
Fesq, 3/16/01 1 16.070

Multi-dimensional Arrays
3/16/01 Lecture #16 16.070

• Review:

! An array is set of elements that all have same data type

! Array elements stored sequentially in memory and accessed using integer
index

! First element has index of 0

• Arrays can be of multiple dimensions: 1-D, 2-D, 3-D, etc.

! Arrays can be declared in which each element is itself an array

Fesq, 3/16/01 2 16.070

Visualizing Multi-dimensional Arrays

• Draw a One-Dimensional Array of 8 elements

Visualizing Multi-dimensional Arrays - cont.

• Draw a Two-Dimensional Array of 8 elements, each containing 5
elements

Fesq, 3/16/01 3 16.070

Visualizing Multi-dimensional Arrays - cont.

• Draw a Three-Dimensional Array of 8 elements, each contain 5
elements, and each of those contain 3 elements

Fesq, 3/16/01 4 16.070

Visualizing Multi-dimensional Arrays

• Draw a Four-Dimensional Array of 8 elements, each contain 5
elements, each of those contain 3 elements, each of those contain 2
elements

Fesq, 3/16/01 5 16.070

Declaring Multi-Dimensional Arrays

• Multi-dimensional arrays must be declared, just like variables and one-
dimensional arrays

• Each dimension is represented by a subscript: [], [][], [][][], etc.

• For a 2-D array, first subscript defines the Row Number, second
subscript defines the Column Number

• Format for declaring a 2-D array

<type> <array_name> [<#_of_rows>][<#_of_columns>];

• Example declaration
int grades [students] [exams];

Fesq, 3/16/01 6 16.070

Multiple Dimensional Arrays - Example

• Create a 2-D array to represent the torque of 4 reaction wheels. Each
wheel has a force component in each s/c axis (roll, pitch, yaw)

float wheels [4][3] ; /* 4 wheels x 3 axes */

Index for each element in wheels array
Row\Col 1: Roll 2: Pitch 3: Yaw

1: RW1 [0][0] [0][1] [0][2]

2: RW2 [1][0] [1][1] [1][2]

3: RW3 [2][0] [2][1] [2][2]

4: RW4 [3][0] [3][1] [3][2]

• Two dimensional array is a convenient way of visualizing the data

• However, internally the data are stored sequentially, by rows.

 [0][0] [0][1] [0][2] [1][0] [1][1] [1][2] …

Fesq, 3/16/01 7 16.070

Initializing Multiple Dimensional Arrays
• Like variables and single-dimensional arrays, multi-dimensional arrays

can be initialized at compile time or at run time
! At compile time, enclose each row in braces, and enclose all rows by one

outer set of braces (for 2-D arrays)

float wheels [4][3] = {
{0.0, 0.0, 0.0},
{0.0, 0.0, 0.0},
{0.0, 0.0, 0.0},
{0.0, 0.0, 0.0}

};

! At run time, loop over each index: use nested for loops

for (i = 0; i < 3; i++)
for (j = 0; j < 2; j++)

wheels[i][j] = 0.0;

! Generalize to higher dimensions: to initialize values in an N-dimensional
array at run time, iterate over each index, usually right-most index first

• Like variables, un-initialized arrays contain garbage!

Fesq, 3/16/01 8 16.070

Manipulating Multi-Dimensional Arrays - Examples

• Declare a 3x2 array
const int rows = 3;
const int cols = 2;
int matrix [rows][cols] = {

{5, 7},
{2, 8},
{10, 4},

};

! Sum up rows:
for (i = 0; i < rows; i++)
{

sum = 0;
for (j = 0; j < cols; j++)

sum = sum + matrix[i,j];
printf ("Sum for row %d is %d\n", i, sum);

}

! Sum up columns:

Fesq, 3/16/01 9 16.070

Manipulating Multi-Dimensional Arrays - Example
• Calculate total rainfall for each of 5 years, based on monthly averages
#include <stdio.h>
#define MONTHS 12 /* number of months in year */
#define YRS 3 /* number of years of data */
int main(void)
{ /* initialize rainfall data for 1998-2000 */
float rain[YRS][MONTHS] = {

{10.2, 8.1, 6.8, 4.2, 2.1, 1.8, 0.2, 0.3, 1.1, 2.1, 6.1, 7.4},
{9.2, 9.8, 4.4, 3.3, 2.2, 0.8, 0.4, 0.0, 0.1, 1.2, 2.5, 5.3},
{8.6, 5.6, 1.3, 1.5, 2.5, 2.0, 0.5, 0.4, 0.9, 0.3, 2.1, 3.5}
};

 int year = 0, month = 0;
 float subtot = 0.0, total = 0.0;

 printf (" YEAR RAINFALL (inches)\n");
 for (year = 0; year < YRS; year++)
 { /*for each year, sum rainfall over all months */

for (month = 0; month < MONTHS; month++)
subtot = subtot + rain[year][month];

printf ("%d %f\n", 1998 + year, subtot);
total = total + subtot; /* total for all years */

 }
 printf ("\nTotal rainfall for all years was %f inches.\n", total);
 return 0;
}

Fesq, 3/16/01 10 16.070

Passing 1-D Arrays to Functions

• Name of array is the address of the first element in array

! For one-D arrays, name of array points to an element which is the zero
index entry of the array

const int axes = 3;

float sc_torque [axes] = {0.0, 0.1, 0.2};

 sc_torque " 0 .0
1 .0
2 .0

! In calling statement, name of array is passed without subscript

total_torque = calc_torque (sc_torque, axes)

! In function definition, declare formal argument as a pointer to initial
element of array

float calc_torque (float torques[], int num_axes)

Fesq, 3/16/01 11 16.070

Passing 2-D Arrays to Functions

• For two-D arrays, name of array points to the zero index entry, which
is the first row of the 2-D array

float wheels [4][3] =
{

{0.0, 0.1, 0.2},
{1.0, 1.1, 1.2},
{2.0, 2.1, 2.2},
{3.0, 3.1, 3.2}

};

 wheels " 0 .0, 0.1, 0.2
1 .1, 1.1, 1.2
2 .2, 2.1, 2.2

Fesq, 3/16/01 12 16.070

Passing 2-D Arrays to Functions - cont.
! In calling statement, name of array is passed without subscript

rates = calc_rates (wheels, 4)

! In function definition, must declare second subscript of formal parameter

float calc_rates (float wheels[][3], int num_wheels);
/*prototype*/

− Compiler needs to know size of each element (i.e., size of each row for a 2-D)

− You may omit size of array being passed, but must specify size of each element

− In general, may omit only the first size specification, but must specify other sizes

Fesq, 3/16/01 13 16.070

Passing 2-D Arrays to Functions - Example

• Examine the following example
float two_axes_gyro_bias [3][2] = {

{0.01, 0.02},
{0.03, 0.02},
{0.01, 0.03},

};
/*xy, yz, xz gyro biases*/

two_axes_gyro_bias == ? address of array of 2 floats = &t_a_g_b[0]
two_axes_gyro_bias[0] == ? address of a float = &t_a_g_b[0][0]

! Same value?

two_axes_gyro_bias + 1 == ? refers to 2 float object
two_axes_gyro_bias[0] + 1 == ? refers to a float

! Same value?

two_axes_gyro_bias[0][0] == ? 0.01

−

Fesq, 3/16/01 14 16.070

Protecting Array Contents

• When passing information to a function, pass by value or pass by
reference (pointer)

! Pass by value preserves contents of original variable since value is copied
into a local variable

! Pass by pointer allows function to have access to original variable. Integrity
of constant may be compromised

! Arrays are passed to functions by pointer (more efficient)

! Array can be declared constant inside function to prevent function from
modifying contents, even if array is not declared constant outside of
function

float total_torque (const float wheels[][num_axes],
int num_wheels);

• If program attempts to modify contents of constant array, compiler will
identify error

Fesq, 3/16/01 15 16.070

Constant Arrays

• Like variables, arrays can be declared as constant

! Constant arrays are a good way to represent look-up tables

const float wheels[4][3] = {
{0.90, 0.05, 0.02},
{0.03, 0.90, 0.01},
{0.02, 0.02, 0.90},
{0.34, 0.32, 0.32}

};

! Compiler will guard against the value of a constant array being changed

− Attempts to alter array contents will generate syntax error

− !Compiler probably will not guard against mis-handled pointers

− !Compiler probably will not prevent another array, whose limits are incorrectly
defined, from overwriting a neighboring constant (array or otherwise)

Fesq, 3/16/01 16 16.070

Review

• Multi-dimensional arrays are useful for storing/manipulating multi-
vectored data of the same type (e.g., monthly rainfall over n years)

• Have care when iterating over subscripts -- order is important!

• Read Sections C11.8-11.10 to solidify these concepts

• Extra help session offered Sunday, 3/18. Consider starting homework
prior to this session and bring questions

• Incentive proposal for exams: going once, going twice…?

• I have Exam #1 exams that have not been picked up yet. Come see me
after class

