
16.20 Techniques of Structural Analysis and Design
Spring 2013

Instructor: Raúl Radovitzky
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Module 1

Stress and equilibrium

Learning Objectives

• Understand stress as a description of internal forces transmitted in a material.

• Understand the nature of the mathematical description of stress as a second-order
tensor.

• Mathematically describe the implications of local equilibrium at a material point.

• Understand the nature of the symmetry of the stress tensor.

• Quantify stress components in arbitrary orthonormal bases and in particular principal
stresses and directions.

1.1 Internal forces and equilibrium

We are going to consider the relation between the external and internal forces exerted on a
material. External forces come in two flavors: body forces (given per unit mass or volume)
and surface forces (given per unit area). If we cut a body of material in equilibrium under
a set of external forces along a plane, as shown in Fig.1.1, and consider one side of it, we
draw two conclusions: 1) the equilibrium provided by the loads from the side taken out is
provided by a set of forces that are distributed among the material particles adjacent to the
cut plane and that should provide an equivalent set of forces to the ones loading the part
taken out, 2) these forces can now be considered as external surface forces acting on the part
of material under consideration.

The stress vector at a point on ∆S is defined as:

t = lim
∆S→0

f

∆S
(1.1)

If the cut had gone through the same point under consideration but along a plane with a
different normal, the stress vector t would have been different. Let’s consider the three stress
vectors t(i) acting on the planes normal to the coordinate axes. Let’s also decompose each
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6 MODULE 1. STRESS AND EQUILIBRIUM

n

surface forces

body forces

n

∆S

Figure 1.1: Surface force f on area ∆S of the cross section by plane whose normal is n.

t(i) in its three components in the coordinate system ei (this can be done for any vector) as
(see Fig.1.2):

t(i) = σijej (1.2)

e2

e3

e1
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t
(1)

x2

t
(2)

x3
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Figure 1.2: Stress components.

σij is the component of the stress vector t(i) along the ej direction.

1.2 Stress tensor

We could keep analyzing different planes passing through the point with different normals
and, therefore, different stress vectors t(n) and one might wonder if there is any relation
among them or if they are all independent. The answer to this question is given by invoking
equilibrium on the (shrinking) tetrahedron of material of Fig.1.3. The area of the faces of the
tetrahedron are ∆S1, ∆S2, ∆S3 and ∆S. The stress vectors on planes with reversed normals
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t(−ei) have been replaced with −t(i) using Newton’s third law of action and reaction (which
is in fact derivable from equilibrium): t(−n) = −t(n). Enforcing equilibrium we obtain:

t(n)∆S − t(1)∆S1 − t(2)∆S2 − t(3)∆S3 = 0 (1.3)

n̄

e1

e2

e3
−t

(1)

t
(n)

−t
(2)

−t
(3)

Figure 1.3: Cauchy’s tetrahedron representing the equilibrium of a tetrahedron shrinking to
a point.

The following relation: ∆Sni = ∆Si derived in the following mathematical aside:

By virtue of Green’s Theorem: ∫
V
∇φdV =

∫
S
nφdS

applied to the function φ = 1, we get

0 =

∫
S
ndS

which applied to our tetrahedron gives:

0 = ∆Sn−∆S1e1 −∆S2e2 −∆S3e3

If we take the scalar product of this equation with ei, we obtain:

∆S(n · ei) = ∆Si

or
∆Si = ∆Sni

can then be replaced in equation 1.3 to obtain:

∆S
(
t(n) − (n · e1)t(1) − (n · e2)t(2) − (n · e3)t(3)

)
= 0
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or

t(n) = n ·
(
e1t

(1) + e2t
(2) + e3t

(3)
)

(1.4)

The factor in parenthesis is the definition of the Cauchy stress tensor σ:

σ = e1t
(1) + e2t

(2) + e3t
(3) = eit

(i) (1.5)

Note it is a tensorial expression (independent of the vector and tensor components in a
particular coordinate system). To obtain the tensorial components in our rectangular system
we replace the expressions of t(i) from Eqn.1.2

σ = eiσijej (1.6)

with:

σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


Replacing in Eqn.1.4:

t(n) = n · σ (1.7)

or:

t(n) = n · σijeiej = σij
(
n · ei

)
ej =

(
σijni

)
ej (1.8)

tj = σijni (1.9)

Concept Question 1.2.1. Compute the normal and tangential components of the traction
vector as a function of α.

Concept Question 1.2.2. Stress Components.
Let’s consider the following stress tensor in the (e1, e1, e3) system of coordinates:

σ =

 σ11 = 80 MPa (T) σ12 = 30 MPa 0
σ21 = 30 MPa σ22 = 40 MPa (C) 0

0 0 0
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Figure 1.4: Cubes in different coordinate systems.

Let’s consider two cubes in different coordinate systems in Figures 1.4(a) and 1.4(b). These
cubes are comprised of faces A, B, C, D, E, F with the following outward normal for each
of the cubes:

Cube I: A→ e2, B → −e2, C → −e1, D → e1, E → e3, F → −e3.
Cube II: A→ −e2, B → e2, C → e3, D → −e3, E → −e1, F → e1.

1. Show the non-zero components on the surfaces of the two cubes in different coordinate
systems.

Concept Question 1.2.3. Stresses on an inclined face.

n̄

e1

e2

e3

A

B

C

O

Figure 1.5: Differential tetrahedron element.

Consider the tetrahedron shown in Figure 1.6. A set of three mutually orthogonal unit
vectors will be defined: l̄ is a unit vector parallel to vector AB, n̄ is the normal to face
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ABC, and m̄ is such that m̄ = n̄× l̄. The stress vector acting on face ABC is then given
by: tn = σnl̄l + σnmm̄ + σnn̄.

1. Determine the stress components, σnl, σnm, and σn, in terms of the stress components
acting on the faces normal to e1, e2, and e3.

n̄

e1

e2

e3

A

B

C

O

Figure 1.6: Differential tetrahedron element.

1.3 Transformation of stress components

Readings: BC 1.2.1, 1.2.3 (Full 3D)

Readings: BC 1.3.2, 1.3.4 (2D)

Consider a different system of cartesian coordinates e′i. We can express our tensor in
either one:

σ = σklekel = σ′mne
′
me′n (1.10)

We would like to relate the stress components in the two systems. To this end, we take the
scalar product of (1.10) with e′i and e′j:

e′i · σ · e′j = σkl
(
e′i · ek

)(
el · e′j

)
= σ′mn

(
e′i · e′m

)(
e′n · e′j

)
= σ′mnδimδnj = σ′ij

or

σ′ij = σkl
(
e′i · ek

)(
el · e′j

)
(1.11)

The factors in parenthesis are the cosine directors of the angles between the original and
primed coordinate axes.
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e1
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e
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1
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Figure 1.7: Coordinate systems E = (e1, e2) and E∗ = (e∗1, e
∗
2), where θ = 25◦.

Concept Question 1.3.1. Stress states on two sets of faces.
The plane stress state at a point is known and characterized by the following stress tensor:

σ =

[
σ11 σ12

σ21 σ22

]
=

[
250 0
0 250

]
in a coordinate system E = (e1, e2), as illustrated in Figure 1.8.

1. Determine the stress components σ∗11, σ∗22, σ∗12 in a coordinate system E∗ = (e∗1, e
∗
2),

where e∗1 is oriented at an angle of 25 degree with respect to e1.

e1

e2

e
∗

1

e
∗

2

θ

Figure 1.8: Coordinate systems E = (e1, e2) and E∗ = (e∗1, e
∗
2), where θ = 25◦.

Concept Question 1.3.2. Stress rotation formulae in matrix form.
Specialize the general expression for the transformation of stress components Equation

(1.11) in the class notes to two dimensions and show that they can be expressed in the
following two ways:

σ∗11

σ∗22

σ∗12

 =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ


σ11

σ22

σ12


1. Show that this formula can be recast in the following compact matrix form[

σ∗11 σ∗12

σ∗12 σ∗22

]
=

[
cos θ sin θ
− sin θ cos θ

] [
σ11 σ12

σ12 σ22

] [
cos θ − sin θ
sin θ cos θ

]
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1.4 Principal stresses and directions

Readings: BC 1.2.2 (Full 3D)

Readings: BC 1.3.3 2D

Given the components of the stress tensor in a given coordinate system, the determination
of the maximum normal and shear stresses is critical for the design of structures. The normal
and shear stress components on a plane with normal n are given by:

tN = t(n) · n
= σkinkni

tS =
√
‖t(n)‖2 − t2N

It is obvious from these equations that the normal component achieves its maximum tN =
‖t(n)‖ when the shear components are zero. In this case:

t(n) = n · σ = λn = λIn

or in components:

σkink = λni

σkink = λδkink(
σki − λδki

)
nk = 0

(1.12)

which means that the principal stresses are obtained by solving the previous eigenvalue
problem, the principal directions are the eigenvectors of the problem. The eigenvalues λ are
obtained by noticing that the last identity can be satisfied for non-trivial n only if the factor
is singular, i.e., if its determinant vanishes:

|σij − λδij| =

∣∣∣∣∣∣
σ11 − λ σ12 σ13

σ21 σ22 − λ σ23

σ31 σ32 σ33 − λ

∣∣∣∣∣∣ = 0

which leads to the characteristic equation:

−λ3 + I1λ
2 − I2λ+ I3 = 0

where:

I1 = tr[σ]

= σii = σ11 + σ22 + σ33 (1.13)

I2 = tr[σ−1]det[σ]

=
1

2

(
σiiσjj − σijσji

)
= σ11σ22 + σ22σ33 + σ33σ11 −

(
σ12σ21 + σ23σ32 + σ31σ13

)
(1.14)

I3 = det[σ]

= σ11σ22σ33 + 2σ12σ23σ31 − σ2
12σ33 − σ2

23σ11 − σ2
13σ22 (1.15)
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are called the stress invariants because they do not depend on the coordinate system of
choice.

Concept Question 1.4.1. Principal stresses.

Let’s consider the following state of stress:

σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

 200 50 −80
50 300 100
−80 100 −100

 .
1. Determine both, the principal stresses and the principal directions.

Concept Question 1.4.2. Principal stresses and transformation.

Let’s consider the following state of stress:

σ =

 3 1 1
1 0 2
1 2 0

 .
1. Using the stress invariants, determine both, the principal stresses and directions.

2. Determine the traction vector on a plane with a unit normal n = (0, 1, 1)/
√

(2).

Concept Question 1.4.3. Stress invariants for plane stress state.

Let’s introduce the following two quantities:

I1 = σ11 + σ22,

I2 = σ11σ22 − σ2
12.

1. In the case of plane stress problems, show that these two quantities are invariant.

2. Prove this invariance by showing that these quantities are identical when computed in
terms of the principal stresses and in terms of stresses acting on a face at an arbitrary
orientation.

1.5 Mohr’s circle

Readings: BC 1.3.6
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The Mohr’s circle, named after Christian Otto Mohr (1835-1918), is a two-dimensional graph-
ical representation of the state of stress at a point M . A point M , belonging to the circle,
has the coordinates (σM , τM) in the reference axes (σ,τ) corresponding to the normal and
shear stresses at this point, respectively. Figure 1.9 shows a point M belonging to a Mohr’s
circle corresponding to the following state of stress:

σM =

(
σ11 σ12

σ12 σ22

)
The principal stresses, herein denoted σI and σII (Figure 1.9), are located on the axis

σ for which the shear component is zero. The center of the circle, giving the value of the
average normal stress, is located on the horizontal axis a distance 1

2
(σI +σII) from the origin

and the radius of the circle is given by:

R =

√[
1

2
(σ11 − σ22)

]2

+ σ2
12 (1.16)

The principal stresses are obtained as follows:

σI =
1

2
(σ11 + σ22) +

√[
1

2
(σ11 − σ22)

]2

+ σ2
12

σII =
1

2
(σ11 + σ22)−

√[
1

2
(σ11 − σ22)

]2

+ σ2
12 (1.17)

Also, the maximum shear stress σmax
12 is obtained on the Mohr’s circle (Figure 1.9) and

is equal to the value of the radius of the circle. The stress components of a point M are
acting on a particular plane oriented at an angle θ to the principal directions. In practice,
on the Mohr’s circle, the diameter of the circle joining the coordinates (σ22, σ12) and (σ22,
-σ12) of the point M makes an angle of 2θ with the horizontal axis, as depicted in Figure
1.9. Therefore, the circle describes the stress state of any point located on plane at all
orientations, i.e 0 < θ < π.

Concept Question 1.5.1. Mohr’s circle derivation.
Let’s consider a Mohr’s circle of radius R and principal stresses σ∗11 and σ∗22 which are

points belonging to both, the circle and the σii axis.

1. Derive the expression of the radius R as a function of the stress components.

2. Derive the expressions of the principal stresses.

Concept Question 1.5.2. Mohr’s circle.
Let’s consider the following state of stress:

σ =

[
80 40
40 −20

]
.
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12
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Figure 1.9: Mohr’s circle for two-dimensional stress

1. Draw the Mohr’s circle of this state of stress

2. Using the Mohr’s circle, determine the principal stresses and the corresponding direc-
tions.

3. Using the Mohr’s circle, calculate the stresses on axes rotated 60 degrees counterclock-
wise from the reference axes.

4. Compare these results with the ones obtained analytically?

1.6 Linear and angular momentum balance

Readings: BC 1.1.2 (derivation by local equilibrium of differential volume element)

We are going to derive the equations of momentum balance in integral form, since this is
the formulation that is more aligned with our “integral” approach in this course. We start
from the definition of linear and angular momentum. For an element of material at position
x of volume dV , density ρ, mass ρdV which remains constant, moving at a velocity v, the
linear momentum is ρvdV and the angular momentum x× (ρvdV ). The total momenta of
the body are obtained by integration over the volume as:∫

V

ρvdV and

∫
V

x× ρvdV

respectively. The principle of conservation of linear momentum states that the rate of change
of linear momentum is equal to the sum of all the external forces acting on the body:

D

Dt

∫
V

ρvdV =

∫
V

fdV +

∫
S

tdS (1.18)
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where D
Dt

is the total derivative. The lhs can be expanded as:

D

Dt

∫
V

ρvdV =

∫
V

D

Dt
(ρdV )v +

∫
V

ρ
∂v

∂t
dV

but D
Dt

(ρdV ) = 0 from conservation of mass, so the principle reads:∫
V

ρ
∂v

∂t
dV =

∫
V

fdV +

∫
S

tdS (1.19)

Now, using what we’ve learned about the tractions and their relation to the stress tensor:∫
V

ρ
∂v

∂t
dV =

∫
V

fdV +

∫
S

n · σdS (1.20)

This is the linear momentum balance equation in integral form. We can replace the surface
integral with a volume integral with the aid of the divergence theorem:∫

S

n · σdS =

∫
V

∇ · σdV

and then (1.20) becomes: ∫
V

(
ρ
∂v

∂t
− f −∇ · σ

)
dV = 0

Since this principle applies to an arbitrary volume of material, the integrand must vanish:

ρ
∂v

∂t
− f −∇ · σ = 0 (1.21)

This is the linear momentum balance equation in differential form. In components:

σji,j + fi = ρ
∂vi
∂t

Concept Question 1.6.1. Stress and equilibrium.
Let’s consider an elastic structural member for which the stress field is expressed as

follows:

σ =

 −x3
1 + x2

2 5x3 + 2x2
2 x1x

3
3 + x2

1x2

5x3 + 2x2
2 2x3

1 + 1
2
x2

2 0
x1x

3
3 + x2

1x2 0 4x2
2 − x3

3

 .
1. Determine the body force distribution for equilibrium in static.
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Concept Question 1.6.2. Stress fields in static equilibrium.
Let’s consider a structure in equilibrium and free of body forces. Are the following stress

fields possible?

1. σ =

 c1x1 + c2x2 + c3x1x2 −c3
x2

2

2
− c1x2

−c3
x2

2

2
− c1x2 c4x1 + c1x2

 .
2. σ =

[
3x1 + 5x2 4x1 − 3x2

4x1 − 3x2 2x1 − 4x2

]
.

3. σ =

 x2
1 − 2x1x2 + cx3 −x1x2 + x2

2 −x1x3

−x1x2 + x2
2 x2

2 −x2x3

−x1x3 −x2x3 (x1 + x2)x3

 .

1.6.1 Angular momentum balance and the symmetry of the stress
tensor

The principle of conservation of angular momentum states that the rate of change of angular
momentum is equal to the sum of the moment of all the external forces acting on the body:

D

Dt

∫
V

ρx× vdV =

∫
V

x× fdV +

∫
S

x× tdS (1.22)

It can be conveniently written as∫
S

(
xitj − xjti

)
dS +

∫
V

(
xifj − xjfi

)
dV =

∫
V

ρ
(
xi
∂vj
∂t
− xj

∂vi
∂t

)
dV

Using ti = σkink, the divergence theorem and (1.21), this expression leads to (see homework
problem): ∫

V

(σij − σji)dV = 0

which applies to an arbitrary volume V , and therefore, can only be satisfied if the integrand
vanishes. This implies:

σij = σji (1.23)
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