
Module 10

Introduction to Energy Methods

Readings: Reddy Ch 4, 5, 7

Learning Objectives

• Understand the energy formulation of the elasticity problem.

• Understand the principle of virtual work as the weak formulation of the elasticity
problem.

• Apply energy and variational principles for the determination of deflections and in-
ternal loads in one-dimensional structural elements.

• Apply Ritz Method for the approximate calculation of deflections and stresses in one-
dimensional structural elements.

10.1 Motivation: Vector vs Energy approaches to elas-

ticity problems

10.1.1 The vector approach

is what we have done so far. For reference and later comparison with the energy approach,
let’s solve a simple beam problem:

Obtain the expression for the deflection and the moment distribution in the beam of
Figure 10.1. Specialize to the center of the beam to obtain the maximum deflection and
moment (they happen in the same place in this case). (Assume homogeneous properties).

Solution: The governing equation is:
(
EIu′′2

)′′
= p0, 0 < x1 < L

with boundary conditions:

u2(0) = u2(L) = 0, M3(0) = M3(L) = 0
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Concept Question 10.1.1.
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Figure 10.1: Simply supported beam analyzed by vector and energy approaches

Integrating explicitly and finding the boundary conditions, we get:

u2(x1) =
p0L

4

24EI33

η(1− η)(1 + η − η2), η =
x1

L

and the moment is:

M3(x1) = −p0L
2

2
η(1− η)

At x1 = L/2, η = 1/2, we have:

u2(L/2) =
p0L

4

24EI33

(1

2

)2 5

4
=

5
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p0L
4

EI33

M3(L/2) = −p0L
2

8

10.1.2 The energy approach

The same problem can be formulated in variational form by introducing the potential energy
of the beam system:

Π(u2) =

∫ L

0

[
EI33

2
(u′′2)

2
+ p0u2

]
dx1 (10.1)
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and requiring that the solution u2(x1) be the function minimizing it that also satisfies the
displacement boundary conditions:

u2(0) = u2(L) = 0 (10.2)

Concept Question 10.1.2. Although we don’t know where expression (10.1) comes from,
attempt to give an interpretation (Hint: factorize the first term in the integrand using
the section constitutive law (i.e. moment-curvature relation). Also discuss dimensions)
Solution: The first term can be rewritten as:

EI33

2
(u′′2)

2
=

1

2
EI33u

′′
2︸ ︷︷ ︸

M3

u′′2

This suggests that the first term is a sort of a “spring” energy of the beam where the
moment plays the role of a generalized force and the curvature a generalized displacement,
which measure the local internal elastic energy of the beam. (Note the factor 1/2 that you
would also have in the case of a spring).

From dimensional arguments this term has units of :

N ·m︸ ︷︷ ︸
[M ]

·m ·m−2
︸ ︷︷ ︸

[u′′]

= N = N ·m︸ ︷︷ ︸
Joule

·m−1,

which can be interpreted as energy per unit length of the beam. To obtain the overall energy,
we just need to integrate in x1 as given in the expression. (Note: this is not a rigorous
derivation of the elastic energy of a beam, just a motivation for further development).

The second term also appears to be work per unit length done by the distributed force
on the deflection of the beam which integrated along the length of the beam gives the total
external work.

A particularly useful feature of the potential energy formulation lies in the possibility to
compute approximate solutions numerically.

Concept Question 10.1.3. In this question we will explore the use of the potential energy
as a way to approximate the solution of the beam problem above.

1. Propose an approximate solution for the deflection of the beam with a single quadratic
function that satisfies the displacement boundary condition

Solution:

u
(1)
2 (x1) = c(1)x1(L− x1) (10.3)

Note that this function satisfies the displacement boundary conditions (10.2).
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2. Substitute your approximation u1
2(x1) in 10.1 and carry out the integral to obtain the

approximate potential energy of the beam:

Solution:

Π(1) = Π(c(1)) =

∫ L

0

[
EI

2
(−2c(1))2 + p0c

(1)(Lx1 − x2
1)

]
dx

= 2EIL(c(1))2 +
L3

6
p0c

(1)

(10.4)

3. Now comes the “physical” aspect of this approach. As in other areas of physics (not
just mechanics), the potential energy of the system represents the internal energy of
the system minus the external work done on the system. But how does this help us
solve the problem? The answer is a basic physical principle which also applies to a
variety of other systems:

Principle of Minimum Potential Energy
Of all possible (displacement) configurations that a structure can adopt, the equilibrium
configuration corresponds to the one minimizing the Potential Energy

How do you apply the principle of minimum potential energy to the approximate
potential energy in equation (10.4)? Solution:
The approximate potential energy is a simple algebraic (not differential or integral)
expression which depends on a single unknown parameter c(1). The principle is applied
by finding the value of c(1) which minimizes the approximate potential energy. This is
done by computing the first derivative of Π(1) and setting it to zero.

dΠ(1)

dc1

= 4EILc1 + p0
L3

6
= 0 → c1 = − p0L

2

24EI

4. Replace this value in equation (10.5) to obtain the resulting approximate solution
Solution:

u
(1)
2 (x1) = − p0L

2

24EI
x1(L− x1) (10.5)

5. In order to assess the accuracy of our approximate solution, let’s compute the approxi-
mate deflection of the beam at the midpoint δ(1) = u

(1)
2 (L

2
) and compare with the exact

solution: Solution:

δ = − p0L
2

24EI

(L
2

)2

= − p0L
4

96EI
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Comparing with the exact value, we obtain:

δ1

δ
=

1

96
5

384

=
4

5
= 0.8

i.e. the approximate solution underpredicts the maximum deflection by 20%. However,
it is quite striking that a single-term polynomial approximation can yield a result that
makes so much sense.

6. Consider a three-term polynomial approximation of the form:

u(3)(x1) = c(1)x1(L− x1) + c(2)x2
1(L− x1) + c(3)x3

1(L− x1) (10.6)

Obtain the values of the coefficients by minimizing the approximate potential energy
corresponding to this approximation Solution: require that Π(c1, c2, c3) be a
minimum:

∂Π

∂c1

= 0,
∂Π

∂c2

= 0,
∂Π

∂c3

= 0,

After replacing the approximate solution in equation (10.1), conducting the integral
and setting to zero the partial derivatives of the approximate potential energy with
respect to the unknown coefficients, we obtain the following system of linear equations
(to be done in Mathematica in class).

4 c1EI L+ 2 c2EI L2 + 2 c3EI L3 +
L3 p0

6
= 0

2 c1EI L2 + 4 c2EI L3 + 4 c3EI L4 +
L4 p0

12
= 0

2 c1EI L3 + 4 c2EI L4 +
24 c3EI L5

5
+
L5 p0

20
= 0

whose solution is:

c1→ − (L2 p0)

24EI
, c2→ − (Lp0)

24EI
, c3→ p0

24EI

7. If you replace this values in eqn. 10.6 and evaluate the deflection at the midpoint of
the beam you obtain the exact solution, why? Solution: The exact solution is a
fourth order polynomial, since our approximate solution also is, we have converged to
the exact solution.
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10.2 Strain Energy

By the first law of thermodynamics, when bodies deform under the action of external loads,
some of the external work goes into changing the internal energy of the system, and the
rest into kinetic energy. If the body is elastic, all the energy is recoverable. If you recall, in
Module 3 we discuss the general form of the stress-strain relation for an elastic body (not
necessarily linear) and concluded that the stresses for such material adopt the form, equation
(10.1):

σij = σij(ε) =
∂ψ̂

∂εij
(10.7)

where ψ̂0(ε is the strain energy density or amount of energy per unit volume that is accumu-
lated in the material as elastic (recoverable) energy as a result of the deformation and the
ensuing stresses. We can also identify the strain energy density with the area underneath
the stress-strain curve, see Figure 10.2:

ψ̂ =

∫ εij

0

σijdεij (10.8)

Figure 10.2: Strain energy density

The total strain energy of the body is simply obtained by integration in the volume.

ψ =

∫

V

ψ̂dV
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Concept Question 10.2.1. Obtain the expression for the strain energy density of linear
elastic materials whose constitutive law is the generalized Hooke’s law σij = Cijklεkl
Solution:

ψ̂ =

∫ εij

0

Cijklεkldεij =
1

2
Cijklεklεij =

1

2
σijεij (10.9)

Concept Question 10.2.2. Obtain the expression for the strain energy density of linear
elastic materials whose constitutive law is the generalized Hooke’s law εij = Sijklσkl, where
Sijkl = C−1

ijkl and show that in this case it is the same as the strain energy density.
Solution:

ψ̂?(σij) =

∫ σij

0

Sijklσkldσij =
1

2
Sijklσklσij =

1

2
εijσij (10.10)

⇒ ψ̂? = ψ̂ (10.11)

Concept Question 10.2.3. Strain energy for uniaxial stress states:

1. Consider a general uniaxial state of stress. Use the constitutive law and the strain-
displacement relation to derive a general expression for the strain energy density
Solution: Since all the stress components except σ11 are zero, the strain energy
density follows from equation (10.8) as:

ψ̂ =

∫ ε11

0

σ11dε11 +

∫ ε12

0

0dε12 + . . .

The constitutive law in this case is: σ11 = Eε11, and the strain-displacement relation:
ε11 = ū′1(x1). Replacing these two in the previous expression we obtain:

ψ̂ =

∫ ε11

0

Eε11dε11 =
1

2
Eε2

11 =
1

2
E(ū′1(x1))2

2. Using the expression for the strain energy density obtained, derive an expression for the
total strain energy in a slender structure with a predominant dimension L, a variable
area of the cross section A = A(x1), where it can be assumed that the uniaxial stress
is constant in the cross section, i.e. σ11 = σ11(x1). Solution:
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ψ(ū1) =

∫

V

ψ̂(ū1(x1))dV =
1

2

∫ L

0

[∫

A(x1)

EdA
]

︸ ︷︷ ︸
S(x1)

(ū′1(x1))2dx1

ψrod(ū1) =
1

2

∫ L

0

S(x1)ū′1(x1)︸ ︷︷ ︸
N1(x1)

ū′1(x1)dx1 (10.12)

Concept Question 10.2.4. Strain Energy of a beam under pure bending

1. Specialize the general definition of strain energy to the case of a beam prior to imposing
any of the kinematic implications of Euler-Bernoulli’s hypotheses. Solution:
The only stress component arising in bending is σ11. Thus, the strain energy density
is ψ̂ = 1

2
σ11ε11, and the strain energy is ψ = 1

2

∫
V
σ11ε11dV .

2. Now use the results from Euler-Bernoulli’s hypotheses to obtain the strain energy of
the beam in terms of the displacement field. Solution: Assuming bending
in the e1 − e2 plane, we have, see equation (8.1) in Module ??, ε11 = −x2ū

′′
2(x1), and

σ11 = −Ex2ū
′′
2(x1). Replacing these two in the previous expression, we get:

ψ =
1

2

∫

V

−Ex2ū
′′
2(x1)︸ ︷︷ ︸

σ11(x1,x2)

(
−x2ū

′′
2(x1)

)
︸ ︷︷ ︸

ε11(x1,x2)

dV

=
1

2

∫ L

0

[∫

A(x1)

E(x1, x2, x3)x2
2dA

]

︸ ︷︷ ︸
H33(x1)

(
ū′′2(x1)

)2
dx1

=
1

2

∫ L

0

H33(x1)ū′′2(x1)︸ ︷︷ ︸
M3(x1)

ū′′2(x1)dx1

ψbeam(u2) =
1

2

∫ L

0

M3(x1)ū′′2(x1)dx1 (10.13)

which is the expression we used in the introductory section of this chapter.
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Figure 10.3: Work of a force on a moving particle

10.3 Work of external forces

• Work done by a force:

dW = f · du = fiui = ‖f‖ ‖du‖ cos (f̂u) (10.14)

WAB =

∫ B

A

dW =

∫ B

A

f · du (10.15)

• Work done by a moment:

dW = M · dθ = Miθi (10.16)

WAB =

∫ B

A

dW =

∫ B

A

M · dθ (10.17)

• Extend definition to material bodies: total work is the addition of the work done on
all particles:

– by forces distributed over the volume:

W =

∫

V

f · udV

– by forces distributed over the surface:

W =

∫

S

t · udS



244 MODULE 10. INTRODUCTION TO ENERGY METHODS

– by concentrated forces:

W =
n∑

i=1

fi · u(xi)

We will consider the case in which external forces don’t change during the motion or
deformation, i.e., they are independent of the displacements. We can then define the potential
of the external forces as the negative of the work done by the external forces.

10.4 Potential Energy

The potential energy of a system (material body + external forces) is its capacity to return
work.

Π = ψ + V , V : potential of external loads (10.18)

V = −
∫

S

t̄iuidS −
∫

V

f̄iuidV (10.19)

The potential energy of an elastic system is the sum of the strain energy and the potential
of the external loads, which is the negative of the work done on the system.

Π =

∫

V

1

2
σijεijdV −

∫

S

t̄iuidS −
∫

V

f̄iuidV (10.20)

10.5 Complementary strain energy

Figure 10.4: Complementary strain energy density

The complementary strain energy density ψ̂?(σ) is defined as (see Figure 10.4)

ψ̂?(σij) =

∫ σij

0

εijdσij (10.21)
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We can see that ψ̂? + ψ̂ = σijεij

ψ? =

∫

V

ψ̂?dV (10.22)

Concept Question 10.5.1. Let’s consider a case in which the solution is immediately
obvious so that we can compute the actual values of the quantities defined so far. Compute
the strain energy density, strain energy, and their complementary counterparts for the linear
elastic bar loaded axially shown in the figure:

L

P
E, A

x1

Solution:

ψ̂ =

∫ ε0

0

σ11dε11 +

∫ −νε0
0

σ22dε22 + . . .

=

∫ ε0

0

Eε11dε11 =
1

2
Eε2

0

From equilibrium we know: σ0 = P
A

.
From the constitutive law: ε0 = σ0

E
= P

AE

⇒ ψ̂ =
1

2

P 2

EA2

ψ =

∫

V

ψ̂dV =
ALP 2

2EA2
=
P 2L

2EA

ψ̂? =

∫ σ0

0

ε11dσ11 +

∫ 0

0

ε22dσ22 + . . .

=

∫ σ0

0

σ11

E
dσ11 =

1

2E
σ2

11

∣∣∣
σ0

0
=

σ2
0

2E
=

P 2

2EA2
= ψ̂!!

ψ? =

∫

V

ψ̂?dV =
ALP 2

2EA2
=
P 2L

2EA
= ψ!!
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10.6 Principle of Virtual Work (Displacements)

Consider a body in equilibrium. We know that the stress field must satisfy the differential
equations of equilibrium. Multiply the differential equations of equilibrium by an “arbitrary”
displacement field ūi:

(
σji,j + fi

)
ūi = 0 (10.23)

Note that the field ūi is NOT the actual displacement field ui corresponding to the solution of
the problem but a virtual displacement field. Therefore, equation (10.23) can be interpreted
as the local expression of virtual work done by the actual stresses and the body forces on
the virtual displacement ūi and that it must be zero. The total virtual work done on the
body is obtained by integration over the volume:

∫

V

(
σji,j + fi

)
ūidV = 0 (10.24)

and it must also be zero since the integrand is zero everywhere in the domain.

∫

V

σji,jūidV +

∫

V

fiūidV = 0 (10.25)
∫

V

[(
σjiūi

)
,j
− σjiūi,j

)
dV +

∫

V

fiūidV = 0 (10.26)
∫

S

σjiūinjdS −
∫

V

σij ε̄ijdV +

∫

V

fiūidV = 0 (10.27)

The integral over the surface can be decomposed into two: an integral over the portion of the
boundary where the actual external surface loads (tractions) are specified St and an integral
over the portion of the boundary where the displacements are specified (supports) Su. This
assumes that these sets are disjoint and complementary, i.e.,

S = Su ∪ St, Su ∩ St = ∅ (10.28)

∫

St

tiūidS +

∫

Su

σjiūinjdS −
∫

V

σij ε̄ijdV +

∫

V

fiūidV = 0 (10.29)

We will require that the virtual displacements ūi vanish on Su, i.e., that the virtual displace-
ment field satisfy the homogeneous essential boundary conditions :

ūi(xj) = 0, if xj ∈ Su (10.30)

Then, the second integral vanishes. The resulting expression is a statement of the Principle
of Virtual Displacements (PVD):

∫

V

σij ε̄ijdV =

∫

St

tiūidS +

∫

V

fiūidV (10.31)
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It reads: The work done by the external tractions and body forces on an admissible (dif-
ferentiable and satisfying the homogeneous boundary conditions but otherwise arbitrary) dis-
placement field is equal to the work done by the equilibrated stresses (the actual solution of
the problem) on the virtual strains (the strains produced by the virtual field).

Example: Consider the bar under a tensile load shown in the figure:

L

P
E, A

x1

The PVD applied to this case is:
∫

V

σ11
dū1

dx1

dV = Pū1

∣∣∣
x1=L

A

∫ L

0

E
du1

dx1

dū1

dx1

dx1 = Pū1

∣∣∣
x1=L

EA

∫ L

0

[ d

dx1

(du1

dx1

ū1

)
− d2u1

dx2
1

ū1

]
dx1 = Pū1

∣∣∣
x1=L

[
EA

du1

dx1

ū1

]
x1=L

−
[
EA

du1

dx1

ū1

]
x1=0
− EA

∫ L

0

d2u1

dx2
1

ū1dx1 = Pū1

∣∣∣
x1=L

The second term on the left hand side is zero because we have asked that ū1 = 0 at the
support. Note we have not asked for any condition on ū1 at x1 = L where the load is applied.

[
EA

du1

dx1

∣∣∣
x1=L

− P
]
ū1

∣∣∣
x1=L

= EA

∫ L

0

d2u1

dx2
1

ū1dx1

The only way this expression can be satisfied for any admissible virtual displacement field
ū1 is if:

P = EA
du1

dx1

∣∣∣
x1=L

and

EA
d2u1

dx2
1

= 0

which represent the equilibrium conditions at the boundary and inside the bar, respectively:

P = A
(
E
du1

dx1

)∣∣∣
x1=L

= Aσ11

∣∣∣
x1=L

and

d

dx1

(
EA

du1

dx1

)
=

d

dx1

σ11 = 0
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The solution of this problem is:

u1(x1) = ax1 + b

the boundary conditions are:

u1(0) = 0 ⇒ b = 0

P

A
= Ea

u1 =
P

EA
x1

ε11 =
du1

dx1

=
P

EA

σ11 = Eε11 =
P

A

Example: With the exact solution of the problem of the bar under a tensile load, verify
the satisfaction of the PVD for the following virtual displacement fields:

• ū1 = ax1:

AE

∫ L

0

P

EA
adx1 = PaL(?)

PaL = PaL q.e.d.

• ū1 = ax2
1:

AE

∫ L

0

P

EA
2ax1dx1 = PaL2(?)

6 A 6 EP
6 E 6 A 6 2aL

2

6 2 = PaL q.e.d.

Remarks:

• Principle of Virtual Displacements:

– enforces equilibrium (in weak form)

– enforces traction (natural) boundary conditions

– does NOT enforce displacement (essential) boundary conditions

– will be satisfied for all equilibrated solutions, compatible or incompatible
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Unit dummy displacement method

Another application of the PVD: provides a way to compute reactions (or displacements) in
structures directly from PVD. Consider the concentrated reaction force at point ′′0′′ of a
structure in equilibrium under a set of loads and supports. We can prescribe an arbitrary ad-
missible displacement field ūi and the PVD will hold. The unit dummy displacement method
consists of choosing the virtual displacement field such that ūi(x0) = 1 in the direction of
the reaction R0 we are interested in. Then the virtual work of the reaction is ū0 ·R0 = |R0.
The PVD then reads (in the absence of body forces):

R0 · ū0 =

∫

V

σij ε̄ijdV (10.32)

R0 =

∫

V

σij ε̄ijdV (10.33)

where ε̄ij are the virtual strains produced by the virtual displacement field ū0.

Example:

θ2

L1 L2 L3

E1

A1

E2

A2

E3

A3

v

P

Different materials and areas of cross section: E1, E2, E3, A1, A2, A3, but require symmetry
to simplify the problem: E3 = E1, A3 = A1. For a truss element: σ = Eε (uniaxial state).

P v̄ = A1L1σ1ε̄1 + A2L2σ2ε̄2 + A3L3σ3ε̄3

Note: the indices in these expressions just identify the truss element number. The goal is to
provide expressions of the virtual strains ε̄I in terms of the virtual displacement v̄ so that
they cancel out. From the figure, the strains ensued by the truss elements as a result of a
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tip displacement v are:

ε1 = ε3 =

√
(L2 + v)2 + (L2 tan θ)2 − L1

L1

=

√
L2

2(1 + tan2 θ) + 2L2v + v2 − L1

L1

neglecting the higher order term v2 and using 1 + tan2 θ = 1 + sin2 θ
cos2 θ

= cos2 θ+sin2 θ
cos2 θ

= 1
cos2 θ

we
obtain:

ε1 = ε3 =

√
L2
2

cos2 θ
+ 2L2v − L1

L1

=
L1

√
1 + 2L2v

L2
1
− L1

L1

=

√
1 +

2L2v

L2
1

− 1

were we have made use of the fact that: L2

cos θ
= L1. We seek to extract the linear part

of this strain, which should have a linear dependence on the displacement v. This can be
done by doing a Taylor series expansion of the square root term

√
1 + 2x = 1 + x + O[x]2

(Mathematica tip: Taylor series expansions can be obtained by using the Series function.
In this case: Series[Sqrt[1 + 2x], x, 0, 3].

ε1 = ε3 = 1 +
L2

L2
1

v − 1 =
L2

L2
1

v

which is the sought expression. The expression for ε2 can be obtained in a much more
straightforward manner:

ε2 =
v

L2

Applying the constitutive relation: σI = EIεI we can obtain the stresses in terms of the tip
displacement v:

σ1 = E1
L2

L2
1

v, σ3 = E3
L2

L2
1

v, σ2 = E2
v

L2

This expressions for the strains above also apply for the case of a virtual displacement field
whose value at the tip is v̄. The resulting virtual strains are:

ε̄1 =
L2

L2
1

v̄, ε̄3 =
L2

L2
1

v̄, ε̄2 =
v̄

L2

Replacing in PVD:

P v̄ = A1L1︸ ︷︷ ︸E1
L2

L2
1

v

︸ ︷︷ ︸

L2

L2
1

v̄

︸︷︷︸
+A2L2︸ ︷︷ ︸E2

v

L2︸ ︷︷ ︸
v̄

L2︸︷︷︸
+A3L3︸ ︷︷ ︸E3

L2

L2
1

v

︸ ︷︷ ︸

L2

L2
1

v̄

︸︷︷︸

As expected the v̄’s cancel out, as the principle must hold for all its admissible virtual values
and we obtain an expression of the external load P and the resulting real displacement v.
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This expression can be simplified using: L2 = L1 cos θ = L3 cos θ:

P =
A1E1L

2
1 cos2 θ

L3
1

v + A2E2
v

L2

+
A3E3L

2
3 cos2 θ

L3
3

v

P =
(A1E1 cos2 θ

L1

+
A2E2

L2

+
A3E3 cos2 θ

L3

)
v

P =
[
(A1E1 + A3E3) cos3 θ + A2E2

] v
L2

v =
PL2

(A1E1 + A3E3) cos3 θ + A2E2

Example:

L1 L2

E1, A1

P/2

P/2

u0
E2, A2

PVD:

Pū0 = A1L1σ1ε̄1 + A2L2σ2ε̄2

ε1 =
u0

L1

, σ1 = E1ε1, ε̄1 =
ū0

L1

ε2 = −u0

L2

, σ2 = E2ε2, ε̄2 = − ū0

L2

Pū0 = A1L1E1
u0

L1

ū0

L1

+ A2L2E2
(−u0)

L2

(−ū0)

L2

P =
(A1E1

L1

+
A2E2

L2

)
u0
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