \mid \mathbf{M}\right.$ accepts $\left.\mathbf{w}\right\}$

Operations on Languages

- We defined a (formal) language L over an alphabet Σ as a set of words: $\mathrm{L} \subset \Sigma^{*}$
- Let $\mathbf{A} \subset \Sigma^{*}$ then

A : $=\left\{\mathbf{w} \in \Sigma^{*} \mid \mathbf{w} \notin \mathbf{A}\right\}$ or
$\mathbf{A}=\Sigma^{*} \backslash \mathbf{A}$

- Let $\mathbf{A}, \mathbf{B} \subset \Sigma^{*}$ be languages over the same alphabet. Then we define the:
- Intersection $\mathbf{A} \cap \mathbf{B}$ of \mathbf{A} and \mathbf{B} as

$$
\mathbf{A} \cap \mathbf{B}:=\left\{\mathbf{w} \in \Sigma^{*} \mid \mathbf{w} \in \mathbf{A} \wedge \mathbf{w} \in \mathbf{B}\right\}
$$

- Union $\mathbf{A} \cup \mathbf{B}$ of \mathbf{A} and \mathbf{B} as
$\mathbf{A} \cup \mathbf{B}:=\left\{\mathbf{w} \in \Sigma^{*} \mid \mathbf{w} \in \mathbf{A} \vee \mathbf{w} \in \mathbf{B}\right\}$

O perations on Languages

- Concatenation

Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \Sigma^{*}$ then

- If $\mathrm{x}_{1} \in \Sigma^{0}$, i.e., $\mathrm{x}_{1}=\varepsilon$, then $\mathrm{x}_{1} \mathrm{x}_{2}:=\mathrm{x}_{2}$
- If $\mathbf{x}_{1} \in \Sigma^{*} \backslash\{\varepsilon\}$, i.e., \mathbf{x}_{1} is not the empty word; split \mathbf{x}_{1} into a character $\mathbf{a} \in \Sigma$ and a word $\mathbf{x}^{\prime} \in \Sigma^{*}: \mathbf{x}_{1}=\mathbf{a x}{ }_{1}$ then: $\mathrm{x}_{1} \mathrm{x}_{2}=\left(\mathrm{ax}^{\prime}{ }_{1}\right) \mathrm{x}_{2}=\mathrm{a}\left(\mathrm{x}_{1}{ }_{1} \mathrm{x}_{2}\right)$

Example:

$$
\text { If } \mathrm{x}_{1}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}} \text { and } \mathrm{x}_{2}=\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{m}}
$$

then $x_{1} x_{2}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m}$

O perations on Languages

- From the formal definition of concatenation we can derive its following two properties
- Associativity: If $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \Sigma^{*}$ are words over the same alphabet, then $\mathbf{a}(\mathbf{b c})=(\mathbf{a b}) \mathbf{c}$
- Identity element: if $\mathbf{a} \in \Sigma^{*}$ is a word, then $\mathbf{a}=\varepsilon \mathbf{a}=\mathbf{a} \varepsilon$
- Two more operations on languages
- Let $\mathbf{A}, \mathbf{B} \subset \Sigma^{*}$ be languages over the same alphabet. Then we define the concatenation $\mathbf{A B}$ of \mathbf{A} and \mathbf{B} as $\mathbf{A B}:=\{\mathbf{a b} \mid \mathbf{a} \in \mathbf{A} \wedge \mathbf{b} \in \mathbf{B}\}$.
- Let $\mathbf{A} \subset \Sigma^{*}$ be a language. Then we define the sets A^{n} recursively for all $\mathbf{n}>=0$:
- $\mathrm{A}^{\mathbf{0}}:=\{\varepsilon\}$

In other words, A^{n} is the set of all words

- $\mathbf{A}^{\mathrm{n}+1}:=\mathbf{A}^{\mathrm{n}} \mathbf{A}$ formed by taking any sequence $a_{1}, a_{2}, \ldots, a_{n} \in A$ of n words from A and concatenating them.

Closure of regular languages

- The claim is that applying any of these operations to a regular language creates another regular language; in other words, the class of regular languages is closed under these operations.

Nondeterministic finite state automata

- A finite state machine/automata whose transition function maps input symbols and states to a possibly empty set of next states. The transition may also map the null symbol (no input symbol needed) and states to next state.
- There are three differences between the transition function of an NFA and that of a DFA

1. There can be states with more than one arrow leaving for the same input symbol
2. There can be states with no arrows leaving for an input symbol
3. There can be arrows labeled with the special symbol ε (the null symbol)

Non-Deterministic Languages

- Input string x is accepted by a nondeterministic FSA if there is a set of transitions (alternatively there is a path in the FSA graph) on input \boldsymbol{x} that allows the NFA to reach an accepting state.
- The language L recognized by a nondeterministic FSA is the set of input strings accepted by it.
- Later we show that deterministic and nondeterministic FSAs recognize the same languages.

A Nondeterministic FSA

- Let 0,1 be input alphabet. If an NFA doesn't have an edge labeled 0 (1) from state q, then 0 (1) is rejected at that state.
- Note that this machine accepts 00101,000101 , and 10100100101, among others.
- Clearly it accepts strings ending with 00101

A Nondeterministic FSA

- The equivalent DFA is shown below.

Equivalence of NFAs and DFAs

- By definition, every DFA is also an NFA; thus the class of DFAs is a subset of the class of NFAs.

For the same reason $\mathrm{L}(\mathrm{DFA}) \subset \mathrm{L}(\mathrm{NFA})$.

Equivalence of Regular Expressions and FSAs

- Earlier we have claimed that the class of languages that can be described by regular expressions is exactly the class of regular languages.
- Proof:
- Show that the language $\mathrm{L}(\mathrm{R})$ generated by any regular expression R is accepted by some NFA M.
- Show that the language $\mathrm{L}(\mathrm{M})$ accepted by any automaton M is generated by some regular expression R.

