
Module 2

Kinematics of deformation and Strain

Learning Objectives

• develop a mathematical description of the local state of deformation at a material point

• understand the tensorial character of the resulting strain tensor

• distinguish between a compatible and an incompatible strain field and understand the
mathematical requirements for strain compatibility

• describe the local state of strain from experimental strain-gage measurements

• understand the limitations of the linearized theory and discern situations where non-
linear effects need to be considered.

2.1 Local state of deformation at a material point

Readings: BC 1.4.1

Deformation described by deformation mapping :

x′ = ϕ(x) (2.1)

We seek to characterize the local state of deformation of the material in a neighborhood of
a point P . Consider two points P and Q in the undeformed:

P : x = x1e1 + x2e2 + x3e3 = xiei (2.2)

Q : x + dx = (xi + dxi)ei (2.3)

and deformed

P ′ : x′ = ϕ1(x)e1 + ϕ2(x)e2 + ϕ3(x)e3 = ϕi(x)ei (2.4)

Q′ : x′ + dx′ =
(
ϕi(x) + dϕi

)
ei (2.5)
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Figure 2.1: Kinematics of deformable bodies

configurations. In this expression,

dx′ = dϕiei (2.6)

Expressing the differentials dϕi in terms of the partial derivatives of the functions ϕi(xjej):

dϕ1 =
∂ϕ1

∂x1

dx1 +
∂ϕ1

∂x2

dx2 +
∂ϕ1

∂x3

dx3, (2.7)

and similarly for dϕ2, dϕ3, in index notation:

dϕi =
∂ϕi
∂xj

dxj (2.8)

Replacing in equation (2.5):

Q′ : x′ + dx′ =
(
ϕi +

∂ϕi
∂xj

dxj

)
ei (2.9)

dx′i =
∂ϕi
∂xj

dxjei (2.10)

We now try to compute the change in length of the segment
−→
PQ which deformed into segment−−→

P ′Q′. Undeformed length (to the square):

ds2 = ‖dx‖2 = dx · dx = dxidxi (2.11)

Deformed length (to the square):

(ds′)2 = ‖dx′‖2 = dx′ · dx′ =
∂ϕi
∂xj

dxj
∂ϕi
∂xk

dxk (2.12)
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The change in length of segment
−→
PQ is then given by the difference between equations (2.12)

and (2.11):

(ds′)2 − ds2 =
∂ϕi
∂xj

dxj
∂ϕi
∂xk

dxk − dxidxi (2.13)

We want to extract as common factor the differentials. To this end we observe that:

dxidxi = dxjdxkδjk (2.14)

Then:

(ds′)2 − ds2 =
∂ϕi
∂xj

dxj
∂ϕi
∂xk

dxk − dxjdxkδjk

=
(∂ϕi
∂xj

∂ϕi
∂xk
− δjk

)
︸ ︷︷ ︸ dxjdxk

2εjk: Green-Lagrange strain tensor

(2.15)

Assume that the deformation mapping ϕ(x) has the form:

ϕ(x) = x + u (2.16)

where u is the displacement field. Then,

∂ϕi
∂xj

=
∂xi
∂xj

+
∂ui
∂xj

= δij +
∂ui
∂xj

(2.17)

and the Green-Lagrange strain tensor becomes:

2εij =
(
δmi +

∂um
∂xi

)(
δmj +

∂um
∂xj

)
− δij

=6 δij +
∂ui
∂xj

+
∂uj
∂xi

+
∂um
∂xi

∂um
∂xj
− 6 δij

(2.18)

Green-Lagrange strain tensor : εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

+
∂um
∂xi

∂um
∂xj

)
(2.19)

When the absolute values of the derivatives of the displacement field are much smaller than
1, their products (nonlinear part of the strain) are even smaller and we’ll neglect them. We
will make this assumption throughout this course (See accompanying Mathematica notebook
evaluating the limits of this assumption). Mathematically:∥∥∥∂ui

∂xj

∥∥∥� 1 ⇒ ∂um
∂xi

∂um
∂xj

∼ 0 (2.20)

We will define the linear part of the Green-Lagrange strain tensor as the small strain tensor :

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(2.21)
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Concept Question 2.1.1. Strain fields from displacements.

The purpose of this exercice is to determine strain fields from given displacements.

1. Find the linear and nonlinear strain fields associated with the following displacements

ua1 = x1x2(2− x1)− c1x2 + c2x
3
2,

ua2 = −c3x
2
2(1− x1)− (3− x1)

x2
1

3
− c1x1.

2. Find the linear strain fields associated with the following displacements

ub1 = x3
1x2 + 2c1c

3
2x1 + 3c1c

2
2x1x2 − c1x1x

3
2,

ub2 = −2c3
2x2 −

3

2
c2

2x
2
2 +

1

4
x4

2 −
3

2
c1x

2
1x

2
2.

2.2 Transformation of strain components

Readings: BC 1.5.1, 1.6.2, 1.5.2, 1.6.3, 1.6.4

Given: εij, ei and a new basis ẽk, determine the components of strain in the new basis ε̃kl

ε̃ij =
1

2

(∂ũi
∂x̃j

+
∂ũj
∂x̃i

)
(2.22)

We want to express the quantities with tilde on the right-hand side in terms of their non-tilde
counterparts. Start by applying the chain rule of differentiation:

∂ũi
∂x̃j

=
∂ũi
∂xk

∂xk
∂x̃j

(2.23)

Transform the displacement components:

u = ũmẽm = ulel (2.24)

ũm(ẽm · ẽi) = ul(el · ẽi) (2.25)

ũmδmi = ul(el · ẽi) (2.26)

ũi = ul(el · ẽi) (2.27)

take the derivative of ũi with respect to xk, as required by equation (2.23):

∂ũi
∂xk

=
∂ul
∂xk

(el · ẽi) (2.28)
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and take the derivative of the reverse transformation of the components of the position vector
x:

x = xjej = x̃kẽk (2.29)

xj(ej · ei) = x̃k(ẽk · ei) (2.30)

xjδji = x̃k(ẽk · ei) (2.31)

xi = x̃k(ẽk · ei) (2.32)

∂xi
∂x̃j

=
∂x̃k
∂x̃j

(ẽk · ei) = δkj(ẽk · ei) = (ẽj · ei) (2.33)

Replacing equations (2.28) and (2.33) in (2.23):

∂ũi
∂x̃j

=
∂ũi
∂xk

∂xk
∂x̃j

=
∂ul
∂xk

(el · ẽi)(ẽj · ek) (2.34)

Replacing in equation (2.22):

ε̃ij =
1

2

[ ∂ul
∂xk

(el · ẽi)(ẽj · ek) +
∂ul
∂xk

(el · ẽj)(ẽi · ek)
]

(2.35)

Exchange indices l and k in second term:

ε̃ij =
1

2

[ ∂ul
∂xk

(el · ẽi)(ẽj · ek) +
∂uk
∂xl

(ek · ẽj)(ẽi · el)
]

=
1

2

( ∂ul
∂xk

+
∂uk
∂xl

)
(el · ẽi)(ẽj · ek)

(2.36)

Or, finally:

ε̃ij = εlk(el · ẽi)(ẽj · ek) (2.37)

Concept Question 2.2.1. 2d relations for strain tensor rotation.
In two dimensions, let us consider two basis ei and ẽk such that ẽ1 is oriented at an angle

θ with respect to the axis e1. εij and ε̃ij are, respectively, the components of a strain tensor
ε expressed in the ei and ẽk bases (i.e. they correspond to the same state of deformation.
Using the following expression introduced in the class notes,

ε̃ij = εlk(el · ẽi)(ẽj · ek)

derive the following relations:

ε̃11 = ε11 cos2 θ + ε22 sin2 θ + ε12 sin 2θ

ε̃22 = ε11 sin2 θ + ε22 cos2 θ − ε12 sin 2θ

ε̃12 = −ε11 − ε22

2
sin 2θ + ε12 cos 2θ

Note: It is also usual to find the following expressions for ε̃11 and ε̃22 in textbooks:

ε̃11 =
ε11 + ε22

2
+
ε11 − ε22

2
cos 2θ + ε12 sin 2θ

ε̃22 =
ε11 + ε22

2
+
ε22 − ε11

2
cos 2θ − ε12 sin 2θ
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Concept Question 2.2.2. Principal strains and maximum shear strain in 2d.
Using the relations introduced in Problem 2.2.1, show that given the components εij of

a 2d strain tensor in a basis ei:

1. The principal strains can be computed as follows:

ε1,2 =
ε11 + ε22

2
±

√(
ε11 − ε22

2

)2

+ ε212

and the principal directions of strain for angles with respect to e1 satisfy:

tan 2θp =
2ε12

ε11 − ε22

2. The maximum shear strain can be computed as follows:

εmax
12 =

√(
ε11 − ε22

2

)2

+ ε212

and the normal of the planes of maximum shear form angles with respect to e1

tan 2θs = −ε11 − ε22

2ε12

.

Conclude that the direction of maximum shear is always oriented at an angle equal to
45o with respect to the principal directions of strain.

Concept Question 2.2.3. Strain tensor rotation.
Consider the following problem of a square of unit area subject to the following strain

components in the basis given, Figure 2.3(a). :

ε11 = 3.4× 10−4 ε22 = 1.1× 10−4 ε12 = 9.0× 10−5

Since the square has its edge of unit length, the changes in length in the directions e1 and
e2 are directly equal to ε11 and ε22, respectively. The shear strain ε12 is equal to half of the
decrease in angle in A (for infinitesimal angles).

1. Determine the strain components on a square initialy oriented at an angle equal to
30o to the axis e1 as shown on Figure 2.3(b). Sketch in this case, the deformed
configuration.

2. Determine the principal strains and sketch the deformed configuration.

3. Determine the maximum shear strain and sketch the deformed configuration.
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Figure 2.2: Deformed unit square and oriented new initial configuration.
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Figure 2.3: Deformed unit square and oriented new initial configuration.
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2.3 Compatibility of strains

Readings: BC 1.8

Given displacement field u, expression (2.21) allows to compute the strains components
εij. How does one answer the reverse question? Note analogy with potential-gradient field. In
this section, we will restrain ourselves to small perturbation theory where the displacements
and the rotations of a deformable solid are infinitesimal. Let us first restrict the analysis to
two dimensions. The small strain tensor is defined as the symmetric part of the displacement
gradient ∂ui

∂xj
:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.38)

We define the skew-symmetric part of ∂ui
∂xj

as:

ωij :=
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.39)

Concept Question 2.3.1. Properties of ωij

1. Verify that ωji = −ωij, i.e. ωij is skew-symmetric

2. Verify that εij + ωij = ∂ui
∂xj

For the two-dimensional setting, the components are as follows:

ω11 = ω22 = 0, ω12 = −ω21 =
1

2

(
∂u1

∂x2

− ∂u2

∂x1

)
(2.40)

We have seen in a previous section of this module, that εij describes the change of length
of a vector dx due to deformation. We will now see that ωij represents the infinitesimal
rotation of the vector dx from the initial to the deformed configuration. ωij is thus named
the infinitesimal rotation tensor.

Consider an infinitesimal rotation of a vector
−→
PQ in the neighborhood of a point P .

For this transformation, the strain tensor ε vanishes. Such a transformation can only be a

rotation of
−→
PQ into

−−→
PQ′ by an angle θ ( θ � 1) as depicted in the following figure:

P

Q′

dx′

θ
Q

dx

Figure 2.4: infinitesimal rotation of a vector dx
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From Figure 2.4, it is possible to express dx′ in terms of θ and dx:

dx′ =

[
cos θ sin θ
− sin θ cos θ

]
dx ≈

[
1 θ
−θ 1

]
dx (2.41)

Altenatively, from (2.17), it is possible to express dx′ in terms of ω12 and dx:

dx′ = (δij + ωij) dxj =

[
1 ω12

−ω12 1

]
dx (2.42)

By identification of the transformation matrix components, we conclude that ω12 = −ω21 ≈ θ
corresponds indeed to an infinitesimal rotation in the plane of normal e3. Similar conclusions
can be drawn on the remaining components: ω31 = −ω13 corresponds to an infinitesimal
rotation in the plane of normal e2 and ω23 = −ω32 corresponds to an infinitesimal rotation
in the plane of normal e1.

The compatibility of strain is intricately related to the continuity of infinitesimal rota-
tions. In two dimensions, this can be readily expressed by requiring the equality of the mixed
partials of ω12: ∂2ω12

∂x1∂x2
= ∂2ω12

∂x2∂x1
. To this end, differentiate ω12 with respect to x1:

∂ω12

∂x1

=
1

2

(
∂2u1

∂x2∂x1

− ∂2u2

∂x2
1

)
(2.43)

=
1

2

(
∂2u1

∂x2∂x1

+
∂2u1

∂x2∂x1

−
(
∂2u2

∂x2
1

+
∂2u1

∂x2∂x1

))
(2.44)

=
∂ε11

∂x2

− ∂ε12

∂x1

(2.45)

and now with respect to x2:

∂2ω12

∂x1∂x2

=
∂2ε11

∂x2
2
− ∂2ε12

∂x1∂x2

(2.46)

Similarly, we can find that:
∂ω12

∂x2

=
∂ε12

∂x2

− ∂ε22

∂x1

(2.47)

which differentiated with respect to x1 gives:

∂2ω12

∂x2∂x1

=
∂2ε12

∂x2∂x1

− ∂2ε22

∂x1
2

(2.48)

Equating the mixed partials in equations (2.46) and (2.48) we obtain:

2
∂2ε12

∂x1∂x2

=
∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

(2.49)

The following concept question generalizes this result to obtain all of the equations of
strain compatibility in three dimensions.
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Concept Question 2.3.2. Strain compatibility equation in 3d.
The purpose of this exercise is to derive the strain compatibility equations in 3d using

the approach followed in class for the 2d case.

1. Apply the equality of mixed partials to the small rotation tensor:

∂2ωij
∂xk∂xl

=
∂2ωij
∂xl∂xk

and show that the following relations hold:

∂2εik
∂xj∂xl

− ∂2εjk
∂xi∂xl

=
∂2εil
∂xj∂xk

− ∂2εjl
∂xi∂xk

(2.50)

2. How many relations are defined by (2.50) and how many strain compatibility equations
are required in order to ensure that a unique displacement may be computed from a
given small strain tensor?

3. Notice that for i = j or l = k, (2.50) is automatically verified. How many non-trivial
relations can be derived from (2.50)? Are all these relation independant?


