
16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

16.070
Introduction to Computers & Programming

Theory of computation 5: Reducibility, Turing machines

Prof. Kristina Lundqvist
Dept. of Aero/Astro, MIT

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

State
control

a b b a

A finite automata

State
control

a b b aj
k
l

A pushdown automata

States and transition function

Tape with input string

Next input symbol to be read

Can recognize a language {0n1n | n ≥ 0}

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

State
control

0 0 1 10
0

Read symbols from the input. As each 0 is read, push it onto the stack.
As soon as 1s are read, pop a 0 from stack. If reading the input finishes at the same
time as the stack becomes empty of 0s, the input is accepted. If the stack becomes
empty while still reading 1s, or if the 1s are finished while there still are 0s on the
stack, reject the input.

{0n1n | n ≥ 0}

{anbncn | n ≥ 0} is not context free

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

State
control

0 1 0 1 • • …

A Turing machine

Differences between finite automata and Turing machines:
1. A TM can both write on the tape and read from it
2. The read-write head can move both to the left and to the right
3. The tape is infinite
4. The special states for rejecting and accepting take immediate effects

Can a TM recognize: {anbncn | n ≥ 0} ?

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

State
control

b c c • • • …

{anbncn | n ≥ 0} ?

a a bX

b c c • • • …x a bX

b c c • • • …x a x X

b x c • • • …x a xX

{anbncn | n ≥ 0} !!

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Reducibility

§ We use the Turing machine as our model of a general
purpose computer.
§ The primary method for proving that problems are

computationally unsolvable is called: Reducibility
§ A reduction is a way of converting one problem into

another problem in such a way that a solution to the
second problem can be used to solve the first problem.

§ Example:

§ Problem of finding your way around in a new city, can be
reduced to the problem of obtaining a map of the city

§ Problem of measuring the area of a rectangle reduces to the
problem of measuring its height and width

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Problem Reducibility

§ Once we have a single problem known to be
undecidable we can determine that other problems
are also undecidable by reducing a known
undecidable problem to the new problem.

§ To use this idea: take a problem known to be
undecidable. Call this problem U. Given a new
problem, P, if U can be reduced to P so that P can
be used to solve U, then P must also be
undecidable.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Problem Reducibility

§ Important – we must show that U reduces to P,
not vice versa
§ If we show that our P reduces to U then we have only

shown that a new problem can be solved by the
undecidable problem
§ It might still be possible to solve problem P by other

means; e.g. we might be taking the tough path to solve
P

§ But if we can show the other direction, that P can
solve U, then P must be at least as hard as U,
which we already know to be undecidable.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Reducibility Example

§ Does program Q ever call function foo?
§ This problem is also undecidable

§ Just as we saw with the ‘hello world’ problem, it
is easy to write a program that can determine if
some programs call function foo.

§ But we could have a program that contains lots of
control logic to determine whether or not function
foo is invoked. This general case is much
harder, and in fact undecidable

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Reducibility Example

§ Use the reduction technique for the Hello-World
problem
§ Rename the function “foo” in program Q and all calls to that

function.
§ Add a function “foo” that does nothing and is not called.
§ Modify the program to remember the first 12 characters that it

prints, storing them in array A
§ Modify the program so that whenever it executes any output

statement, it checks the array A to see if the 12 characters
written are “hello, world” and if so, invokes function foo.

§ If the final program prints “hello, world” then it must also
invoke function foo. Similarly, if the program does not print
“hello, world” then it does not invoke foo.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Foo Caller

§ Say that we have a program F-Test that can
determine if a program calls foo.
§ If we run F-Test on the modified program above,

not only can it determine if a program calls foo, it
can also determine if the program prints “hello,
world”.
§ But we would then be solving the “hello-world-

tester” problem which we already know is
undecidable, therefore our F-Test problem must be
undecidable as well

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machines

§ TM’s described in 1936
§ Turing machines were first proposed by Alan Turing, in

an attempt to give a mathematically precise definition
of "algorithm" or "mechanical procedure".
§ Well before the days of modern computers but remains

a popular model for what is possible to compute on
today’s systems
§ Advances in computing still fall under the TM model,

so even if they may run faster, they are still subject to
the same limitations

§ A TM consists of a finite control (i.e. a finite state
automaton) that is connected to an infinite tape.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machine

§ The tape consists of cells where each cell holds a symbol
from the tape alphabet. Initially the input consists of a
finite-length string of symbols and is placed on the tape.
To the left of the input and to the right of the input,
extending to infinity, are placed blanks. The tape head is
initially positioned at the leftmost cell holding the input.

Finite control

… B B X1 X2 … Xi Xn B B …

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machine Details

§ In one move the TM will:
§ Change state, which may be the same as the current state
§ Write a tape symbol in the current cell, which may be the

same as the current symbol
§ Move the tape head left or right one cell

§ Formally, the Turing Machine is denoted by the
7-tuple:
§ M = (Q, ∑, G, d, q0, B, F)

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machine Description

§ Q = finite states of the control
§ ∑ = finite set of input symbols, which is a subset of Gbelow
§ G= finite set of tape symbols
§ d = transition function. d(q,X) are a state and tape symbol X.
§ The output is the triple, (p, Y, D)
§ Where p = next state, Y = new symbol written on the tape,

D = direction to move the tape head
§ q0= start state for finite control
§ B = blank symbol. This symbol is in Gbut not in ∑.
§ F = set of final or accepting states of Q.

M = (Q, ∑, G, d, q0, B, F)

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

§ Make a TM that recognizes the language

L = { w#w | w ∈ (0,1)* }

That is, we have a language separated by a # symbol with the
same string on both sides.

§ Here is a strategy we can employ to create the TM:
1. Scan the input to make sure it contains a single # symbol. If not,

reject.
2. Starting with the leftmost symbol, remember it and write an X into

its cell. Move to the right, skipping over any 0’s or 1’s until we reach
a #. Continue scanning to the first non-# symbol. If this symbol
matches the original leftmost symbol, then write a # into the cell.
Otherwise, reject.

3. Move the head back to the leftmost symbol that is not X.
4. If this symbol is not #, then repeat at step 2. Otherwise, scan to the

right. If all symbols are # until we hit a blank, then accept.
Otherwise, reject.

TM Example

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

TM Example

§ Typically we will describe TM’s in this informal fashion.
The formal description gets quite long and tedious.
Nevertheless, we will give a formal description for this
particular problem.

§ We can use a table format or a transition diagram format.
In the transition diagram format, a transition is denoted by:

Input symbol / Symbol-To-Write Direction to Move
For example:

0 / 1à

§ Means take this transition if the input is 0, and replace the
cell with a 1 and then move to the right.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

TM for L={w#w|w∈(0,1)*}

aStart

0/0à, 1/1à

#/#à
b

0/0à, 1/1à

B/Bß
c

0/0ß, 1/1ß, #/#ß

B/Bà

Check for #

f0/Xà 1/Xàe

0/0à, 1/1à

g

0/0à, 1/1à

d
#/#à

#/#à

h
#/#à

#/#à

i
0/#ß 1/#ß

0/0ß, 1/1ß, #/#ß

X/Xà

j

0/Xà 1/Xà

#/#à
k

#/#à

l
B/Bà

Match symbols

Return to left

No input left

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Instantaneous Description

§ Sometimes it is useful to describe what a TM does in terms of its
ID (instantaneous description), just as we did with the PDA.

§ The ID shows all non-blank cells in the tape, pointer to the cell
the head is over with the name of the current state
§ use the turnstile symbol + to denote the move.
§ As before, to denote zero or many moves, we can use + *.

§ For example, for the above TM on the input 10#10 we can
describe our processing as follows:

Ba10#10B + B1a0#10B + B10a#10B + B10#b10B + B10#1b0B +
B10#10bB + B10#1c0B + * cB10#10B + Bf10#10B + * BXX#XXBl

§ In this example the blanks that border the input symbols are
shown since they are used in the Turing machine to define the
borders of our input.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machines and Halting

§ One way for a TM to accept input is to end in a final state.
§ Another way is acceptance by halting. We say that a TM halts if it enters a

state q, scanning a tape symbol X, and there is no move in this situation; i.e.
d(q,X) is undefined.

§ Note that this definition of halting was not used in the transition diagram for
the TM we described earlier; instead that TM died on unspecified input!

§ It is possible to modify the prior example so that there is no unspecified input
except for our accepting state. An equivalent TM that halts exists for a TM
that accepts input via final state.

§ In general, we assume that a TM always halts when it is in an accepting
state.

§ Unfortunately, it is not always possible to require that a TM halts even if it
does not accept the input. Such languages are called recursive.
Turing machines that always halt, regardless of accepting or not accepting,
are good models of algorithms for decidable problems.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Turing Machine Variants

§ There are many variations we can make to the basic
TM
§ Extensions can make it useful to prove a theorem or

perform some task
§ However, these extensions do not add anything extra the

basic TM can’t already compute

§ Example: consider a variation to the Turing
machine where we have the option of staying put
instead of forcing the tape head to move left or right
by one cell.
§ In the old model, we could replace each “stay put” move

in the new machine with two transitions, one that moves
right and one that moves left, to get the same behavior.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Multitape Turing Machines

§ A multitape Turing machine is like an ordinary
TM but it has several tapes instead of one tape.

§ Initially the input starts on tape 1 and the other
tapes are blank.

§ The transition function is changed to allow for
reading, writing, and moving the heads on all the
tapes simultaneously.
§ This means we could read on multiple tape and move in

different directions on each tape as well as write a
different symbol on each tape, all in one move.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Multitape Turing Machine

§ Theorem: A multitape TM is equivalent in power to an
ordinary TM. Recall that two TM’s are equivalent if they
recognize the same language. We can show how to convert a
multitape TM, M, to a single tape TM, S:

§ Say that M has k tapes.
§ Create the TM S to simulate having k tapes by interleaving the

information on each of the k tapes on its single tape
§ Use a new symbol # as a delimiter to separate the contents of each tape
§ S must also keep track of the location on each of the simulated heads
§ Write a type symbol with a * to mark the place where

the head on the tape would be
§ The * symbols are new tape symbols that don’t exist

with M
§ The finite control must have the proper logic to

distinguish say, x* and x and realize both refer to the
same thing, but one is the current tape symbol.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Multitape Machine

… 0 1 0 1 0 B …

… a a a B …

… b a B …

M

Equivalent Single Tape Machine:

… # 0 1* 0 1 0 # a a a* * b* a # …

S

#

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Single Tape Equivalent

§ One final detail
§ If at any point S moves one of the virtual tape heads

onto a #, then this action signifies that M has moved the
corresponding head onto the previously unread blank
portion of that tape.
§ To accommodate this situation, S writes a blank symbol

on this tape cell and shifts the tape contents to the
rightmost # by one, adds a new #, and then continues
back where it left off

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Nondeterministic TM

§ Replace the “DFA” part of the TM with an “NFA”
§ Each time we make a nondeterministic move, you can

think of this as a branch or “fork” to two
simultaneously running machines. Each machine
gets a copy of the entire tape. If any one of these
machines ends up in an accepting state, then the input is
accepted.

§ Although powerful, nondeterminism does not
affect the power of the TM model
§ Theorem: Every nondeterministic TM has an

equivalent deterministic TM.
§ We can prove this theorem by simulating any

nondeterministic TM, N, with a deterministic TM, D.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Equivalence of TM’s and Computers

§ In one sense, a real computer has a finite number
of states, and thus is weaker than a TM.

§ But, we can postulate an infinite supply of tapes,
disks, or some peripheral storage device to
simulate an infinite TM tape. Additionally, we
can assume there is a human operator to mount
disks, keep them stacked neatly on the sides of the
computer, etc.

§ Need to show both directions, a TM can simulate
a computer and that a computer can simulate a
TM

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

Computer Simulate a TM

§ This direction is fairly easy - Given a computer
with a modern programming language, certainly,
we can write a computer program that emulates
the finite control of the TM.

§ The only issue remains the infinite tape. Our
program must map cells in the tape to storage
locations in a disk. When the disk becomes full,
we must be able to map to a different disk in the
stack of disks mounted by the human operator.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

TM Simulate a Computer

§ In this exercise the simulation is performed at the level of
stored instructions and accessing words of main memory.
§ TM has one tape that holds all the used memory locations and their

contents.
§ Other TM tapes hold the instruction counter, memory address,

computer input file, and scratch data.
§ The computer’s instruction cycle is simulated by:

1. Find the word indicated by the instruction counter on the
memory tape.

2. Examine the instruction code (a finite set of options), and get
the contents of any memory words mentioned in the instruction,
using the scratch tape.

3. Perform the instruction, changing any words' values as needed,
and adding new address-value pairs to the memory tape, if
needed.

16.070 — April 25/2003 — Prof. I. K. Lundqvist — kristina@mit.edu

TM/Computer Equivalence

§ Anything a computer can do, a TM can do, and vice versa
§ TM is much slower than the computer, though
§ But the difference in speed is polynomial
§ Each step done on the computer can be completed in O(n2) steps on

the TM.

§ While slow, this is key information if we wish to make an
analogy to modern computers. Anything that we can prove
using Turing machines translates to modern computers with
a polynomial time transformation.

§ Whenever we talk about defining algorithms to solve
problems, we can equivalently talk about how to construct a
TM to solve the problem. If a TM cannot be built to solve a
particular problem, then it means our modern computer
cannot solve the problem either.

