Modular Programming
2/16/01 Lecture#5 16.070

e Outline
» Need for, and benefits of, modular programs
» How to design modular programs
» Using functions to build modular programs

Fesq, 2/16/01 1 16.070

Modular Programming - Need and Approach

o Typical industry programming projects consist of thousands of lines of
code or more

* One huge monolithic program would be unmanageable,
Incomprehensible, difficult to design, write, debug, test, etc.

e Modular Programming: Divide-and-Conquer approach to programming
» Divide into sub-problems
» Size of modules reduced to humanly comprehensible and manageable level
« Anaogous approaches. manufacturing a spacecraft, or a car

» Manufacture individual components, test separately
» Assemble into larger components, integrate and test

Fesq, 2/16/01 2 16.070

Modular Programming - Process

 Latein the concelve phase, program isdivided into small, independent
modules that are separately named and individually invokeable
program el ements

» Partitioning based on
— Intensity of information exchange among internal steps
— Likelihood that internal stepswill change
— Hiding interfaces to hardware and humans
 Modules are designed, written, tested, debugged by individuals or
small teams
» Allows for multiple programmers to work in parallel
* Modules are integrated to become a software system that satisfies the
problem reguirements

» To integrate successfully, original decision must be good and interfaces
between modules must be correct

Fesq, 2/16/01 3 16.070

Modular Programming - Process

Requirements |—— |

Final —|->

code

module 1 —+ module :L‘_|.> module |
spec design code 1

module 2 —J» module 2‘—|-> module
spec design code 2

—|> module 3‘_|> module |
| design | code 3 |

Integrate &
test

module 3
spec

Fesq, 2/16/01 4 16.070

Modular Program Example

e Problem/Goal: Design and implement a program that moves Robbie
the Robot based on user input from keyboard

* Requirements Specification: Develop a program that does the
following:

» Display amenu of choices for robot motion

» Read keyboard input
— Input can be any one of 4 arrows showing movement up, down, left, right
— Input other than the arrows terminates the program.

» Move Robbie based on keyboard input

Fesq, 2/16/01 5 16.070

Modular Program Example - cont.

« Analysis: Input = A value for keyboard input; Output = Direction of
robot movement

e Design: Pseudo-code algorithm
Print menu
Read request
If request is LI move robot forward
Elseif requestis[] move robot |eft
Elseif requestis[] move robot right
Elseif request is I move robot backward
Else print " Terminating program."
End if

Fesq, 2/16/01 6 16.070

Modular Program Example - cont.

 Algorithm contains two sub-problems
» Print menu and read request -- based on interfacing with humans
» Move Robot -- based in computation/interfacing with robot

 Perform top-down stepwise refinement
» Define algorithms for sub-problems
» Refine them - may need to be broken down into sub-sub-problems

» At lowest level, assign name to each module and combine named modules
Into higher level sub-problem algorithm (e.g., Move Robot => move_robot)

Fesq, 2/16/01 7 16.070

Structure Chart for Top-L evel Pseudo-code Algorithm

Fesq, 2/16/01

e

main_program

print_menu

T~

move_robot

16.070

Pseudo-code for print-menu function
e Print_menu:

print " This program moves Robbie the Robot based on user input.”
print "Enter [1to move Robbie forward"

print "Enter [I to move Robbie |eft"

print "Enter [J to move Robbie right"

print "Enter [J to move Robbie backward"

read request

Fesq, 2/16/01 9 16.070

Advantages of Modular Programming

e Manageable: Reduce problem to smaller, smpler, humanly
comprehensible problems

* Divisibles Modules can be assigned to different teams/programmers
» Enables parallel work, reducing program development time
» Facilitates programming, debugging, testing, maintenance

e Portable: Individual modules can be modified to run on other
platforms

e Re-usable: Modules can be re-used within a program and across
programs

Fesq, 2/16/01 10 16.070

Using Functionsto Build M odular Programs
* In C, modules are implemented as Functions
A functionisablock of code that performs a specific task

* Therole of aFunctionisto
» Accept input (optional)
» Perform atask
» Return output (optional)

 Functions are identified by unique, programmer-defined names

Fesq, 2/16/01 11 16.070

Function Elements
 Function Definition - used to define/implement a function

e Function Calls - used to invoke/run a function
» Passing data between functions

 Function Declarations/Prototypes - used to identify a function to the
compiler prior to calling the function

Fesq, 2/16/01 12 16.070

Function Definitions consist of

 Function type
» Specified in the header, which isthe first line of the Function
» ldentifies the type of value to be returned; e.g., integer
» If no value isto be returned, type = void

e Function name - main or unigue user-defined
* (Optional) List of parameters enclosed in parentheses (void if none)

 Function body - variable declarations/statements to express algorithm,
In brackets

Fesq, 2/16/01 13 16.070

Example of a Function Definition

o Simple function that prints menu to screen
void print_menu(void)

{
printf ("This program ...;
printf ("Enter [/to move...;

}
e Addintheread request

char print_menu(void)

{
char request;
printf ("This program ...;
printf ("Enter [/to move...;
scanf (" %c" , &request);
return request;

}

Fesq, 2/16/01 14 16.070

Function Calls

* Torunafunction, it must be called by another function
* Tocall afunction
» List name of function e.d., print_menu(), move robot(user_input)
»List of actual parameters/arguments, if any, enclosed in parentheses
 When afunction iscalled
» Program control passesto called function
» Code corresponding to called function is executed

» Function code is kept in separate area of main memory during execution

» After function body completes execution, program control returnsto calling
function

Fesq, 2/16/01 15 16.070

Parameter Passing
« Arguments can be used to supply input to a function

» Values of actual parameters are copied to memory locations of
corresponding formal parameters in function's data area

» Call function move_robot(user input)
» Value of user_input copied into direction

 After function completes, program control returned to calling function
> If function was to return value, value is returned
» Called function cannot access memory location of actual parameters

Fesq, 2/16/01 16 16.070

Fesq, 2/16/01

int main(void) void move_robot(char direction)
{ {
char user_input; .
... [* moverobot in direction */
user_input = print_menu(); ... I* specified by passed */
move_robot(user _input); ... [* argument */

17 16.070

Passing Data Between Functions

 Data can be passed between functions in three ways

» Input to afunction: Parameters

— Used to send values to function

— Parameters are variables declared in formal parameter list of function header:
void move_robot(char direction);

— Calling function can send data (actual parameters/arguments) to called function:
move_robot(user_input);

— One-to-one correspondence between actual and formal parameters
» Output from afunction: return avalue from afunction

» Global variables, declared in source file outside/before function defs

Fesq, 2/16/01 18 16.070

Function Declarations (also called Function Prototypes)
A function must be declared before it can be called

 Notifiesthe compiler that you intend to define and use this function
» Called function will have a definition consistent with prototype

» List of parameters/arguments, if any, enclosed in parentheses

o Consists of
» Function type e.d., char print_menu(void);
» Function name
» List of function parameter types enclosed in parentheses
» Terminating semicolon e.g., void move robot(char direction);

Fesq, 2/16/01 19 16.070

Scope of Functions

 Function Declaration/Prototype defines region in program in which
function may be used by other functions

» Global prototypes. Function prototype placed outside function definitions
— Scope begins where prototype is placed and extends to end of sourcefile
— Any function in program may use it
— Usually appear before definition of function main

» Local prototypes. Function prototype placed in function definitions

— Scope begins where prototype is placed and extends to end of function in which it
appears
— Must have calls to the declared function in the parent function

Fesq, 2/16/01 20 16.070

Stylein Modular Programming

o Step-wise refinement until expressible in 1-2 short English sentences

Optimize module size. Rule of thumb: 2-50 lines

Restrict number of functions called by afunction. Rule of thumb: ~7

Assign descriptive names to functions that reflect purpose of function

In comments before function definition header, clearly identify all 1/0

To pass data, use parameters instead of global variables

Use function prototypes uniformly

Design functions that can be used in other programs
Use functions that have already been defined and tested

Fesq, 2/16/01 21 16.070

Summary

* Today we learned
» What modular programming is
» Why we want to design modular programs
» How to implement modular programs using functions
e Readings:
» Review chapter C6 with thislecture
» For Tuesday (Monday classes), read C5.1-C5.8 on Variables and Operators.
» For Wednesday, read C4
» For Friday, read C9

* Note: Material for Weeks 3 and 4 have been swapped to provide you
with more programming tools

e Errata: 16.070 TA officeis33-112

Fesq, 2/16/01 22 16.070

