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Pushdown Automata (PDA)

§ Just as a DFA is a way to implement a regular 
expression, a pushdown automata is a way to implement 
a context free grammar
§ PDA equivalent in power to a CFG
§ Can choose the representation most useful to our particular 

problem

§ Essentially identical to a regular automata except for the 
addition of a stack
§ Stack is of infinite size
§ Stack allows us to recognize some of the non-regular languages
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PDA

§ Can visualize a PDA with the schematic

input
Finite
State
Control

Accept or reject

Stack

Reads input symbol by symbol
Can write to stack
Makes transitions based on 
input, top of stack
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Implementing a PDA

§ In one transition the PDA may do the following:
§ Consume the input symbol.  If e is the input symbol, 

then no input is consumed.
§ Go to a new state, which may be the same as the 

previous state.
§ Replace the symbol at the top of the stack by any 

string.
§ If this string is e then this is a pop of the stack
§ The string might be the same as the current stack top 

(does nothing)
§ Replace with a new string (pop and push)
§ Replace with multiple symbols (multiple pushes)
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Informal PDA Example

§ Consider the language L = {0n1n | n ≥ 0 }.
§ Why is it not regular?

§ A PDA is able to recognize this language!
§ Can use its stack to store the number of 0’s it has seen.  
§ As each 0 is read, push it onto the stack
§ As soon as 1’s are read, pop a 0 off the stack 
§ If reading the input is finished exactly when the stack is 

empty, accept the input else reject the input
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PDA and Determinism

§ The description of the previous PDA was 
deterministic
§ However, in general the PDA is nondeterministic.  
§ This feature is crucial because, unlike finite 

automata, nondeterminism adds power to the 
capability that a PDA would have if they were only 
allowed to be deterministic.  
§ i.e.  A non-deterministic PDA can represent languages that 

a deterministic PDA cannot
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Informal Non-Deterministic Example

§ L = { wwR | w is in (0+1)* }

§ Informal PDA description
§ Start in state q0 that represents the state where we haven’t yet seen the 

reversed part of the string.  While in state q0 we read each input symbol 
and push them on the stack.

§ At any time, assume we have seen the middle; i.e. “fork” off a new branch 
that assumes we have seen the end of w.  We signify this choice by 
spontaneously going to state q1.  This behaves just like a nondeterministic
finite automaton
§ We’ll continue in both the forked-branch and the original branch.  One of 

these branches may die, but as long as one of them reaches a final state we 
accept the input.

§ In state q1 compare input symbols with the top of the stack.  If match, pop
the stack and proceed.  If no match, then the branch of the automaton dies.

§ If we empty the stack then we have seen wwR and can proceed to a final 
accepting state.
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Formal Definition of a PDA

§ P = (Q, ∑, G, d, q0, Z0, F)

§ Q = finite set of states, like the finite automaton
§ ∑ = finite set of input symbols, the alphabet
§ G= finite stack alphabet, components we are allowed to 

push on the stack
§ q0 = start state
§ Z0 = start symbol.  Initially, the PDA’s stack consists of 

one instance of this start symbol  and nothing else.  We 
can use it to indicate the bottom of the stack.
§ F = Set of final accepting states.
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PDA Transition Function

§ d = transition function, which takes the triple:  d(q, a, X)
where
§ q = state in Q
§ a = input symbol in ∑
§ X = stack symbol in G

§ The output of d is the finite set of pairs (p, ?) where p is a 
new state and ? is a new string of stack symbols that 
replaces X at the top of the stack.  
§ If ? = e then we pop the stack
§ if ? = X the stack is unchanged
§ if ? = YZ then X is replaced by Z and Y is pushed on the stack.  

Note the new stack top is to the left end.
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Formal PDA Example

§ Here is a formal description of the PDA that recognizes L = {0n1n | n ≥ 0}.  
§ Q = { q1, q2, q3, q4 }
§ ∑ = {0, 1}
§ G = {0, Z0}
§ F = {q1, q4}

§ And d is described by the table below

Input: 0 0 1 1 e e 
Stack: 0 Z0 0 Z0 0 Z0 
àq1      {(q2,Z0)} 
q2 {(q2, 00)} {(q2, 0Z0)} {(q3, e)}    

q3   {(q3, e)}   {(q4, Z0)} 
àq4       
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Graphical Format

§ Uses the format 
Input-Symbol, Top-of-Stack / String-to-replace-top-of-stack

q1Start q2

q3
q4

e, Z0/Z0

e, Z0/Z0

0,Z0/0Z0
0,0/00

1, 0/e

1, 0/e
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Example 2

§ Here is the graphical description of the PDA that accepts the language 
§ L = { wwR | w is in (0+1)* }

§ Stays in state q0 when we are reading w, saving the input symbol.  Every time we “guess” that we 
have reached the end of w and are beginning wR by going to q1 on an epsilon-transition.  

§ In state q1 we pop off each 0 or 1 we encounter that matches the input.  Any other input will “die” 
for this branch of the PDA.  If we ever reach the bottom of the stack, we go to an accepting state.

q0 q1 q2Start
e, Z0/Z0
e, 0/0
e, 1/1

0,Z0/0Z0      1,Z0/1Z0
0,0/00        0,1/01
1,0/10        1,1/11

0,0/e
1,1/e

e, Z0/Z0
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Instantaneous Descriptions of a PDA (ID)

§ For a FA, the only thing of interest about the FA is its state. 

§ For a PDA, we want to know its state and the entire content of its 
stack.  
§ Often the stack is one of the most useful pieces of information, since it is 

not bounded in size.

§ We can represent the instantaneous description (ID) of a PDA by the 
following triple (q,w,?):
§ q is the state
§ w is the remaining input
§ ? is the stack contents

§ By convention the top of the stack is shown at the left end of ? and 
the bottom at the right end.  
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Moves of a PDA

§ To describe the process of taking a transition, we use the “turnstile” 
symbol + which is used as:

(q, aw, Xβ) +  (p, w, αβ)

§ In other words, we took a transition such that we went from state q to 
p, we consumed input symbol a, and we replaced the top of the stack X 
with some new string α. 

§ We can extend the move symbol to taking many moves:
+ * represents zero or more moves of the PDA.
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Move Example

§ Consider the PDA that accepted 
L = { wwR | w is in (0+1)* }.

§ We can describe the moves of the PDA for the 
input 0110:
§ (q0, 0110, Z0) +   (q0, 110, 0Z0) +   (q0, 10, 10Z0) +   (q1, 

10, 10Z0) +   (q1, 0, 0Z0) +   (q1, e, Z0) +   (q2, e, Z0).

§ We could have taken other moves rather than the 
ones above, but they would have resulted in a 
“dead” branch rather than an accepting state.
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Language of a PDA

§ The PDA consumes input and accepts input when 
it ends in a final state.  We can describe this as:

L(P) = {w | (q0, w, Z0) + * (q, e, α) } where q ∈ F

§ That is, from the starting state, we can make 
moves that end up in a final state with any stack 
values.  The stack values are irrelevant as long as 
we end up in a final state.
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Alternate Definition for L(PDA)

§ It turns out we can also describe a language of a PDA by ending up 
with an empty stack with no further input

N(P) = {w | (q0, w, Z0) +* (q, e, e) } where q is any state.

§ That is, we arrive at a state such that P can consume the entire input 
and at the same time empty its stack.  

§ It turns out that we can show the classes of languages that are L(P) for 
some PDA P is equivalent to the class of languages that are N(P) for 
some PDA P.  

§ This class is also exactly the context-free languages.   
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Equivalence of PDA and CFG

§ A context-free grammar and pushdown automata 
are equivalent in power.

§ Theorem: Given a CFG grammar G, then some 
pushdown automata P recognizes L(G).
§ To prove this, we must show that we can take any CFG 

and express it as a PDA.  Then we must take a PDA 
and show we can construct an equivalent CFG.  
§ We’ll show the CFGàPDA process, but only give an 

overview of the process of going from the PDAàCFG
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Context Free Grammars
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Context Free Languages (CFL)

§ Not all languages are regular
§ There are many classes “larger” than that of regular languages
§ One of these classes are called “Context Free” languages

§ Described by Context-Free Grammars (CFG)
§ Why named context-free?
§ Property that we can substitute strings for variables regardless of context

§ CFG’s are useful in many applications
§ Describing syntax of programming languages
§ Parsing
§ Structure of documents, e.g.XML

§ Analogy of the day:
§ DFA : Regular Expression as Pushdown Automata : CFG
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CFG Example

§ Language of palindromes
§ We can show that the language L = { w | w = wR } is not regular.  

§ However, we can describe this language by the following 
context-free grammar over the alphabet {0,1}:

P à ε
P à 0
P à 1
P à 0P0
P à 1P1

Inductive definition

More compactly:  P à ε | 0 | 1 | 0P0 | 1P1
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Formal Definition of a CFG

§ There is a finite set of symbols that form the strings, i.e. there is a finite 
alphabet.  The alphabet symbols are called terminals.

§ There is a finite set of variables, sometimes called non-terminals or 
syntactic categories.  Each variable represents a language (i.e. a set of 
strings).  
§ Ex: In the palindrome example, the only variable is P.

§ One of the variables is the start symbol.  Other variables may exist to help 
define the language.

§ There is a finite set of productions or production rules that represent the 
recursive definition of the language.  Each production is defined:

1. Has a single variable that is being defined to the left of the production
2. Has the production symbolà
3. Has a string of zero or more terminals or variables, called the body of the 

production.   To form strings we can substitute each variable’s production in for 
the body where it appears.
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CFG Notation

§ A CFG G may then be represented by these four 
components, denoted G=(V,T,P,S)
§ V is the set of variables
§ T is the set of terminals
§ P is the set of productions
§ S is the start symbol.
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Sample CFG

1. EàI // Expression is an identifier
2. EàE+E // Add two expressions
3. EàE*E // Multiply two expressions
4. Eà(E) // Add parenthesis
5. Ià L // Identifier is a Letter
6. Ià ID // Identifier + Digit
7. Ià IL // Identifier + Letter
8. D à 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 // Digits
9. L à a | b | c | … A | B | … Z // Letters

Note Identifiers are regular; could describe as (letter)(letter + digit)*
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Recursive Inference

§ The process of coming up with strings that satisfy individual 
productions and then concatenating them together according to more 
general rules is called recursive inference.  

§ This is a bottom-up process

§ For example, parsing the identifier “r5”

§ Rule 8 tells us that D à 5 
§ Rule 9 tells us that L à r
§ Rule 5 tells us that IàL  so Iàr
§ Apply recursive inference using rule 6 for IàID and get 
§ I à rD.  
§ Use Dà5 to get Iàr5. 

§ Finally, we know from rule 1 that EàI, so r5 is also an expression.

Exercise: Show the recursive inference for arriving at (x+int1)*10 is an expression
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Derivation

§ Similar to recursive inference, but top-down instead of bottom-up
§ Expand start symbol first and work way down in such a way that it 

matches the input string

§ For example, given  a*(a+b1) we can derive this by:

§ E ⇒ E*E ⇒ I*E ⇒ L*E ⇒ a*E ⇒ a*(E) ⇒ a*(E+E) ⇒ a*(I+E) ⇒
a*(L+E) ⇒ a*(a+E) ⇒ a*(a+I) ⇒ a*(a+ID) ⇒ a*(a+LD) ⇒ a*(a+bD) 
⇒ a*(a+b1)

§ Note that at each step of the productions we could have chosen any 
one of the variables to replace with a more specific rule.  

When is this useful? Think for example of your Ada compiler


