
Fesq, 2/16/01 1 16.070

Modular Programming
2/16/01 Lecture #5 16.070

• Outline

! Need for, and benefits of, modular programs

! How to design modular programs

! Using functions to build modular programs

Fesq, 2/16/01 2 16.070

Modular Programming - Need and Approach

• Typical industry programming projects consist of thousands of lines of
code or more

• One huge monolithic program would be unmanageable,
incomprehensible, difficult to design, write, debug, test, etc.

• Modular Programming: Divide-and-Conquer approach to programming

! Divide into sub-problems

! Size of modules reduced to humanly comprehensible and manageable level

• Analogous approaches: manufacturing a spacecraft, or a car

! Manufacture individual components, test separately

! Assemble into larger components, integrate and test

Fesq, 2/16/01 3 16.070

Modular Programming - Process
• Late in the conceive phase, program is divided into small, independent

modules that are separately named and individually invokeable
program elements

! Partitioning based on

− Intensity of information exchange among internal steps

− Likelihood that internal steps will change

− Hiding interfaces to hardware and humans

• Modules are designed, written, tested, debugged by individuals or
small teams
! Allows for multiple programmers to work in parallel

• Modules are integrated to become a software system that satisfies the
problem requirements
! To integrate successfully, original decision must be good and interfaces

between modules must be correct

Fesq, 2/16/01 4 16.070

Modular Programming - Process

Requirements Conceive module 1
spec

module 2
spec

module 3
spec

design module 1
design

build, test 1

build, test 2

build, test 3

module
code 1

module
code 2

module
code 3

Integrate &
test

Final
code

design

design

module 2
design

module 3
design

C D I O

Fesq, 2/16/01 5 16.070

Modular Program Example

• Problem/Goal: Design and implement a program that moves Robbie
the Robot based on user input from keyboard

• Requirements Specification: Develop a program that does the
following:

! Display a menu of choices for robot motion

! Read keyboard input

− Input can be any one of 4 arrows showing movement up, down, left, right

− Input other than the arrows terminates the program.

! Move Robbie based on keyboard input

Fesq, 2/16/01 6 16.070

Modular Program Example - cont.

• Analysis: Input = A value for keyboard input; Output = Direction of
robot movement

• Design: Pseudo-code algorithm
Print menu
Read request
If request is ⇑ move robot forward
Else if request is ⇐ move robot left
Else if request is ⇒ move robot right
Else if request is ⇓ move robot backward
Else print "Terminating program."
End if

Fesq, 2/16/01 7 16.070

Modular Program Example - cont.

• Algorithm contains two sub-problems

! Print menu and read request -- based on interfacing with humans

! Move Robot -- based in computation/interfacing with robot

• Perform top-down stepwise refinement

! Define algorithms for sub-problems

! Refine them - may need to be broken down into sub-sub-problems

! At lowest level, assign name to each module and combine named modules
into higher level sub-problem algorithm (e.g., Move Robot => move_robot)

Fesq, 2/16/01 8 16.070

Structure Chart for Top-Level Pseudo-code Algorithm

main_program

print_menu move_robot

Fesq, 2/16/01 9 16.070

Pseudo-code for print-menu function

• Print_menu:

print "This program moves Robbie the Robot based on user input."
print "Enter ⇑ to move Robbie forward"
print "Enter ⇐ to move Robbie left"
print "Enter ⇒ to move Robbie right"
print "Enter ⇓ to move Robbie backward"
read request

Fesq, 2/16/01 10 16.070

Advantages of Modular Programming

• Manageable: Reduce problem to smaller, simpler, humanly
comprehensible problems

• Divisible: Modules can be assigned to different teams/programmers

! Enables parallel work, reducing program development time

! Facilitates programming, debugging, testing, maintenance

• Portable: Individual modules can be modified to run on other
platforms

• Re-usable: Modules can be re-used within a program and across
programs

Fesq, 2/16/01 11 16.070

Using Functions to Build Modular Programs

• In C, modules are implemented as Functions

• A function is a block of code that performs a specific task

• The role of a Function is to

! Accept input (optional)

! Perform a task

! Return output (optional)

• Functions are identified by unique, programmer-defined names

Fesq, 2/16/01 12 16.070

Function Elements

• Function Definition - used to define/implement a function

• Function Calls - used to invoke/run a function

! Passing data between functions

• Function Declarations/Prototypes - used to identify a function to the
compiler prior to calling the function

Fesq, 2/16/01 13 16.070

Function Definitions consist of

• Function type

! Specified in the header, which is the first line of the Function

! Identifies the type of value to be returned; e.g., integer

! If no value is to be returned, type = void

• Function name - main or unique user-defined

• (Optional) List of parameters enclosed in parentheses (void if none)

• Function body - variable declarations/statements to express algorithm,
in brackets

Fesq, 2/16/01 14 16.070

Example of a Function Definition

• Simple function that prints menu to screen
void print_menu(void)

{
printf ("This program …;
printf ("Enter ⇑ to move …;
…

}

• Add in the read request
char print_menu(void)

{
char request;
printf ("This program …;
printf ("Enter ⇑ to move …;
…
scanf ("%c", &request);
return request;

}

Fesq, 2/16/01 15 16.070

Function Calls

• To run a function, it must be called by another function

• To call a function

! List name of function e.g., print_menu(), move_robot(user_input)

! List of actual parameters/arguments, if any, enclosed in parentheses

• When a function is called

! Program control passes to called function

! Code corresponding to called function is executed

! Function code is kept in separate area of main memory during execution

! After function body completes execution, program control returns to calling
function

Fesq, 2/16/01 16 16.070

Parameter Passing

• Arguments can be used to supply input to a function

• Values of actual parameters are copied to memory locations of
corresponding formal parameters in function's data area

! Call function move_robot(user_input)

! Value of user_input copied into direction

• After function completes, program control returned to calling function

! If function was to return value, value is returned

! Called function cannot access memory location of actual parameters

Fesq, 2/16/01 17 16.070

int main(void) void move_robot(char direction)
{ {

char user_input; …
… … /* move robot in direction */
user_input = print_menu(); … /* specified by passed */
move_robot(user_input); … /* argument */
… …

} }

Fesq, 2/16/01 18 16.070

Passing Data Between Functions

• Data can be passed between functions in three ways

! Input to a function: Parameters

− Used to send values to function

− Parameters are variables declared in formal parameter list of function header:
void move_robot(char direction);

− Calling function can send data (actual parameters/arguments) to called function:
move_robot(user_input);

− One-to-one correspondence between actual and formal parameters

! Output from a function: return a value from a function

! Global variables, declared in source file outside/before function defs

Fesq, 2/16/01 19 16.070

Function Declarations (also called Function Prototypes)

• A function must be declared before it can be called

• Notifies the compiler that you intend to define and use this function

! Called function will have a definition consistent with prototype

! List of parameters/arguments, if any, enclosed in parentheses

• Consists of

! Function type e.g., char print_menu(void);

! Function name

! List of function parameter types enclosed in parentheses

! Terminating semicolon e.g., void move_robot(char direction);

Fesq, 2/16/01 20 16.070

Scope of Functions

• Function Declaration/Prototype defines region in program in which
function may be used by other functions

! Global prototypes: Function prototype placed outside function definitions

− Scope begins where prototype is placed and extends to end of source file

− Any function in program may use it

− Usually appear before definition of function main

! Local prototypes: Function prototype placed in function definitions

− Scope begins where prototype is placed and extends to end of function in which it
appears

− Must have calls to the declared function in the parent function

Fesq, 2/16/01 21 16.070

Style in Modular Programming

• Step-wise refinement until expressible in 1-2 short English sentences

• Optimize module size. Rule of thumb: 2-50 lines

• Restrict number of functions called by a function. Rule of thumb: ~7

• Assign descriptive names to functions that reflect purpose of function

• In comments before function definition header, clearly identify all I/O

• To pass data, use parameters instead of global variables

• Use function prototypes uniformly

• Design functions that can be used in other programs

• Use functions that have already been defined and tested

Fesq, 2/16/01 22 16.070

Summary

• Today we learned

! What modular programming is

! Why we want to design modular programs

! How to implement modular programs using functions

• Readings:

! Review chapter C6 with this lecture

! For Tuesday (Monday classes), read C5.1-C5.8 on Variables and Operators.

! For Wednesday, read C4

! For Friday, read C9

• Note: Material for Weeks 3 and 4 have been swapped to provide you
with more programming tools

• Errata: 16.070 TA office is 33-112

