16.070
Introduction to Computers & Programming

Theory of computation 3: PDA, CFG

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

= Just asaDFA isaway to implement aregular
expression, apushdown automata isaway to implement
acontext freegrammar

= PDA equivaent in power to aCFG

= Can choose the representation most useful to our particular
problem

= Essentially identical to aregular automata except for the
addition of a stack

= Stack isof infinitesize
= Stack allows usto recognize some of the non-regular languages

= Canvisualize aPDA with the schematic

Finite :
input—>| gape __, Accept or rgect
Control
Reads input symbol by symbol
\ Can write to stack
Makes transitions based on
input, top of stack

Stack

= |n onetransition the PDA may do the following:

» Consume the input symbol. If eisthe input symboal,
then no input is consumed.

= Goto anew state, which may be the same as the
previous state.

» Replacethe symbol at thetop of the stack by any
string.
= |f thisstring isethen thisisa pop of the stack

= The string might be the same as the current stack top
(does nothing)

» Replace with a new string (pop and push)
= Replace with multiple symbols (multiple pushes)

= CongderthelanguagelL ={0"1"|n2® 0}.
= Why isit not regular?

= A PDA isableto recognize this language!
= Can use its stack to store the number of O’ s it has seen.

Aseach Oisread, push it onto the stack
Assoon as 1'sareread, pop a0 off the stack

If reading the input is finisned exactly when the stack is
empty, accept the input else rgject the input

= The description of the previous PDA was
deterministic
= However, in general the PDA isnondeter ministic.

= Thisfeatureis crucia because, unlike finite
automata, nondeterminism adds power to the
capability that a PDA would have if they were only
allowed to be deterministic.

* i.e. A non-deterministic PDA can represent languages that
a deterministic PDA cannot

L ={ wwR |wisin (0+1)* }

I nformal PDA description

Start in state g, that represents the state where we haven’t yet seen the
reversed part of the string. While in state g, we read each input symbol
and push them on the stack.

At any time, assume we have seen the middle; i.e. “fork™ off anew branch
that assumes we have seen the end of w. We signify this choice by
spontaneously going to state g,. This behavesjust like a nondeterministic

finite automaton

= We'll continue in both the forked-branch and the original branch. One of
these branches may die, but aslong as one of them reaches afinal state we

accept the input.

In state g, compare input symbols with the top of the stack. If match, pop
the stack and proceed. If no match, then the branch of the automaton dies.

If we empty the stack then we have seen wwR and can proceed to afinal
accepting state.

= P=(Q,a,G,d, qq Zy F)

Q = finite set of states, like the finite automaton
a = finite set of input symbols, the alphabet

» G=finite stack alphabet, components we are allowed to
push on the stack

" , = Start state

= Z,=dstart symbol. Initialy, the PDA’s stack consists of
one instance of this start symbol and nothing else. We
can use it to indicate the bottom of the stack.

» F = Set of final accepting states.

= d =trangtion function, which takesthe triple: d(qg, a, X)
where
= (=saeinQ
= a=input symbol in a
= X =gtack symbol in G

= Theoutput of disthefinite set of pairs (p, ?) wherep isa
new state and ? Is anew string of stack symbols that
replaces X at the top of the stack.
= |f ? = ethen we pop the stack
= if ? =X the stack is unchanged

» if?=YZthen X isreplaced by Z and Y is pushed on the stack.
Note the new stack top isto the left end.

Hereisaformal description of the PDA that recognizesL ={0"1" |n3 O}.

= Q=1 dy; G5 Gs; q4}
= 4={0,1}
= G={0,2Z}
= F={dl, g4}

And d is described by the table below

| nput 0 0 1 1 e e

Stack 0 Zo 0 Zo 0 Zo

202 {(9220)}
op; {(p, 00)} | {(02, 0Zo)} {(gs, €)}

Js {(ds. &)} { (9 Zo)}
QCI4

= Usesthe format
| nput-Symbol, Top-of-Stack / String-to-replace-top-of-stack

0,2/0Z,

& ZJZ, 0,0/00
Stat —» >

1, O/e

< 1, O/e
€ ZJ/Z,

= Hereisthe graphical description of the PDA that accepts the language
= L={wwR|wisin (0+1)* }

= Staysin state do when we are reading w, saving the input symbol. Every time we “guess’ that we
have reached the end of w and are beginning wR by going to g, on an epsilon-transition.

* |ndtate g, we pop off each O or 1 we encounter that matches the input. Any other input will “die”
for this branch of the PDA. If we ever reach the bottom of the stack, we go to an accepting state.

0Z/0Z, 1,Z/1Z,

0,000 071/01 0,0/e
10110 1,1/11 11e
Start >
qO e ZO/ZO ql e ZO/ZO @
e 0/0

e 1/1

= For aFA, the only thing of interest about the FA isits state.

= For aPDA, wewant to know its state and the entir e content of its
stack.

= (Often the stack is one of the most useful pieces of information, sinceitis
not bounded in size.

= We can represent the instantaneous description (ID) of aPDA by the
following triple (g,w,?):
» gisthestate
» W istheremaining input
» ?isthe stack contents

= By convention the top of the stack is shown at theleft end of ? and
the bottom at the right end.

To describe the process of taking a transition, we use the “turnstile”
symbol + which isused as:

(g, aw, Xb) + (p, w, ab)

In other words, we took atransition such that we went from state g to
p, we consumed input symbol a, and we replaced the top of the stack X
with some new string a.

We can extend the move symbol to taking many moves.
+* represents zero or more moves of the PDA.

= Consider the PDA that accepted
L ={ wwR |wisin (0+1)* }.

= \We can describe the moves of the PDA for the
Input 0110:

" (G, 0110, Zp) + (o, 110, 0Zy) + (0, 10, 10Zy) + (ap,
10, 10Zy) + (qy, 0, 0Zp) + (a1, € Zp) + (G & Zy).

= \We could have taken other moves rather than the

ones above, but they would have resulted in a
“dead” branch rather than an accepting state.

= The PDA consumes input and accepts input when
It endsin afinal state. We can describe this as:

L(P) ={w | (do, W, Zo) +* (0, & @) } whereq | F

= That is, from the starting state, we can make
moves that end up in afinal state with any stack
values. The stack values are irrelevant aslong as
we end up in afinal state.

= |t turns out we can also describe alanguage of a PDA by ending up
with an empty stack with no further input

N(P) ={w | (g, W, Z,) +* (q, € €) } where g is any State,

= Thatis, we arrive at a state such that P can consume the entire input
and at the same time empty its stack.

= |t turns out that we can show the classes of languages that are L (P) for
some PDA P isequivaent to the class of languages that are N(P) for
some PDA P.

= Thisclassisaso exactly the context-free languages.

= A context-free grammar and pushdown automata
are equivalent in power.

= Theorem: Given a CFG grammar G, then some
pushdown automata P recognizes L(G).

* To prove this, we must show that we can take any CFG
and expressit asaPDA. Then we must take a PDA
and show we can construct an equivalent CFG.

= We'll show the CFG—=>PDA process, but only give an
overview of the process of going from the PDA->CFG

Context Free Grammars

Not all languages are regular
» Thereare many classes “larger” than that of regular languages
» Oneof these classes are called “ Context Free” languages

Described by Context-Free Grammars (CFG)
» Why named context-free?
» Property that we can substitute strings for variablesregardless of context

CFG’ sare useful in many applications
» Describing syntax of programming languages
= Parsing
= Structure of documents, e.g. XML

Analogy of the day:
» DFA : Regular Expression as Pushdown Automata : CFG

= | anguage of palindromes
= We can show that the language L ={ w |w =wR } isnot regular.

= However, we can describe this language by the following
context-free grammar over the alphabet {0,1}:

P>e
P->0

P->1
P - 0PO Inductive definition

P> 1P1

More compactly: P> e|0|1|0P0|1P1
o sovoselummopoclmesdeemes |

Thereisafinite set of symbolsthat form the strings, i.e. thereis afinite
alphabet. The aphabet symbols are called ter minals.

Thereis afinite set of variables, sometimes called non-ter minals or
syntact)ic categories. Each variable represents alanguage (i.e. aset of
strings).

. Ex: In the palindrome example, the only variableis P.

One of the variablesisthe start symbol. Other variables may exist to help
define the language.

Thereisafinite set of productions or production rules that represent the
recur sive definition of thelanguage. Each production is defined:

1. Hasasinglevariablethat isbeing defined to the left of the production
2. Hasthe production symbol -

3. Hasastring of zero or more terminals or variables, called the body of the
production. To form strings we can substitute each variable' s production in for
the body where it appears.

= A CFG G may then be represented by these four
components, denoted G=(V,T,P,S)

V isthe set of variables

T isthe set of terminals

P isthe set of productions
Sisthe start symbol.

1. E-I I/ Expression is an identifier

2. E-2EtE /l Add two expressions

3. E->FE Il Multiply two expressions
4. E-=>(E) /l Add parenthesis

5 I=2>L I/ |dentifier isa Letter

6. I=>1D I/ |dentifier + Digit

7. I=>IL I/ |dentifier + Letter

8. D-=>0]1|2]|3|4]|5|6]|7|8]9 /IDigits

9. L= alb|c|...A|B]|...Z Il Letters

Note Identifiersare regular; could describe as (letter)(letter + digit)*

= The process of coming up with strings that satisfy individual
productions and then concatenating them together according to more
general rulesis caled recursive inference.

= Thisisabottom-up process

= For example, parsing the identifier “r5”

= Rule8tdlsusthatD - 5
= Rule9tdlsusthaL = r
= Rule5tdlsusthat 2L sol-=>r

Apply recursive inference using rule 6 for |- 1D and get
= | 2 rD.

» UseD->5toget I>15.

Finally, we know from rule 1 that E-> |, sor5isalso an expression.

Exercise: Show the recursive inference for arriving a (x+int1)* 10 is an expression

= Similar to recursive inference, but top-down instead of bottom-up

» Expand start symbol first and work way down in such away that it
matches the input string

= For example, given a*(atbl) we can derive this by:

 EpP E*EP I*EP L*EP &Eb a*(E) b a(EtE) P a(I+tE) b
a*(L+E) P a*(atE) P a*(atl) P a*(a+tID) P a*(a+LD) b a*(at+bD)
p a*(atbl)

= Notethat at each step of the productions we could have chosen any
one of the variablesto replace with a more specific rule.

When is this useful ? Think for example of your Ada compiler

