
16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Theory of computation: Sets, DFA, NFA

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Set Theory

§ A set is an unordered collection of objects. We use the
notation {ob1, ob2, … } to denote a set where the obi are
the objects in the set.
eg: The set of all positive integers is Z+ = {1, 2, 3, ...}

§ The objects in a set are called the elements or members of
the set. We say that a set contains its elements
eg: 1, 2, 3, … are the elements of the set Z+

§ A set is defined in such general terms can cause problems.
For this reason, this is called Naïve Set Theory.

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Useful Sets

§ The Set of Natural Numbers: N = {0, 1, 2, …}
§ The Set of Integers: Z = {…, -2, -1, 0, 1, 2, …}
§ The Set of Positive Integers: Z+ = {1, 2, 3, …}
§ The Set of Rational Numbers:

Q = {p/q | p and q are integers and q ≠ 0}
§ The Set of Real Numbers: R = Q ∪ Q’
§ A set with no members is called an empty set the

symbol φ is used to denote the empty set.

§ What is {φ} ?

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Subset and Equivalence

§ The set A is called a subset of the set B if and only if every
element of A is also an element of B. The notation A ⊆ B is used
to indicate that A is a subset of B.

Restated: A ⊆ B iff ∀x(x ∈ A → x ∈ B)

eg: {1, 3, 5} ⊆ {1, 2, 3, 4, 5} since every element in the first set is
also a member of the second set

eg: {6, 2, 4} ⊆ {4, 6, 2}. [In fact the two sets are equal.]

§ Two sets A and B are equal if and only if A ⊆ B and B ⊆ A. That
is, when every member of A is also a member of B and when
every member of B is also a member of A, then A and B have the
same members. This is a very important technique that we use to
prove that two sets are equal: show A ⊆ B and show B ⊆ A.

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

n-tuples & Cartesian Product

§ The ordered n-tuple (a1, a2, …, an) is the ordered
collection that has a1 as its first element, a2 as its second
element, …, and an as its nth element. Two ordered n-
tuples are equal if and only if their first elements are equal,
their second elements are equal, …, and their nth elements
are equal.

§ Let A and B be sets. The Cartesian product of A and B,
denoted by A × B is the set of all ordered pairs (a, b) where
a ∈ A and b ∈ B. That is:

A × B = {(a, b) | a ∈ A ∧ b ∈ B}

Given: A = {1, 2} and B = {a, b, c}

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Union & Intersection

§ Let A and B be sets. The union of the sets A and B,
denoted by A ∪ B, is the set that contains those elements
that are either in A or in B, or in both. That is,

A ∪ B = { x | x ∈ A ∨ x ∈ B }

The union of {1, 3, 5} and {1, 2, 3} is {1, 2, 3, 5}

§ Let A and B be sets. The intersection of the sets A and B,
denoted by A ∩ B, is the set that contains those elements
that are in both A and B. That is,

A ∩ B = { x | x ∈ A ∧ x ∈ B }

The intersection of {1, 3, 5} and {1, 2, 3} is {1, 3}

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Functions

§ Let A and B be sets. A mapping m from A to B is a
subset of A × B. We denote that m is a mapping from A to
B by m: A ⇒ B
Let A = {1, 2, 3} and B = {a, b, c}.

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3,
b), (3, c)}.

§ m = {(1, a), (1, b), (2, a), (2, c)} is a mapping from A to B

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Kleene Star

§ We can then define the Kleene Star A* of A as

A* := ∪n≥0An

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Finite State Automata

§ The FSA model seen so far is deterministic (DFA), exactly
one transition for each given symbol and state.

§ A Model of Computation consists of:
§ A set of states
§ An input alphabet
§ A transition function that maps input symbols and

current states to a next state
§ A start state
§ Accepting states

5-tuple (Q, Σ, δ, q0, F)5-tuple (Q, Σ, δ, q0, F)

Off On

push

push

({On, Off}, {push}, {(On, push)à Off, (Off, push)à On}, Off, {On})({On, Off}, {push}, {(On, push)à Off, (Off, push)à On}, Off, {On})

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal Definition of Computation

§ Let M = (Q, Σ, δ, q0, F)

§ Let w = w1w2 . . . wn ∈ Σn

§ Then M accepts w iff there exists a sequence of states
(r0, r1, …,rn) ∈ Qn

1. r0 = q0

2. δ(ri-1, wi) = ri for all i = 1, 2, …, n
3. rn ∈ F

§ We can formally define the Language L(M) accepted by
automaton M as: L(M) := { w ∈ Σ* | M accepts w }

q0
a

q1 q2 q3 q4
b

b

a b

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Operations on Languages

§ We defined a (formal) language L over an alphabet Σ
as a set of words: L ⊂ Σ*

§ Let A ⊂ Σ* then
A := { w ∈ Σ* | w ∉ A } or
A = Σ* \ A

§ Let A, B ⊂ Σ* be languages over the same alphabet.
Then we define the:
§ Intersection A ∩ B of A and B as

A ∩ B := {w ∈ Σ* | w ∈ A ∧ w ∈ B }
§ Union A ∪ B of A and B as

A ∪ B := {w ∈ Σ* | w ∈ A ∨ w ∈ B }

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Operations on Languages

§ Concatenation
Let x1, x2 ∈ Σ* then

§ If x1 ∈ Σ0, i.e., x1 = ε, then x1x2 := x2

§ If x1 ∈ Σ* \ {ε}, i.e., x1 is not the empty word;
split x1 into a character a ∈ Σ and a word x’1 ∈ Σ* : x1 = ax’1
then: x1 x2 = (ax’1) x2 = a(x’1x2)

Example:
If x1 = a1 a2… an and x2 = b1 b2 …bm

then x1 x2 = a1 a2 … an b1 b2 …bm

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Operations on Languages
§ From the formal definition of concatenation we can derive

its following two properties
§ Associativity: If a, b, c ∈ Σ* are words over the same alphabet,

then a(bc) = (ab)c
§ Identity element: if a ∈ Σ* is a word, then a = εa = aε

§ Two more operations on languages
§ Let A, B ⊂ Σ* be languages over the same alphabet.

Then we define the concatenation AB of A and B as
AB := {ab | a ∈ A ∧ b ∈ B}.

§ Let A ⊂ Σ* be a language. Then we define the sets An recursively
for all n >= 0:

§ A0 := {ε}
§ An+1 := AnA

In other words, An is the set of all words
formed by taking any sequence
a1, a2, …, an ∈ A of n words from A and
concatenating them.

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Closure of regular languages

§ The claim is that applying any of these operations
to a regular language creates another regular
language; in other words, the class of regular
languages is closed under these operations.

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Nondeterministic finite state automata

§ A finite state machine/automata whose transition function
maps input symbols and states to a possibly empty set of
next states. The transition may also map the null symbol
(no input symbol needed) and states to next state.

§ There are three differences between the transition function
of an NFA and that of a DFA
1. There can be states with more than one arrow leaving for the

same input symbol
2. There can be states with no arrows leaving for an input symbol
3. There can be arrows labeled with the special symbol ε (the null

symbol)

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Non-Deterministic Languages

§ Input string x is accepted by a nondeterministic
FSA if there is a set of transitions (alternatively
there is a path in the FSA graph) on input x that
allows the NFA to reach an accepting state.

§ The language L recognized by a nondeterministic
FSA is the set of input strings accepted by it.

§ Later we show that deterministic and
nondeterministic FSAs recognize the same
languages.

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

A Nondeterministic FSA

§ Let 0,1 be input alphabet. If an NFA doesn’t have an edge
labeled 0 (1) from state q, then 0 (1) is rejected at that
state.

§ Note that this machine accepts 00101, 000101, and
10100100101, among others.

§ Clearly it accepts strings ending with 00101

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

A Nondeterministic FSA

§ The equivalent DFA is shown below.

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Equivalence of NFAs and DFAs

§ By definition, every DFA is also an NFA; thus the
class of DFAs is a subset of the class of NFAs.

For the same reason L(DFA) ⊂ L(NFA).

16.070 — April 11/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Equivalence of Regular Expressions and FSAs

§ Earlier we have claimed that the class of
languages that can be described by regular
expressions is exactly the class of regular
languages.

§ Proof:
§ Show that the language L(R) generated by any regular

expression R is accepted by some NFA M.
§ Show that the language L(M) accepted by any

automaton M is generated by some regular expression
R.

