
Computer Architecture 2/26/01 Lecture #9 16.070

- On a previous lecture, we discussed the software development process and in particular, the development of a software architecture
- Recall the output of the Conceive phase: **functions**, **concept** and high level **partition** which collectively are known as the architecture
- Today's lecture discusses the architecture of the hardware underlying the software

Fesq, 2/26/01 1 16.070

Computer Architecture

- An overview of how computers are organized
- A digital computer consists of an interconnected system of processors, memories and input/output devices
- A digital computer consists of three basic components
 - ➤ Central Processing Unit "brain" to coordinate activities

• Central Processing Unit

- The Central Processing Unit (<u>CPU</u>) is the "brain" of the computer
- CPU consists of
 - ➤ <u>Control unit</u> which fetches instructions from main memory and determines type
 - Arithmetic and logical unit (<u>ALU</u>) which executes instructions
 - Registers which are high-speed memory to store temporary results
- Function: Execute programs stored in main memory
 - > Fetch instructions
 - Examine instructions -- decode
 - > Execute instructions

Registers

- Program Counter
 - ➤ Holds the address of the memory cell to be fetched
 - ➤ "Points" to memory location of next instruction to be executed
 - ➤ After Fetch operation, program counter is incremented to point to the next instruction
- Instruction Register
 - ➤ Holds the instruction currently being executed
- Accumulator Register
 - > Stores result of functions performed by arithmetic logic unit

Memory

- Memory: part of the computer where programs and data are stored
- Memory consists of a number of sequential storage locations
- Each memory location is capable of storing one data element or one computer instruction

Computer memory

Memory location 0
Memory location 1
Memory location 2
Memory location 3
•••
•••

Memory Structure

- The basic unit of memory is the binary digit, called a <u>bit</u> 0
- Number of bits per memory location is computer-dependant
 - ➤ IBM 370: 8 bits per cell
 - ➤ Dec PDP-8: 12 bits per cell
 - ➤ Honeywell 6180: 36 bits per cell
 - ➤ CDC Cyber: 60 bits per cell
- A memory location that is 8 bits wide is referred to as a <u>byte</u>

00000000 11111111 00101011

• A memory location that is 16 bits wide is referred to as a word

Memory Addresses

- The memory location is the smallest addressable unit
- Each memory location has a unique address, consecutive locations have addresses differing by 1
- For byte-sized memory locations
 - 0 00001111
 - 1 10000001
 - 2 00000000
 - 3 00000000
 - \leftarrow 8 bits \rightarrow

Computer Instructions Store in Memory

- Computer instructions are made up of two parts
 - ➤ Operation Code, or <u>op-code</u>
 - Specifies action to be performed by the CPU
 - **>** <u>Operand</u>
 - Specifies source and/or destination of the data acted on by the op-code

```
E.g., ADD 2

op-code = ADD

operand = 2

function = add 2 to the contents of the accumulator, and store result back into accumulator
```

• A computer <u>instruction set</u> is list of valid op-codes that a CPU can execute

Memory Types

- Most computer systems have two types of memory
 - ➤ Main memory, which contains two kinds of memory
 - RAM Random Access Memory
 - Used for reading/writing
 - Contents are lost when power is removed
 - ROM Read Only Memory
 - Contents of ROM not lost when computer is turned off
 - Useful for storing "boot" program
 - Can contain <u>firmware</u> software permanently stored in hardware
 - ➤ Secondary storage
 - Used to save programs and data normally stored in RAM
 - Contents not lost when unit is turned off
 - E.g., Floppy disk drive

Input/Output Devices

- Computer I/O devices are often referred to as <u>Peripherals</u>
- Examples: disk drives, video monitors, printers, keyboards
- Two general classes of I/O interface
 - ➤ Serial interface port
 - Transmits/Receives data one bit at a time
 - Can transmit over long distances
 - ➤ Parallel interface port
 - High speed data transfer
 - Limited by cable length

Timing

- Basic timing is controlled by a clock generator circuit
- Clock signal is used to synchronize all activities within the computer
- Clock determines how fast instructions can be fetched from memory and executed
 - ➤ 16 MHz
 - **>** 64 MHz
 - ➤ 800 MHz Pentium 3
 - > ...

Bus Architecture

- A <u>bus</u> is a collection of electronic signal lines all dedicated to a particular task
- The CPU, memory, and I/O are separate electronic modules that are interconnected by buses
- In a computer, there typically are three buses
 - > Address Bus
 - ➤ Data Bus
 - ➤ Control Bus

Data Bus

- The width of the data bus in bits is used to classify the processor
 - ➤ 8-bit processor has an 8-bit data bus
 - ➤ 16-bit processor has a 16-bit data bus (Intel 8086 processor)
- The width of the data bus determines how much data the processor can read or write in one memory or I/O cycle
- If width of data exceeds capacity of data bus, reading/writing requires more than one read/write cycle -- less efficient
- The data bus is a bi-directional line

Address Bus

- The address bus is used to identify the location that the CPU will communicate with
- The address bus can identify a memory location or an I/O device, also called an I/O port
- For the 8086, the address bus is 20 bits wide, which allows for output to 2²⁰ unique addresses
- The address bus is an output line

Control Bus

- The control bus identifies if the address on the address bus is for a memory location or for an I/O port
- The control bus identifies the direction of data flow on the data bus
- The CPU activates a control bus signal
 - > MEMORY READ read data from memory into the CPU
 - > MEMORY WRITE write data from the CPU to memory
 - ➤ I/O READ read data from an input device into the CPU
 - ➤ I/O WRITE write data from the CPU to an output device
- The control bus is an output line

Instruction Execution

- The CPU executes instructions in the following series of steps
 - 1. Fetch next instruction from memory (PC points to memory location)
 - 2. Move instruction into instruction register
 - 3. Change program counter to point to next instruction
 - 4. Determine type of instruction just fetched
 - 5. If instruction uses data in memory, determine where they are
 - 6. Fetch data, if any, into internal CPU registers
 - 7. Execute instruction
 - 8. Store result in proper place
 - 9. Go to step 1 and begin executing the following instruction

Fetch and Execute Cycle Example

• To monitor fetch/execution cycle, compile C code to Assembly code Fragment of C code:

```
x = 0;
while (x <= 2)
    x = x + 1;
/* end while */</pre>
```

Compiles into Assembly Code:

Addr instruction	comments
10 LOAD R1,0	Load 0 into register 1
11 STORE R1,X	Store contents of register 1 into mem location for x
12 LOAD R2,2	Load 2 into register 2
13 TEST R1,R2	Compare contents of reg 1 with contents of reg 2
14 JGT 17	If contents of reg 1 greater than reg 2, jump to line 17
15 ADD X,1,R1	Add 1 to contents of x and store in register 1
16 BRANCH 11	Unconditionally branch to step 11
17	continuation of program

Fetch and Execute Cycle Example

Trace execution:

	step 1	step 2	step 3	step 4	step 5	step 6	step 7	step 8	step 9	step 10
PC										
IR										
R1										
R2										
CCR										
X										

Review

- Computer architecture consists of CPU, Memory, and I/O, interconnected via busses
- Computers operate on a fetch, examine, execute cycle
- For Wed. and Fri, read Sections C5.9-5.13
- Lab sessions today and tomorrow
- In-class exam next Monday, 3/5/01
 - \triangleright Covers material up to and including lecture #8 (2/23)
 - ➤ Covers material up to and including Problem Set #3
 - ➤ Closed book