
16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Theory of computation 3: PDA, CFG

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Pushdown Automata (PDA)

§ Just as a DFA is a way to implement a regular
expression, a pushdown automata is a way to implement
a context free grammar
§ PDA equivalent in power to a CFG
§ Can choose the representation most useful to our particular

problem

§ Essentially identical to a regular automata except for the
addition of a stack
§ Stack is of infinite size
§ Stack allows us to recognize some of the non-regular languages

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

PDA

§ Can visualize a PDA with the schematic

input
Finite
State
Control

Accept or reject

Stack

Reads input symbol by symbol
Can write to stack
Makes transitions based on
input, top of stack

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Implementing a PDA

§ In one transition the PDA may do the following:
§ Consume the input symbol. If e is the input symbol,

then no input is consumed.
§ Go to a new state, which may be the same as the

previous state.
§ Replace the symbol at the top of the stack by any

string.
§ If this string is e then this is a pop of the stack
§ The string might be the same as the current stack top

(does nothing)
§ Replace with a new string (pop and push)
§ Replace with multiple symbols (multiple pushes)

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Informal PDA Example

§ Consider the language L = {0n1n | n ≥ 0 }.
§ Why is it not regular?

§ A PDA is able to recognize this language!
§ Can use its stack to store the number of 0’s it has seen.
§ As each 0 is read, push it onto the stack
§ As soon as 1’s are read, pop a 0 off the stack
§ If reading the input is finished exactly when the stack is

empty, accept the input else reject the input

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

PDA and Determinism

§ The description of the previous PDA was
deterministic
§ However, in general the PDA is nondeterministic.
§ This feature is crucial because, unlike finite

automata, nondeterminism adds power to the
capability that a PDA would have if they were only
allowed to be deterministic.
§ i.e. A non-deterministic PDA can represent languages that

a deterministic PDA cannot

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Informal Non-Deterministic Example

§ L = { wwR | w is in (0+1)* }

§ Informal PDA description
§ Start in state q0 that represents the state where we haven’t yet seen the

reversed part of the string. While in state q0 we read each input symbol
and push them on the stack.

§ At any time, assume we have seen the middle; i.e. “fork” off a new branch
that assumes we have seen the end of w. We signify this choice by
spontaneously going to state q1. This behaves just like a nondeterministic
finite automaton
§ We’ll continue in both the forked-branch and the original branch. One of

these branches may die, but as long as one of them reaches a final state we
accept the input.

§ In state q1 compare input symbols with the top of the stack. If match, pop
the stack and proceed. If no match, then the branch of the automaton dies.

§ If we empty the stack then we have seen wwR and can proceed to a final
accepting state.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal Definition of a PDA

§ P = (Q, ∑, G, d, q0, Z0, F)

§ Q = finite set of states, like the finite automaton
§ ∑ = finite set of input symbols, the alphabet
§ G= finite stack alphabet, components we are allowed to

push on the stack
§ q0 = start state
§ Z0 = start symbol. Initially, the PDA’s stack consists of

one instance of this start symbol and nothing else. We
can use it to indicate the bottom of the stack.
§ F = Set of final accepting states.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

PDA Transition Function

§ d = transition function, which takes the triple: d(q, a, X)
where
§ q = state in Q
§ a = input symbol in ∑
§ X = stack symbol in G

§ The output of d is the finite set of pairs (p, ?) where p is a
new state and ? is a new string of stack symbols that
replaces X at the top of the stack.
§ If ? = e then we pop the stack
§ if ? = X the stack is unchanged
§ if ? = YZ then X is replaced by Z and Y is pushed on the stack.

Note the new stack top is to the left end.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal PDA Example

§ Here is a formal description of the PDA that recognizes L = {0n1n | n ≥ 0}.
§ Q = { q1, q2, q3, q4 }
§ ∑ = {0, 1}
§ G = {0, Z0}
§ F = {q1, q4}

§ And d is described by the table below

Input: 0 0 1 1 e e
Stack: 0 Z0 0 Z0 0 Z0
àq1 {(q2,Z0)}
q2 {(q2, 00)} {(q2, 0Z0)} {(q3, e)}

q3 {(q3, e)} {(q4, Z0)}
àq4

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Graphical Format

§ Uses the format
Input-Symbol, Top-of-Stack / String-to-replace-top-of-stack

q1Start q2

q3
q4

e, Z0/Z0

e, Z0/Z0

0,Z0/0Z0
0,0/00

1, 0/e

1, 0/e

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example 2

§ Here is the graphical description of the PDA that accepts the language
§ L = { wwR | w is in (0+1)* }

§ Stays in state q0 when we are reading w, saving the input symbol. Every time we “guess” that we
have reached the end of w and are beginning wR by going to q1 on an epsilon-transition.

§ In state q1 we pop off each 0 or 1 we encounter that matches the input. Any other input will “die”
for this branch of the PDA. If we ever reach the bottom of the stack, we go to an accepting state.

q0 q1 q2Start
e, Z0/Z0
e, 0/0
e, 1/1

0,Z0/0Z0 1,Z0/1Z0
0,0/00 0,1/01
1,0/10 1,1/11

0,0/e
1,1/e

e, Z0/Z0

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Instantaneous Descriptions of a PDA (ID)

§ For a FA, the only thing of interest about the FA is its state.

§ For a PDA, we want to know its state and the entire content of its
stack.
§ Often the stack is one of the most useful pieces of information, since it is

not bounded in size.

§ We can represent the instantaneous description (ID) of a PDA by the
following triple (q,w,?):
§ q is the state
§ w is the remaining input
§ ? is the stack contents

§ By convention the top of the stack is shown at the left end of ? and
the bottom at the right end.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Moves of a PDA

§ To describe the process of taking a transition, we use the “turnstile”
symbol + which is used as:

(q, aw, Xβ) + (p, w, αβ)

§ In other words, we took a transition such that we went from state q to
p, we consumed input symbol a, and we replaced the top of the stack X
with some new string α.

§ We can extend the move symbol to taking many moves:
+ * represents zero or more moves of the PDA.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Move Example

§ Consider the PDA that accepted
L = { wwR | w is in (0+1)* }.

§ We can describe the moves of the PDA for the
input 0110:
§ (q0, 0110, Z0) + (q0, 110, 0Z0) + (q0, 10, 10Z0) + (q1,

10, 10Z0) + (q1, 0, 0Z0) + (q1, e, Z0) + (q2, e, Z0).

§ We could have taken other moves rather than the
ones above, but they would have resulted in a
“dead” branch rather than an accepting state.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Language of a PDA

§ The PDA consumes input and accepts input when
it ends in a final state. We can describe this as:

L(P) = {w | (q0, w, Z0) + * (q, e, α) } where q ∈ F

§ That is, from the starting state, we can make
moves that end up in a final state with any stack
values. The stack values are irrelevant as long as
we end up in a final state.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Alternate Definition for L(PDA)

§ It turns out we can also describe a language of a PDA by ending up
with an empty stack with no further input

N(P) = {w | (q0, w, Z0) +* (q, e, e) } where q is any state.

§ That is, we arrive at a state such that P can consume the entire input
and at the same time empty its stack.

§ It turns out that we can show the classes of languages that are L(P) for
some PDA P is equivalent to the class of languages that are N(P) for
some PDA P.

§ This class is also exactly the context-free languages.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Equivalence of PDA and CFG

§ A context-free grammar and pushdown automata
are equivalent in power.

§ Theorem: Given a CFG grammar G, then some
pushdown automata P recognizes L(G).
§ To prove this, we must show that we can take any CFG

and express it as a PDA. Then we must take a PDA
and show we can construct an equivalent CFG.
§ We’ll show the CFGàPDA process, but only give an

overview of the process of going from the PDAàCFG

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Context Free Grammars

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Context Free Languages (CFL)

§ Not all languages are regular
§ There are many classes “larger” than that of regular languages
§ One of these classes are called “Context Free” languages

§ Described by Context-Free Grammars (CFG)
§ Why named context-free?
§ Property that we can substitute strings for variables regardless of context

§ CFG’s are useful in many applications
§ Describing syntax of programming languages
§ Parsing
§ Structure of documents, e.g.XML

§ Analogy of the day:
§ DFA : Regular Expression as Pushdown Automata : CFG

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

CFG Example

§ Language of palindromes
§ We can show that the language L = { w | w = wR } is not regular.

§ However, we can describe this language by the following
context-free grammar over the alphabet {0,1}:

P à ε
P à 0
P à 1
P à 0P0
P à 1P1

Inductive definition

More compactly: P à ε | 0 | 1 | 0P0 | 1P1

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Formal Definition of a CFG

§ There is a finite set of symbols that form the strings, i.e. there is a finite
alphabet. The alphabet symbols are called terminals.

§ There is a finite set of variables, sometimes called non-terminals or
syntactic categories. Each variable represents a language (i.e. a set of
strings).
§ Ex: In the palindrome example, the only variable is P.

§ One of the variables is the start symbol. Other variables may exist to help
define the language.

§ There is a finite set of productions or production rules that represent the
recursive definition of the language. Each production is defined:

1. Has a single variable that is being defined to the left of the production
2. Has the production symbolà
3. Has a string of zero or more terminals or variables, called the body of the

production. To form strings we can substitute each variable’s production in for
the body where it appears.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

CFG Notation

§ A CFG G may then be represented by these four
components, denoted G=(V,T,P,S)
§ V is the set of variables
§ T is the set of terminals
§ P is the set of productions
§ S is the start symbol.

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Sample CFG

1. EàI // Expression is an identifier
2. EàE+E // Add two expressions
3. EàE*E // Multiply two expressions
4. Eà(E) // Add parenthesis
5. Ià L // Identifier is a Letter
6. Ià ID // Identifier + Digit
7. Ià IL // Identifier + Letter
8. D à 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 // Digits
9. L à a | b | c | … A | B | … Z // Letters

Note Identifiers are regular; could describe as (letter)(letter + digit)*

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Recursive Inference

§ The process of coming up with strings that satisfy individual
productions and then concatenating them together according to more
general rules is called recursive inference.

§ This is a bottom-up process

§ For example, parsing the identifier “r5”

§ Rule 8 tells us that D à 5
§ Rule 9 tells us that L à r
§ Rule 5 tells us that IàL so Iàr
§ Apply recursive inference using rule 6 for IàID and get
§ I à rD.
§ Use Dà5 to get Iàr5.

§ Finally, we know from rule 1 that EàI, so r5 is also an expression.

Exercise: Show the recursive inference for arriving at (x+int1)*10 is an expression

16.070 — April 14/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Derivation

§ Similar to recursive inference, but top-down instead of bottom-up
§ Expand start symbol first and work way down in such a way that it

matches the input string

§ For example, given a*(a+b1) we can derive this by:

§ E ⇒ E*E ⇒ I*E ⇒ L*E ⇒ a*E ⇒ a*(E) ⇒ a*(E+E) ⇒ a*(I+E) ⇒
a*(L+E) ⇒ a*(a+E) ⇒ a*(a+I) ⇒ a*(a+ID) ⇒ a*(a+LD) ⇒ a*(a+bD)
⇒ a*(a+b1)

§ Note that at each step of the productions we could have chosen any
one of the variables to replace with a more specific rule.

When is this useful? Think for example of your Ada compiler

