16.070 Introduction to Computers and Programming

May 2 Recitation 12 Spring 2002

Topics:

- Project Q&A
- Real-time overview
- Multitasking

Final Project:

Any Questions?

Real-time overview

What is a real-time system?

- Correct data computation must be correct or the system fails
- On-time data data must be available at certain deadlines or the system fails.
- Continuous operation tasks are run repeatedly. Contrast this to the simple programs you wrote at the beginning of the term that did one set of calculations and then exited.
- Can you think of a computer system that is not at least soft real-time?

What is an embedded system?

- Integral part of hardware the hardware won't work without the software
- Specific to the hardware the software is written to do a specific task on a specific machine. You can't take the software in a microwave and have it run on a calculator.

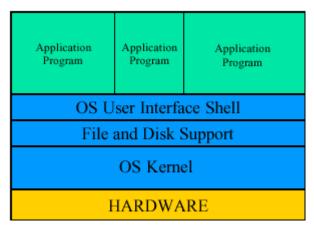


Figure 1 - Layers of a Real-time System

Hardware: The part of a computer system that can be kicked – M. Barr

- CPU
- Memory
- I/O to Sensor and Actuators
- Testing tools

Operating System Kernel – most basic part of an operating system

- Task Scheduler
- Task Dispatcher
- Intertask Communication

Kernel Design Strategies

Two examples...

Polled Loop

- Single Task
- Checks sensor/interrupt/input repeatedly until event occurs
- Pros
 - o Simple
 - Response time easy to determine
- Cons
 - o Simple
 - Wastes CPU time
 - Can fail if several events happen close together (burst)
- Example: Processor for an antenna "listens" for a contact. Starts data recorder when contact received.

Interrupt Driven

- Hardware signal changes the value in an "interrupt register"
- Interrupt register checked during each Fetch-Execute cycle
- If an interrupt has occurred, switch to the interrupt-handling task.
- More than one interrupt can be used Priority
- Pros
 - o CPU can do other things while waiting for an interrupt

- Can handle more than one task
- Cons
 - More complex
 - Timing
 - Priority Conflicts
- Example: Data processing system on a satellite
 - o Incoming data sets an interrupt that starts Data Collection task.
 - Data Collection fires an interrupt every 10 memory blocks to start Data Processing task.
 - Data Processing task fires an interrupt when data is ready to be sent to Earth.
 - o Interrupt servicing task sends processed data to Earth.

Multitasking

Context Switching - What happens when you need to change tasks.

- Save program counter
- Save registers
- Load new program counter
- Load registers

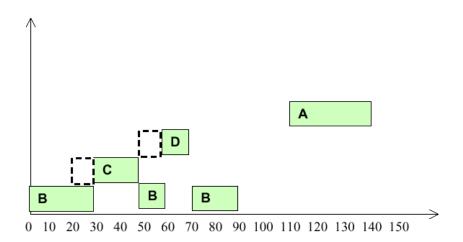
Cyclic Executive

• Run a fixed number of tasks in a fixed sequence

Round-Robin

- Tasks executed in the order they arrive
- Each task is assigned a fixed time slice
- Context switched at the end of the time slice
- AND context switched when a task finishes
- Example 1

Preemptive Priority


- Tasks executed in order or priority
- Higher priority tasks interrupt lower priority tasks
- Context switched when a higher priority task arrives
- AND context switched when a task finishes
- Example 2

Example 1: Round Robin

Imagine a round-robin system with 4 tasks. Context is switched every 30 ms **and** when a task ends. The tasks are cycled through in the order of their appearance. Using the information provided, fill in the table.

Task	Arrives at t= (msec)	Time Needed (msec)
Task A	110	40
Task B	0	60
Task C	20	20
Task D	50	10

Time	Task	Task(s)	Explanation
(msec)	Running	Pending	
0	В		B arrives
10	В		
20	В	С	C arrives
30	С	В	Context switch, C runs
40			
50			
60			
70			
80			
90			
100			
110			
120			
130			
140	Α		A finishes

Example 2: Preemptive Priority

Now take the same set of tasks, but assign them the following priorities. Context is switched when a higher priority task arrives, and when a task finishes. Using the information provided, Fill in the table below and draw a timing diagram.

Task	Arrives at t= (msec)	Time Needed (msec)	Priority
Task A	110	40	1
Task B	0	60	10
Task C	20	20	5
Task D	50	10	20

Time (msec)	Task Running	Task(s) Pending	Explanation
Ō	В	-	B arrives
10	В		
20			
30			
40			
50			
60			
70			
80			
90			
100			
110			
120			
130			
140	Α		A finishes