
16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Theory of computation: More on CFG, CNF, Turing
machines, complexity

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

So far …

§ Two different, though equivalent, methods of
describing languages: finite automata and
regular expressions.
§ Many, but not all languages can be described in that

way, e.g., not the following: {0n1n | n ≥ 0}
§ Context free grammars, a more powerful method

of describing languages.
§ Can describe features that have a recursive structure.
§ An important application of CFGs occurs in the

specification and compilation of programming
languages.
§ Push down automata, a class of machines recognizing

the context-free languages.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

A context free grammar

§ A 4-tuple (V, Σ, R, S)
§ V is a finite set called the variables
§ Σ is a finite set, disjoint from V, called the terminals
§ R is a finite set of rules, with each rule being a variable

and a string variables and terminals
§ S ∈ V is the start variable

§ If u, v, and w are strings of variables and terminals,
and A → w is a rule of the grammar, we say that uAv
yields uwv, written uAv ⇒ uwv.

Write u ⇒ v if u = v or if a sequence u1, u2, …, uk
exists for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ … ⇒ uk ⇒ v

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ Grammar G = ({S}, {a, b}, R, S).
§ The set of rules, R, is: S → aSb | SS | ε

§ This grammar generates strings such as abab,
aaabbb, and aababb.

§ L(G) is the language of all strings of properly
nested parentheses

(if you think of a as being a “(“ and b being a “)”

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Chomsky Normal Form

§ Chomsky Normal Form (CNF) is a simple and useful form
of a CFG

§ A CFG is in CNF if every rule is of the form
Aà BC
Aà a

§ Where a is any terminal and A, B, C are any variables except
B and C may not be the start variable
§ There are two and only two variables on the right hand side of the

rule

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Theorem

§ Any context free language may be generated by a
context free grammar in Chomsky Normal Form

§ To show how this is possible we must be able to
convert any CFG into CNF
1. Eliminate all ε rules of the form A à ε

1. Exception: Sà ε is permitted where S is the start variable

2. Eliminate all unit rules of the form A à B
3. Convert any remaining rules into the form A à BC

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Proof

§ First add a new start symbols S0 and the rule S0àS where S was the
original start symbol
§ This guarantees the new start symbol is not on the RHS of any rule

§ Remove all ε rules.
§ Remove a rule Aàε where A is not the start symbol. For each occurrence

of A on the RHS of a rule, add a new rule with that occurrence of A
deleted

§ Ex:
RàuAv becomes Ràuv

§ This must be done for each occurrence of A, e.g.:
RàuAvAw becomes RàuvAw | uAvw | uvw

Repeat until all ε rules are removed, not including the start

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Proof

§ Next remove all unit rules of the form AàB
§ Whenever a rule Bàu appears, add the rule Aàu.
§ u may be a string of variables and terminals
§ Repeat until all unit rules are eliminated

§ Convert all remaining rules into the form with two variables on the
right
§ The rule Aàu1u2u3…uk becomes
§ Aàu1A1 A1àu2A2 … Ak-2àuk-1uk

§ Where the Ai’s are new variables. u may be a variable or a terminal (and
in fact a terminal must be converted to a variable since CNF does not
allow a mixture of variables and terminals on the right hand side)

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ Convert the following grammar into CNF
SàASA | aB
AàB|S
Bàb|ε

First add a new start symbol S0:
S0à S
SàASA | aB
AàB|S
Bàb|ε

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ Next remove the epsilon transition from rule B
S0à S
SàASA | aB | a
AàB|S|ε
Bàb|ε

§ We must repeat this for rule A:
S0à S
SàASA | aB | a |AS | SA | S
AàB|S |ε
Bàb

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ Next remove unit rules, starting with S0àS and SàS can also be removed
S0à ASA | aB | a | AS | SA
SàASA | aB | a |AS | SA
AàB|S
Bàb

§ Next remove the rule for AàB
S0à ASA | aB | a | AS | SA
SàASA | aB | a |AS | SA
Aàb|S
Bàb

§ Next remove the rule for AàS
S0à ASA | aB | a | AS | SA
SàASA | aB | a |AS | SA
Aàb| ASA | aB | a |AS | SA
Bàb

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Example

§ Finally convert the remaining rules to the proper form by
adding variables and rules when we have more than three
things on the RHS

S0à ASA | aB | a | AS | SA
SàASA | aB | a |AS | SA
Aàb| ASA | aB | a |AS | SA
Bàb

§ Becomes
S0à AA1 | A2B | a | AS | SA
A1àSA
A2àa
SàAA1 | A2B | a |AS | SA
Aàb| AA1 | A2B | a |AS | SA
Bàb

We are done!

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

CNF and Parse Trees

§ Chomsky Normal Form is useful to interpret a
grammar as a parse tree
§ CNF forms a binary tree!
§ Consider the string babaaa on the previous grammar

S0à AS à bSà bASà bASSà baSSà baASSà
babSSà babSAS à babaASà babaaSà babaaa

S0à AA1 | A2B | a | AS | SA
A1àSA

A2àa

SàAA1 | A2B | a |AS | SA
Aàb| AA1 | A2B | a |AS | SA

Bàb

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Grammar as a Parse Tree

S0

A S

b A S

a S
A S
b S A

a a

a

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Why is this useful?

§ Because we know lots of things about binary trees

§ We can now apply these things to context-free
grammars since any CFG can be placed into the
CNF format

§ For example
§ If yield of the tree is a terminal string w
§ If n is the height of the longest path in the tree
§ Then |w| ≤ 2n-1

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Non-context-free languages

§ Certain languages are not context-free. For
example:
§ The language B = {anbncn | n ≥ 0} is not context-free

§ The language C = {aibjck | 0 ≤ i ≤ j ≤ k} is not context-
free

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machines and Complexity

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Devices of Increasing Computational Power

§ So far:
§ Finite Automata – good for devices with small amounts of memory, relatively

simple control
§ Pushdown Automata – stack-based automata

§ But both have limitations for even simple tasks, too restrictive as general
purpose computers

§ Enter the Turing Machine
§ First proposed by Alan Turing in 1936
§ More powerful than either of the above
§ Essentially a finite automaton but with unlimited memory
§ Although theoretical, can do everything a general purpose computer of today

can do

§ If a TM can’t solve it, neither can a computer
§ What does it mean to be able to compute a function?
§ Alonzo Church and Alan Turing independently arrived at equivalent

conclusions: A function is computable if it can be computed by a
Turing machine.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Computability

§ We will start to examine problems that are at the
threshold and beyond the theoretical limits of
what is possible to compute using computers
today.

§ We will examine the following issues with the
help of TM’s

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Recursively Enumerable Languages

§ We use the simplicity of the TM model to prove formally that
there are specific problems (i.e. languages) that the TM cannot
solve.

When we start a TM on an input, three outcomes are possible:
The machine may accept, reject, loop (the machine simply
does not halt)

Two classes of languages:

§ recursively enumerable : TM can accept the strings in the language
but cannot tell for certain that a string is not in the language.
Sometimes these are called “decidable” or “non-decidable” problems.

§ non-recursively enumerable : no TM can even recognize the
members of the language.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

P and NP

§ We then look at problems (languages) that do have TM's
that accept them and always halt;
§ i.e. they not only recognize the strings in the language, but they tell

us when they are sure the string is not in the language.

§ The classes P and NP are those languages recognizable by
deterministic and nondeterministic TM's, respectively, that
halt within a time that is some polynomial in the input.
§ Polynomial is as close as we can get, because real computers and

different models of (deterministic) TM's can differ in their running
time by a polynomial function, e.g., a problem might take O(n2)
time on a real computer and O(n6) time on a TM

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

P and NP

§ P is the class of languages that are decidable in
polynomial time on a deterministic (single-tape)
Turing machine.
§ Example: A directed graph G contains nodes s and t.

The PATH problem is to determine whether a directed
path exists from s to t.
§ We can in many cases/problems avoid brute-force

search and obtain polynomial time solutions.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

P and NP
§ Attempts to avoid brute force in many problems

have not been successful, and polynomial time
algorithms that solve them are not known to exist.
§ Why have “we” been unsuccessful in finding

polynomial time algorithms for these problems?
§ The complexity of many problems are linked. The

discovery of a polynomial time algorithm for one
such problem can be used to solve an entire class
of problems.

P = the class of languages where membership can be decided quickly

NP = the class of languages where membership can be verified
quickly.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

NP

The P versus NP question

P

P = NP

We are unable to prove the existence of a single
language in NP that is not in P.

?
The question whether

P=NP is one of the
greatest unsolved

problems in theoretical
CS and contemporary

mathematics.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

NP Complete

§ These are in a sense the “hardest” problems in NP.
§ These problems correspond to languages that are recognizable

by a nondeterministic TM.
§ However, we will also be able to show that in polynomial

time we can reduce any NP-complete problem to any other
problem in NP.
§ This means that if we could prove an NP Complete

problem to be solvable in polynomial time, then P = NP.

§ We will examine some specific problems that are NP-
complete: satisfiability of Boolean (propositional logic)
formulas, traveling salesman, etc.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Intuitive Argument for an Undecidable Problem

§ Given a program that prints “hello, world” is there
another program that can test if a program given as
input prints “hello, world”?

§ This is tougher than it may sound at first glance. For some
programs it is easy to determine if it prints hello world.
Here is perhaps the simplest:

#include “stdio.h”
void main()
{

printf(“hello, world\n”);
}

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Not as easy as it looks…

§ It would be fairly easy to write a program to test to see if
another program consisting solely of printf statements will
output “hello, world”. But what we want is a program
that can take any arbitrary program and determine if it
prints “hello, world”.

§ This is much more difficult. Consider the following
program:

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Obfuscated Hello World Program
#include "stdio.h"
#define e 3
#define g (e/e)
#define h ((g+e)/2)
#define f (e-g-h)
#define j (e*e-g)
#define k (j-h)
#define l(x) tab2[x]/h
#define m(n,a) ((n&(a))==(a))
long tab1[]={ 989L,5L,26L,0L,88319L,123L,0L,9367L };
int tab2[]={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 };

main(m1,s) char *s; {
int a,b,c,d,o[k],n=(int)s;
if(m1==1){ char b[2*j+f-g]; main(l(h+e)+h+e,b); printf(b); }
else switch(m1-=h){

case f:
a=(b=(c=(d=g)<<g)<<g)<<g;
return(m(n,a|c)|m(n,b)|m(n,a|d)|m(n,c|d));

case h:
for(a=f;a<j;++a)if(tab1[a]&&!(tab1[a]%((long)l(n))))return(a);

case g:
if(n<h)return(g);
if(n<j){n-=g;c='D';o[f]=h;o[g]=f;}
else{c='\r'-'\b';n-=j-g;o[f]=o[g]=g;}
if((b=n)>=e)for(b=g<<g;b<n;++b)o[b]=o[b-h]+o[b-g]+c;
return(o[b-g]%n+k-h);

default:
if(m1-=e) main(m1-g+e+h,s+g); else *(s+g)=f;
for(*s=a=f;a<e;) *s=(*s<<e)|main(h+a++,(char *)m1);

}
}

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Hello World Tester

§ Problem: Create a program that determines if any arbitrary
program prints “hello world”

§ We can show there is no program to solve that problem
(called undecidable)

§ Suppose that there were such a program H, the “hello-
world-tester."

§ H takes as input a program P and an input file I for that
program, and tells whether P, with input I, prints “hello
world” and outputs “yes” if it does, “no” if it does not

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Hello World Tester

H
Hello-world tester

I

P

yes

no

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Hello World Tester

§ Next we modify H to a new program H1 that acts like H, but when H
prints no, H1 prints “hello, world.”

§ To do this, we need to find where “no” is printed and instead output
“hello world” instead:

H1
Hello-world tester

I

P

yes

hello, world

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Hello World Tester

§ Next modify H1 to H2 . The program H2 takes only one input, P2, instead of
both P and I.

§ To do this, the new input P2 must include the data input I and the program P.
§ The program P and data input I are all stored in a buffer in program H2. H2

then simulates H1, but whenever H1 reads input, H2 feeds the input from the
buffered copy. H2 can maintain two index pointers into the buffered data to
know what current data and code should be read next:

H2P2=P,I yes

hello, world
Buffer: P I

H1

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Hello World Tester

§ However, H2 cannot exist. If it did, what would H2(H2) do?
§ That is, we give H2 as input to itself:

H2
Hello-world tester

H2
yes

hello, world

If H2 on the left outputs = “yes”, then H2 given H2 as input will print “hello,
world”. But we just supposed that the first output H2 makes is “yes” and not
“hello world”.

The situation is paradoxical and we conclude that H2 cannot exist
and this problem is undecidable.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Problem Reducibility

§ Once we have a single problem known to be undecidable
we can determine that other problems are also undecidable
by reducing a known undecidable problem to the new
problem.
§ We will use this same idea later when we talk about proving

problems to be NP-Complete.

§ To use this idea, we must take a problem we know to be
undecidable. Call this problem U. Given a new problem,
P, if U can be reduced to P so that P can be used to solve
U, then P must also be undecidable.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Problem Reducibility

§ Important – we must show that U reduces to P, not vice
versa
§ If we show that our P reduces to U then we have only shown that a

new problem can be solved by the undecidable problem
§ It might still be possible to solve problem P by other means; e.g.

we might be taking the tough path to solve P
§ But if we can show the other direction, that P can solve U,

then P must be at least as hard as U, which we already
know to be undecidable.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Reducibility Example

§ Does program Q ever call function foo?
§ This problem is also undecidable

§ Just as we saw with the ‘hello world’ problem, it
is easy to write a program that can determine if
some programs call function foo.
§ But we could have a program that contains lots of

control logic to determine whether or not function
foo is invoked. This general case is much harder,
and in fact undecidable

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Reducibility Example

§ Use the reduction technique for the Hello-World
problem
§ Rename the function “foo” in program Q and all calls to that

function.
§ Add a function “foo” that does nothing and is not called.
§ Modify the program to remember the first 12 characters that it

prints, storing them in array A
§ Modify the program so that whenever it executes any output

statement, it checks the array A to see if the 12 characters
written are “hello, world” and if so, invokes function foo.

§ If the final program prints “hello, world” then it must also
invoke function foo. Similarly, if the program does not print
“hello, world” then it does not invoke foo.

16.070 — April 23/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Foo Caller

§ Say that we have a program F-Test that can
determine if a program calls foo.
§ If we run F-Test on the modified program above,

not only can it determine if a program calls foo, it
can also determine if the program prints “hello,
world”.
§ But we would then be solving the “hello-world-

tester” problem which we already know is
undecidable, therefore our F-Test problem must be
undecidable as well

