
Fesq2/23/01 1 16.070

Program Control Flow - Iteration
2/23/01 Lecture #8 16.070

Basic Constructs of Structured Programming

Do first part
to

completion

Do second
part to

completion

Sub-task 1 Sub-task 2

Test
condition

Sub-task

FalseTest
condition

IterativeSequential Conditional

True

Fesq2/23/01 2 16.070

Clarification: The switch Statement

• Once a case is matched in a switch statement, all subsequent cases will
be executed, including the default case!

• Driving directions to the airport

switch (location)
 {

case MIT: walk_to_Kendall();
case kendall: board_redline();
case redline: switch_greenline();
case greenline:

switch_blue_line();
break;

default: ask_directions();
 }

Fesq2/23/01 3 16.070

Program Control Flow - Iteration

• Iteration constructs repeat a sequence of code in a controlled manner

• Iteration directs the computer to perform the same set of operations
over and over until a specified condition is met

• Three C statements for looping

! while

! for

! do … while

Fesq2/23/01 4 16.070

False
test

True

Loop body

Iteration - The while Statement

• Repeatedly executes a statement while a test condition (an expression)
evaluates to true

while (<expression>)
statement;

! Test condition is checked before each cycle, or iteration, through the loop

! If expression evaluates to TRUE (non-zero), statement is executed (again)

• Pretest: expression is tested before each execution of the
statement

• Use brackets to group multiple statements
while (<expression>)
{

statement1;
statement2;

}
/* end while */

Fesq2/23/01 5 16.070

 The while Statement Template

• Recommended approach to using while

get first value to be tested
while the test is successful

process value
get next value

• Note that the body includes something that changes the value of the
test expression. Why? What happens if value being tested doesn't
change?

int variable = 1;
while (variable == 1)
{

statement1;
update value of variable;

statement3;
}
/* end while */

Fesq2/23/01 6 16.070

The while Statement for Counter Controlled Loops

• while can be used for counter-controlled loops
! Declare loop control variable

! Assign initial value to the variable

! Test loop control variable by comparing to a final value

! Update loop control variable: increment/decrement by a certain value

! E.g., This loop iterates while the value of x is less than 10.

int x = 0;
while (x < 10)
 {

printf ("%d ", x);
x = x + 1;

}
/* end while */

! Produces the following output:

0 1 2 3 4 5 6 7 8 9

Fesq2/23/01 7 16.070

The while Statement for Sentinel Controlled Loops
• while can be used for sentinel-controlled loops
! Declare sentinel variable and decide on termination value

! Initialize sentinel variable

! Use sentinel variable in loop control expression

! Change value of sentinel variable so that loop is eventually exited

! Example: code to compute the square of a number entered via keyboard
int number;
printf ("Enter an integer to square; enter zero to stop: ");
scanf ("%d", &number);
while (number)
 {
printf ("The square of %d is: %d\n", number, number *

number);
printf ("Enter an integer to square; enter zero to stop: ");
scanf ("%d", &number);
}
/* end while */

Fesq2/23/01 8 16.070

The while Statement - Initialization

• !Caution: Always be sure that the variable being checked in the
while test has been initialized!

! In example above, omit the printf and scanf lines prior to while statement.
What would be the outcome?

int number;
while (number)
{
printf ("Enter an integer to square; enter zero to stop: ");
scanf ("%d", &number);

printf ("The square of %d is: %d\n", number, number *
number);
}
/* end while */

Fesq2/23/01 9 16.070

The while Statement - Termination

• !Common mistake when using while -- loop termination
! Mistakes in body can cause an infinite loop, causing program to never

terminate
int x = 0;
while (x < 10)

printf ("%d ", x);
/* end while */

! Mistakes in test condition can cause an infinite loop, causing program to
never terminate

int x = 0;
while (x > -10)
{

printf ("%d ", x);
x = x + 1;
}
/* end while */

• Make sure test value changes, and changes in right direction!

Fesq2/23/01 10 16.070

False
test

True

Loop body

Initialize
Counter

Update
Counter

Iteration - The for Statement

• The for statement is designed as shorthand for looping with the
following conditions

! When you need to initialize one or more variables before entering the loop

! When you need to change the value of one or more
variables each time through the loop

• Most frequently used of all iterative statements

for (<initialize>; <test>; <update>)
loop_body;

• Combines three actions into one

! Initialize: Initialize counter

! Test: Compare counter to limiting value

! Update: Increment counter each time through the loop

Fesq2/23/01 11 16.070

 Execution of the for Statement
• Initialize: Initialization is performed just once before the first iteration,

but is always performed regardless of test result

• Test: <test> expression gets evaluated before every iteration to
determine if another iteration should be executed

• Update: <update> expression is evaluated at the end of every iteration.
Used to prepare for the next iteration

• Loop body: Defines the work to be performed in each iteration
int num;
int x = 5;
for (num = 5; num < x; num++)
{ /* begin loop body */
statement1;
statement2;
} /* end loop body */
/* end for */
printf ("After loop, num = %d\n", num);

Fesq2/23/01 12 16.070

Iteration: for vs while

• Compare the for statement to the while statement

! The for statement
for (<init_exp>; <test_exp>; <update_exp>)
statement1;
/* end for */

----------------------- is equivalent to ------------------------

! The while statement

<init_exp>;
while (<test_exp>)
{

statement1;
<update_exp>;

}
/* end while */

Fesq2/23/01 13 16.070

Recommended Uses of for vs while

• The while statement used for sentinel-controlled loops; where number
of repetitions depends on value of variable being tested

• The for statement used for counter-controlled: perform "n" number of
repetitions

• Note: The for statement provides some level of reliability:

! Compiler will not let you forget an "initialize" expression (although it can
be a null statement)

! Compiler will not let you forget an "update" expression (although it can be
a null statement)

Fesq2/23/01 14 16.070

Flexibility of for
• Decrement operator to count down instead of up

int secs;
for (sec = 5; sec > 0; sec--)
printf ("%d seconds!\n", secs);
/* end for */
printf ("We have ignition!\n");

• Count by twos, threes, or any number you define
int num;
for (num = 2; num < 60; num = num + 2)
printf ("%d \n", num);
/* end for */

• Test condition can be other than for the number of iterations
/* test for num squared < 100 */
int num;
for (num = 1; num * num < 100; num++)
printf ("%d \n", num);
/* end for */

Fesq2/23/01 15 16.070

Potential for Errors using for Loops

• !When using iteration, a common programming error is to iterate
through a loop the wrong number of times

• Often, off-by-one iteration due to use of wrong relational operator
(e.g., <= vs <)

/* compute factorial: n! = 1*2*…*(n-1)*n */
int i;
int factorial = 1;
for (i = 1; i<n; i++)
{

factorial = factorial * i;
}
/* end for */

Fesq2/23/01 16 16.070

False

test
True

Loop body

Iteration - The do - while Statement

• Only looping structure that performs a Post-test -- tests at the end of
the loop

• Loop is executed before the loop control expression is tested.

• After first execution of the loop body, loop control
expression is evaluated

! If loop control expression evaluates to TRUE, loop body is
executed again

! If loop control expression evaluates to FALSE, loop is
exited

do
<loop body>
while (<test>);
/* end do while */

Fesq2/23/01 17 16.070

Falsesufficient
funds to
purchase
selection?

True

read new coin

read item
selection

compute total of
coins inserted

start

dispense
selection

stop

Iteration - The do … while Statement

• A for loop or a while loop can execute zero iterations. A do-while loop
always performs at least one iteration.

• When would you use this loop? When you know
without a doubt that you want to execute loop body at
least once, regardless of test condition

• Example: software used in a vending machine that
determines if sufficient funds have been inserted to
pay for the selected item

Fesq2/23/01 18 16.070

Nested Loops

• A loop within a loop construct

• Inner loop is nested within outer loop

• Inner loop must finish before outer loops can resume iterating

Compute the average grade for each student in 16.070

for (student = 1; student <= 83; student = student + 1)
{

for (grade = 1; grade < 10; grade = grade + 1)
{

<compute: average = (grade1 + grade2 + … + grade 9) /9 >
}
/* end inner for */
/* printout average for student */
printf ("Student # %d has an average grade of %d. \n", student, average);

}
/* end outer for */

Fesq2/23/01 19 16.070

Which Loop to Use

• First, decide if you need a loop

• If you need a loop, decide whether you need a pretest or a posttest loop

! In general, use a pretest loop. Better to look before you leap (loop)

! Program easier to read if loop test is at beginning of loop

! Often, loop should be skipped if condition is not met

• A for loop is appropriate when loop involves initializing and updating
a variable (counter-controlled loops)

• A while loop is better when the conditions are otherwise, such as
checking for a certain input from the keyboard (sentinel loops)

Fesq2/23/01 20 16.070

Infinite Loops in Embedded Systems

• Embedded Systems almost always contain an infinite loop

! Fundamental difference between embedded systems and programs written
for other computer platforms

! Infinite Loop typically surrounds significant part of program's functionality

! Necessary because embedded software's job is never done

! Intended to be run until the world ends or the board is reset, whichever
happens first

• For embedded systems, if the software stops running, the hardware is
rendered useless

while (1) int ever = 1;
{ for (;ever;)

statement1; {
statement2; statement1;

} }
/* end while */ /* end for */

Fesq2/23/01 21 16.070

goto

The goto Statement

• The goto statement enables program control to jump to another part of
the program

• goto Statements are controversial

! Necessary in rudimentary languages such as assembly language

! Use in high-level languages (e.g., C) frowned upon

! Tends to produce "spaghetti code"

! Breaks down the structure of structured programming

Fesq2/23/01 22 16.070

Review

• Loops provide a powerful tool to perform iteration

• while, for are pre-test. Condition must be true for body to execute

• do … while is post-test. Body will always execute at least once,
regardless of test condition

• Next week

! Looking inside the computer

! Read R2.1 and C5.9-5.13

• Reminder: PS3 is on the web and is due 2/28

