
Fesq, 10/24/00 1 16.070

Logical Operations
3/9/01 Lecture #13 16.070

• We have been performing arithmetic operations

! Use arithmetic operators; e.g., +, -

! Are performed on values represented as binary patterns; e.g., integer, float

• Logical operations are another class of operations

! Use logical operators; e.g., AND, OR

! Are performed on binary patterns

• Logical operations are used in computer science

! To express conditionals; e.g., in if construct

! To perform bit manipulation; e.g., masking

! To construct the basic components in a computer; i.e., logic gates

• Refer to C book, pp. 365-370

Fesq, 10/24/00 2 16.070

Boolean Algebra

• Boolean Algebra or Boolean Logic is the Algebra of Logic

• Handy for when you need to perform logical operations on logical
variables

! A Logical Variable has a value of 1 or 0, True or False

! Performing Boolean Algebra on logical variables results in a 1 or 0, True or
False

! C implementation of Logical Operators

− Zero is interpreted as False and non-zero is interpreted as True

− Operations return zero if False and one if True

Fesq, 10/24/00 3 16.070

Overview of Logical Operators

• Logical operators, their functions, and their representations in C

Logical Operator # of Inputs Function C Representation

NOT 1 Negate/complement !

AND 2 Result is T iff both
inputs are T

&&

OR 2 Result is T if either
input is T

||

XOR 2 Resut is 1 if inputs
are different

NAND 2 Result is F iff both
inputs are T

NOR 2 Result is F if either
input is T

Fesq, 10/24/00 4 16.070

AND ("ALL") - Binary Function (denoted by && in C)

• Result is True (1) if and only if (IFF) both inputs are True; else Result
is False (0)

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

• Truth Table representation • Gate Representation

... z

x1

xn

z=x1x2...xn

ANDx y

0

1

0

1

0

0
00 1
0

1 1

Fesq, 10/24/00 5 16.070

Truth Table for && Operator

x y x && y
0 0 0

non-zero 0 0
0 non-zero 0

non-zero non-zero 1

Fesq, 10/24/00 6 16.070

AND Examples

Logical AND can be used in if statement to determine hardware

state of health

/* Determine if reaction wheel is spinning */

if ((rw == 1) && (torque_cmd > 0))
{

printf ("Reaction wheel spinning\n")
} /* end if */

Given: a = 1, b = 1, c = 0; then solve the following

a AND b =

a AND c =

b AND c =

Fesq, 10/24/00 7 16.070

Bitwise AND Logical Operation (denoted by & in C)

• Perform bit-by-bit comparison between two operands. For each bit
position, resulting bit is 1 iff both corresponding bits in operand are 1

• Examples of performing bitwise AND on bytes

11111111 10101010
 AND 10001000 AND 10000010
 10001000 10000010

Fesq, 10/24/00 8 16.070

AND Exercises (&&)

• Evaluate the following expressions. True or False?
(3 < 5)

((10/3) > 3) AND (3 > (10/4))

((100 * 3.5) / 2.94) < 120) AND FALSE

Bitwise AND Exercises (&)

• Perform the following bitwise AND logical operations
(1110) 2 AND (0000) 2 =

 (10) 10 AND (05) 10 = (hint: convert to binary)

 (F)16 AND (E) 16 =

Fesq, 10/24/00 9 16.070

OR ("ANY") - Binary Function (denoted by || in C)

• Result is True (1) if either input is True; else Result is False (0)
0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

• Truth Table representation • Gate Representation

... z

x1

xn

z=x1+x2+...+xn

ORx y

0

1

0

1

0

0
10 1
1

1 1

Fesq, 10/24/00 10 16.070

Truth Table for || Operator

x y x || y

0 0 0
non-zero 0 1

0 non-zero 1
non-zero non-zero 1

Fesq, 10/24/00 11 16.070

OR Examples

• Logical OR can by used in if statement to check user input
/* If user enters 'Y' or 'y', say Hello! */

char response;

scanf ("%c", &response);

if ((response == 'Y') || (response == 'y'))
{

printf ("Hello!\n")
}/* end if */

• Given: a = 1, b = 1, c = 0; then solve the following

a OR b =

a OR c =

b OR c =

Fesq, 10/24/00 12 16.070

Bitwise OR Logical Operation ((denoted by | in C))

• Perform bit-by-bit comparison between two operands. For each bit
position, resulting bit is 1 if either corresponding bit in operands is 1

11111111 10101010
 OR 10001000 OR 10000010
 11111111 10101010

Fesq, 10/24/00 13 16.070

OR Exercises (||)

• Evaluate the following expressions. True or False?
((10/3) > 3) || (3 > (10/4))

((100 * 3.5) / 2.94) < 120) || TRUE

 ((3 < 5) && (5 < 7))) || ((12/4) > 3)

Bitwise OR Exercises (|)

• Perform the following bitwise OR logical operations
(1110) 2 OR (0000) 2 =

 (10) 10 OR (05) 10 = (hint: convert to binary)

 (F)16 OR (E) 16 =

Fesq, 10/24/00 14 16.070

NOT - Unary Function (denoted by ! in C)

• Performs the Complement: Result is True (1) if input is False; else
Result is False (0)

NOT 1 = 0
NOT 0 = 1

• Truth Table representation • Gate Representation
(Inverter)

• Truth Table for ! Operator

x !x
0 1

non-zero 0

zx z=x'

NOTx

10
01

Fesq, 10/24/00 15 16.070

 NOT Examples

• !Careful when using Logical NOT as conditional for loop
/* Count down by twos */

int i, countdown = 99;

for (i = countdown, !i, i = i - 2)
{

printf ("Countdown = %d\n", i)
}/* end if */

• Given: a = 1, b = 2, c = 0; then solve the following
NOT a =

NOT b =

NOT c =

Fesq, 10/24/00 16 16.070

Bitwise NOT Logical Operation, "One's Complement"

(denoted by ~ in C)

• For each bit position, change each 1 to a 0 and each 0 to a 1

~(10101010) = (01010101)

~(11111111) = (00000000)

Fesq, 10/24/00 17 16.070

XOR - Exclusive OR Binary Function (not represented in C)

• Result is True (1) if the two inputs are different; else Result is False (0)
0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 = 0

• Truth Table representation • Gate Representation

z z=x⊕ y

x

y

XORx y

0

0

0

1

0

0
10 1
1

1 1

Fesq, 10/24/00 18 16.070

 XOR Examples

• Given: a = T, b = T, c = F; then solve the following
a XOR b =

a XOR c =

b XOR c =

Bitwise Logical Operation ((denoted by ^ in C))

• Perform bit-by-bit comparison between two operands. For each bit
position, resulting bit is 1 if corresponding bits in operands are
different

(10101010) XOR (10000010) = (00101000)

(11111111) XOR (10001000) = (01110111)

Fesq, 10/24/00 19 16.070

z

x

y
z=1

x=0

y=1

0

0

1

1
0 1

DeMorgan's Law

• Negate the inputs and output of an AND gate:

• Create the truth table that corresponds with this circuit

• This can be described algebraically: (x' AND y')' = x OR y

• DeMorgan's Law: (x AND y)' = x' OR y', (x OR y)' = x' AND y'

ANDx' y'

1

0

1

0

1

1
01 0
0

0 0

x y

0

1

0

0
0 1

1 1

0

1

1
1

z

Fesq, 10/24/00 20 16.070

Summary

• Logical Operators evaluate the truth or falseness of expressions and
returns a TRUE (=1) or FALSE (=0)

Operator C Logical C Bitwise 00 01 or 10 11

AND && &

OR || |

XOR n/a ^

NOT ! ~ --

