Logical Operations

3/9/01
Lecture \#13
16.070

- We have been performing arithmetic operations
$>$ Use arithmetic operators; e.g., +, -
$>$ Are performed on values represented as binary patterns; e.g., integer, float
- Logical operations are another class of operations
$>$ Use logical operators; e.g., AND, OR
$>$ Are performed on binary patterns
- Logical operations are used in computer science
> To express conditionals; e.g., in if construct
$>$ To perform bit manipulation; e.g., masking
$>$ To construct the basic components in a computer; i.e., logic gates
- Refer to C book, pp. 365-370

Boolean Algebra

- Boolean Algebra or Boolean Logic is the Algebra of Logic
- Handy for when you need to perform logical operations on logical variables
- A Logical Variable has a value of 1 or 0, True or False
$>$ Performing Boolean Algebra on logical variables results in a 1 or 0 , True or False
>C implementation of Logical Operators
- Zero is interpreted as False and non-zero is interpreted as True
- Operations return zero if False and one if True

Overview of Logical Operators

- Logical operators, their functions, and their representations in C

Logical Operator	\# of Inputs	Function	C Representation	
NOT	1	Negate/complement	$!$	
AND	2	Result is T iff both inputs are T	$\boldsymbol{\& \&}$	
OR	2	Result is T if either input is T	$\boldsymbol{\\|}$	
XOR	2	Resut is 1 if inputs are different		
NAND	2	Result is F iff both inputs are T		
NOR	Result is F if either input is T			

AND ("ALL') - Binary Function (denoted by \&\& in C)

- Result is True (1) if and only if (IFF) both inputs are True; else Result is False (0)

$$
\begin{aligned}
& 0 \text { AND } 0=0 \\
& 0 \text { AND } 1=0 \\
& 1 \text { AND } 0=0 \\
& 1 \text { AND } 1=1
\end{aligned}
$$

- Truth Table representation

\mathbf{x}	\mathbf{y}	AND
0	0	$\mathbf{0}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

- Gate Representation

Truth Table for \&\& Operator

\mathbf{x}	\mathbf{Y}	$\mathbf{x} \& \& \mathbf{Y}$
0	0	0
non-zero	0	0
0	non-zero	0
non-zero	non-zero	1

AND Examples

Logical AND can be used in if statement to determine hardware state of health

```
/* Determine if reaction wheel is spinning */
if ((rw == 1) && (torque_cmd > 0))
{
    printf ("Reaction wheel spinning\n")
} /* end if */
```

Given: $\quad \mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0$; then solve the following a AND $\mathrm{b}=$ a AND c = b AND c =

Bitwise AND Logical Operation (denoted by \& in C)

- Perform bit-by-bit comparison between two operands. For each bit position, resulting bit is 1 iff both corresponding bits in operand are 1
- Examples of performing bitwise AND on bytes

1111111110101010
AND $\frac{10001000}{10001000}$
AND $\frac{10000010}{10000010}$

AND Exercises (\&\&)

- Evaluate the following expressions. True or False?

$$
\begin{aligned}
& (3<5) \\
& ((10 / 3)>3) \text { AND }(3>(10 / 4)) \\
& ((100 * 3.5) / 2.94)<120) \text { AND FALSE }
\end{aligned}
$$

Bitwise AND Exercises (\&)

- Perform the following bitwise AND logical operations

$$
\begin{aligned}
& (1110)_{2} \text { AND }(0000)_{2}= \\
& (10)_{10} \text { AND }(05)_{10}= \\
& (\mathrm{F})_{16} \text { AND }(\mathrm{E})_{16}=
\end{aligned}
$$

OR ("ANY") - Binary Function (denoted by || in C)

- Result is True (1) if either input is True; else Result is False (0)

$$
\begin{aligned}
& 0 \text { OR } 0=0 \\
& 0 \text { OR } 1=1 \\
& 1 \text { OR } 0=1 \\
& 1 \text { OR } 1=1
\end{aligned}
$$

- Truth Table representation

\mathbf{x}	\mathbf{y}	OR
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{1}$

- Gate Representation

Truth Table for || Operator

\mathbf{x}	\mathbf{y}	$\mathbf{x}\|\mid \mathbf{Y}$
0	0	0
non-zero	0	1
0	non-zero	1
non-zero	non-zero	1

OR Examples

- Logical OR can by used in if statement to check user input

```
/* If user enters 'Y' or 'y', say Hello! */
char response;
scanf ("%c", &response);
if ((response == 'Y') || (response == 'Y'))
{
        printf ("Hello!\n")
}/* end if */
```

- Given: $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0$; then solve the following
a OR b $=$
a OR c $=$
b OR c=

Bitwise OR Logical Operation ((denoted by | in C))

- Perform bit-by-bit comparison between two operands. For each bit position, resulting bit is 1 if either corresponding bit in operands is 1

	11111111		
OR	10001000		
11111111		\quad OR	10101010
:---			

OR Exercises (||)

- Evaluate the following expressions. True or False?

$$
\begin{aligned}
& ((10 / 3)>3) \|(3>(10 / 4)) \\
& ((100 * 3.5) / 2.94)<120) \| \text { TRUE } \\
& ((3<5) \& \&(5<7))) \|((12 / 4)>3)
\end{aligned}
$$

Bitwise OR Exercises (|)

- Perform the following bitwise OR logical operations
$(1110)_{2}$ OR $(0000)_{2}=$
(10) ${ }_{10}$ OR (05) $)_{10}=\quad$ (hint: convert to binary)
$(\mathrm{F})_{16} \mathrm{OR}(\mathrm{E})_{16}=$

NOT - Unary Function (denoted by ! in C)

- Performs the Complement: Result is True (1) if input is False; else Result is False (0)

$$
\begin{aligned}
& \text { NOT } 1=0 \\
& \text { NOT } 0=1
\end{aligned}
$$

- Truth Table representation

x	NOT
0	1
1	0

- Gate Representation (Inverter)

- Truth Table for ! Operator

\mathbf{x}	$\mathbf{!}$
0	1
non-zero	0

NOT Examples

- Careful when using Logical NOT as conditional for loop

```
/* Count down by twos */
int i, countdown = 99;
for (i = countdown, !i, i = i - 2)
{
    printf ("Countdown = %d\n", i)
}/* end if */
```

- Given: $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=0$; then solve the following NOT $\mathrm{a}=$

NOT b =
NOT c =

Bitwise NOT Logical Operation, "One's Complement" (denoted by ~in C)

- For each bit position, change each 1 to a 0 and each 0 to a 1

$$
\begin{aligned}
& \sim(10101010)=(01010101) \\
& \sim(11111111)=(00000000)
\end{aligned}
$$

XOR - Exclusive OR Binary Function (not represented in C)

- Result is True (1) if the two inputs are different; else Result is False (0)

$$
\begin{aligned}
& 0 \text { XOR } 0=0 \\
& 0 \text { XOR } 1=1 \\
& 1 \text { XOR } 0=1 \\
& 1 \text { XOR } 1=0
\end{aligned}
$$

- Truth Table representation

\mathbf{x}	\mathbf{y}	XOR
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{0}$

- Gate Representation

XOR Examples

- Given: $\mathrm{a}=\mathrm{T}, \mathrm{b}=\mathrm{T}, \mathrm{c}=\mathrm{F}$; then solve the following
a XOR b =
a XOR c =
b XOR c =

Bitwise Logical Operation ((denoted by ^ in C))

- Perform bit-by-bit comparison between two operands. For each bit position, resulting bit is 1 if corresponding bits in operands are different
$(10101010) \operatorname{XOR}(10000010)=(00101000)$
$(11111111) \operatorname{XOR}(10001000)=(01110111)$

DeMorgan's Law

- Negate the inputs and output of an AND gate:

- Create the truth table that corresponds with this circuit

\mathbf{x}	\mathbf{y}	\mathbf{x}^{\prime}	$\mathbf{y}_{\mathbf{\prime}}$	AND	\mathbf{z}
0	0	1	1	$\mathbf{1}$	$\mathbf{0}$
0	1	1	0	$\mathbf{0}$	$\mathbf{1}$
1	0	0	1	$\mathbf{0}$	$\mathbf{1}$
1	1	0	0	$\mathbf{0}$	$\mathbf{1}$

- This can be described algebraically: (x^{\prime} AND $\left.y^{\prime}\right)^{\prime}=x$ OR y
- DeMorgan's Law: (x AND y)' = x' OR y', (x OR y)' = x' AND y'

Summary

- Logical Operators evaluate the truth or falseness of expressions and returns a TRUE (=1) or FALSE (=0)

Operator	C Logical	C Bitwise	$\mathbf{0 0}$	01 or 10	$\mathbf{1 1}$	
AND	$\& \&$	$\&$				
OR	$\\|$	\downarrow				
XOR	n / a	\wedge				
NOT	$!$	\sim		--		

