Modular Programming
2/16/01 Lecture#5 16.070

e Outline
» Need for, and benefits of, modular programs
» How to design modular programs
» Using functions to build modular programs
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Modular Programming - Need and Approach

o Typical industry programming projects consist of thousands of lines of
code or more

* One huge monolithic program would be unmanageable,
Incomprehensible, difficult to design, write, debug, test, etc.

e Modular Programming: Divide-and-Conquer approach to programming
» Divide into sub-problems
» Size of modules reduced to humanly comprehensible and manageable level
« Anaogous approaches. manufacturing a spacecraft, or a car

» Manufacture individual components, test separately
» Assemble into larger components, integrate and test
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Modular Programming - Process

 Latein the concelve phase, program isdivided into small, independent
modules that are separately named and individually invokeable
program el ements

» Partitioning based on
— Intensity of information exchange among internal steps
— Likelihood that internal stepswill change
— Hiding interfaces to hardware and humans
 Modules are designed, written, tested, debugged by individuals or
small teams
» Allows for multiple programmers to work in parallel
* Modules are integrated to become a software system that satisfies the
problem reguirements

» To integrate successfully, original decision must be good and interfaces
between modules must be correct
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Modular Programming - Process
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Modular Program Example

e Problem/Goal: Design and implement a program that moves Robbie
the Robot based on user input from keyboard

* Requirements Specification: Develop a program that does the
following:

» Display amenu of choices for robot motion

» Read keyboard input
— Input can be any one of 4 arrows showing movement up, down, left, right
— Input other than the arrows terminates the program.

» Move Robbie based on keyboard input
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Modular Program Example - cont.

« Analysis: Input = A value for keyboard input; Output = Direction of
robot movement

e Design: Pseudo-code algorithm
Print menu
Read request
If request is LI move robot forward
Elseif requestis[] move robot |eft
Elseif requestis[] move robot right
Elseif request is I move robot backward
Else print " Terminating program."
End if
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Modular Program Example - cont.

 Algorithm contains two sub-problems
» Print menu and read request -- based on interfacing with humans
» Move Robot -- based in computation/interfacing with robot

 Perform top-down stepwise refinement
» Define algorithms for sub-problems
» Refine them - may need to be broken down into sub-sub-problems

» At lowest level, assign name to each module and combine named modules
Into higher level sub-problem algorithm (e.g., Move Robot => move_robot)
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Structure Chart for Top-L evel Pseudo-code Algorithm
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Pseudo-code for print-menu function
e Print_menu:

print " This program moves Robbie the Robot based on user input.”
print "Enter [1to move Robbie forward"

print "Enter [I to move Robbie |eft"

print "Enter [J to move Robbie right"

print "Enter [J to move Robbie backward"

read request
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Advantages of Modular Programming

e Manageable: Reduce problem to smaller, smpler, humanly
comprehensible problems

* Divisibles Modules can be assigned to different teams/programmers
» Enables parallel work, reducing program development time
» Facilitates programming, debugging, testing, maintenance

e Portable: Individual modules can be modified to run on other
platforms

e Re-usable: Modules can be re-used within a program and across
programs
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Using Functionsto Build M odular Programs
* In C, modules are implemented as Functions
A functionisablock of code that performs a specific task

* Therole of aFunctionisto
» Accept input (optional)
» Perform atask
» Return output (optional)

 Functions are identified by unique, programmer-defined names
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Function Elements
 Function Definition - used to define/implement a function

e Function Calls - used to invoke/run a function
» Passing data between functions

 Function Declarations/Prototypes - used to identify a function to the
compiler prior to calling the function
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Function Definitions consist of

 Function type
» Specified in the header, which isthe first line of the Function
» ldentifies the type of value to be returned; e.g., integer
» If no value isto be returned, type = void

e Function name - main or unigue user-defined
* (Optional) List of parameters enclosed in parentheses (void if none)

 Function body - variable declarations/statements to express algorithm,
In brackets
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Example of a Function Definition

o Simple function that prints menu to screen
void print_menu(void)

{
printf ("This program ...;
printf ("Enter [/to move...;

}
e Addintheread request

char print_menu(void)

{
char request;
printf ("This program ...;
printf ("Enter [/to move...;
scanf (" %c" , &request);
return request;

}
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Function Calls

* Torunafunction, it must be called by another function
* Tocall afunction
» List name of function e.d., print_menu(), move robot(user_input)
»List of actual parameters/arguments, if any, enclosed in parentheses
 When afunction iscalled
» Program control passesto called function
» Code corresponding to called function is executed

» Function code is kept in separate area of main memory during execution

» After function body completes execution, program control returnsto calling
function
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Parameter Passing
« Arguments can be used to supply input to a function

» Values of actual parameters are copied to memory locations of
corresponding formal parameters in function's data area

» Call function move_robot(user input)
» Value of user_input copied into direction

 After function completes, program control returned to calling function
> If function was to return value, value is returned
» Called function cannot access memory location of actual parameters
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int main(void) void move_robot(char direction)
{ {
char user_input; .
... [* moverobot in direction */
user_input = print_menu(); ... I* specified by passed  */
move_robot(user _input); ... [* argument */
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Passing Data Between Functions

 Data can be passed between functions in three ways

» Input to afunction: Parameters

— Used to send values to function

— Parameters are variables declared in formal parameter list of function header:
void move_robot(char direction);

— Calling function can send data (actual parameters/arguments) to called function:
move_robot(user_input);

— One-to-one correspondence between actual and formal parameters
» Output from afunction: return avalue from afunction

» Global variables, declared in source file outside/before function defs
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Function Declarations (also called Function Prototypes)
A function must be declared before it can be called

 Notifiesthe compiler that you intend to define and use this function
» Called function will have a definition consistent with prototype

» List of parameters/arguments, if any, enclosed in parentheses

o Consists of
» Function type e.d., char print_menu(void);
» Function name
» List of function parameter types enclosed in parentheses
» Terminating semicolon e.g., void move robot(char direction);
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Scope of Functions

 Function Declaration/Prototype defines region in program in which
function may be used by other functions

» Global prototypes. Function prototype placed outside function definitions
— Scope begins where prototype is placed and extends to end of sourcefile
— Any function in program may use it
— Usually appear before definition of function main

» Local prototypes. Function prototype placed in function definitions

— Scope begins where prototype is placed and extends to end of function in which it
appears
— Must have calls to the declared function in the parent function
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Stylein Modular Programming

o Step-wise refinement until expressible in 1-2 short English sentences

Optimize module size. Rule of thumb: 2-50 lines

Restrict number of functions called by afunction. Rule of thumb: ~7

Assign descriptive names to functions that reflect purpose of function

In comments before function definition header, clearly identify all 1/0

To pass data, use parameters instead of global variables

Use function prototypes uniformly

Design functions that can be used in other programs
Use functions that have already been defined and tested
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Summary

* Today we learned
» What modular programming is
» Why we want to design modular programs
» How to implement modular programs using functions
e Readings:
» Review chapter C6 with thislecture
» For Tuesday (Monday classes), read C5.1-C5.8 on Variables and Operators.
» For Wednesday, read C4
» For Friday, read C9

* Note: Material for Weeks 3 and 4 have been swapped to provide you
with more programming tools

e Errata: 16.070 TA officeis33-112
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