
Module 5

Material failure

Learning Objectives

• review the basic characteristics of the uni-axial stress-strain curves of ductile and brittle
materials

• understand the need to develop failure criteria for general stress states

• specific yield criteria: Tresca and von Mises

• application of Tresca and von Mises yield criteria to specific stress states

5.1 Uni-axial stress response of materials

Readings: BC 2.1.4, 2.1.5

Figure 5.1 shows a schematic of a stress-strain curve for uni-axial loading conditions for
ductile and brittle materials (isotropic case).

Concept Question 5.1.1. Comment on the general features of the stress-strain response
under this loading condition for both types of materials Solution: Should mention elastic
response for infinitesimal strains, plastic yield and symmetric tension-compression response
for ductile materials, asymmetric response in tension-compression for brittle materials with
higher strength in compression, no plastic yielding, etc.

Consider the case of a ductile material. For this simple stress state, the material yields
plastically when:

σ11 = σy

5.2 Plastic yielding under multi-axial stress states

Readings: BC 2.3
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Figure 5.1: Uni-axial stress-strain response for ductile and brittle materials.

The basic question in this case is: For general stress states (e.g. solutions to 2D or 3D
elasticity problems), for what combinations and intensities of stress components will the
material start yielding plastically?

Concept Question 5.2.1. Propose possible answers to this question, and discuss the an-
swers at your table Solution: Here are a few possible (arbitrary)
answers:

• when the first of all the stress component reaches the value of the yield stress

• when all the stress components reach the value of the yield stress

• ...

One immediately realizes that these responses are unfounded and most likely wrong.
How about something a bit more elaborate and perhaps intuitive:

• when the maximum principal stress reaches the some limit value

• when the maximum shear stress reaches some limit value

It turns out, these two apply in reality to different types of materials. This will depend
on the type of internal mechanism responsible for inelastic deformation. The first applies
to brittle materials where there is very little yielding. The second applies to metals where
the main yield mechanism is dislocation motion, which is a process controlled exclusively by
shear.

The second key question that arises is: can we use the yield stress obtained in the simple
uni-axial test as the limit value for yielding even for multi-axial stress states? If so, how?

Several phenomenological theories have been proposed which have found broad applica-
bility to a wide range of engineering materials:
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5.2.1 Maximum Principal Stress (Lamé)

As the name indicates, the material breaks when the maximum principal stress σI reaches
the critical value σc. This is simply stated in mathematical form, as:

σI ≤ σc

It turns out, this criterion is applicable to brittle materials.

Concept Question 5.2.2. How would you apply this criterion in a real problem?
Solution:

• figure out the stress state using elasticity theory

• determine principal stress σI , σII , σIII

• determine if at any point the maximum principal stress σI = σc

This theory does not work at all for ductile materials.

5.2.2 Maximum Shear Stress Theory (Tresca ∼ 1900)

Readings: BC 2.3.1

Historical note: Gustav Eiffel considered Henri Tresca the third most important con-
tributor to making the Eiffel Tower possible. Tresca’s name appears third in the list of
contributor names engraved on the tower sides under the first balcony.

This criterion simply states that the material yields when the maximum shear stress
reaches a limit value τy.

Concept Question 5.2.3. Obtain an expression for the Tresca criterion in terms of the
principal stresses Solution: From Mohr’s circle, the largest shear stress can be
obtained from the quantities:

σI − σII
2

,
σII − σIII

2
,
σI − σIII

2

The Tresca criterion is obtained by comparing the maximum of these values to the limit τy

Concept Question 5.2.4. What is the limit value, i.e. how does it relate to σy, the yield
stress measured in a uni-axial test? Solution: For uni-axial stress, yielding
occurs when σ11 = σy. In this case, σI = σ11, σII = σIII = 0. The maximum shear stress is
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Figure 5.2: Eiffel Tower with detail showing Tresca’s name engraved on the sides below the
first balcony
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then σI−0
2

= σ11
2

. Applying the Tresca criterion we obtain: σ11
2

= τy. From these arguments
it follows that:

τy =
σy
2

And the Tresca criterion can finally be written as:

Tresca:





σI − σII = σy

σII − σIII = σy

σI − σIII = σy

(5.1)

Concept Question 5.2.5. In this question, we try to understand the effect of a hydrostatic
stress on yielding in the case of Tresca’s maximum shear stress criterion. Consider a state of
stress given by σij = pδij and obtain the value of p for which the material will yield according
to Tresca’s criterion.

Solution: For this state of stress, σI = σII = σIII = p. Thus,

σI − σIII = 0, etc

We conclude that no yielding is possible under hydrostatic stress states.

Experiments by Bridgemann (Harvard, 1940’s) have shown that metals exhibit no per-
manent deformation (no yielding) when subject to large pressures. Tresca’s is a good yield
criterion for metals, where the plastic deformation mechanism (dislocation motion) is driven
by shear stress and quite insensitive to pressure or volumetric stresses.

Concept Question 5.2.6. Apply the Tresca yield criterion to the following stress states
(in all cases, the key is to obtain the principal stresses in terms of the components given and
plug it into the

1. Uni-axial stress state (σ11 6= 0, all other components are zero Solution: This case
done above: σI = σ11, σII = σIII = 0, and the criterion reads:

σ11 = σy

2. Plane stress state given in terms of the following cartesian stress components σ11, σ12, σ22

(Hint: recall that the principal stresses in plane stress are given by

σI,II =
σ11 + σ22

2
±
√(σ11 − σ22

2

)2
+ σ2

12, σIII = 0

) Solution: It follows directly that Tresca’s criterion is written in this case as:

σI − σII = 2

√(σ11 − σ22

2

)2
+ σ2

12 < σy,
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σI − σIII =
∣∣σ11 + σ22

2
±
√(σ11 − σ22

2

)2
+ σ2

12

∣∣ < σy

3. Pure shear Solution: from the previous equation, one obtains:

σ12 =
σy
2

5.2.3 von Mises Theory, (∼ 1913)

Also attributed to Maxwell, Huber and Hencky.
This yield criterion can be stated in principal stress components as:

σe =

√
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

2
= σy (5.2)

where σe is defined as an equivalent or effective stress and σy is the yield stress measured
in a uni-axial stress test.

This seemingly arbitrary expression can be explained by the following reasoning.
Define the deviatoric stress tensor as:

sij = σij −
σkk
3
δij (5.3)

sij represents the “state of shear”, i.e. the state of stress subtracting the hydrostatic pressure
part (also known as spherical or volumetric part).

Concept Question 5.2.7. Show that the first invariant of the deviatoric stress tensor
J1 = skk is zero. Solution:

skk = σkk −
σll

�3
��δkk︸︷︷︸

3

= 0

The second invariant of sij, J2, defines the “magnitude” (squared) of the deviatoric stress
tensor:

J2 =
1

2
sijsij (5.4)

Concept Question 5.2.8. Verify that J2 can be written as a function of the cartesian stress
components σij in the following form:

J2 =
1

6

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

]
+ σ2

12 + σ2
23 + σ2

31 (5.5)
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Solution: First expand the given expression:

J2 =
1

6

[
σ2

11 − 2σ11σ22 + σ2
22 + σ2

22 − 2σ22σ33 + σ2
33 + σ2

33 − 2σ33σ11 + σ2
11

]
+ σ2

12 + σ2
23 + σ2

31

=
1

3

[
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ22σ33 − σ33σ11

]
+ σ2

12 + σ2
23 + σ2

31

Now expand the definition of J2:

J2 =
1

2
sijsij =

1

2

[(
σij −

σkk
3
δij

)(
σij −

σll
3
δij

)]

=
1

2


σijσij −

2

3
σijδij︸ ︷︷ ︸
σii

σkk +
σ2
kk

3�2
δijδij︸ ︷︷ ︸
�3




=
1

2

[
σijσij −

1

3
σ2
kk

]

=
1

2

[
σ2

11 + σ2
12 + σ2

13 + σ2
21 + σ2

22 + σ2
23 + σ2

31 + σ2
32 + σ2

33 +−1

3
(σ11 + σ22 + σ33)2

]

=
1

2

[
σ2

11 + σ2
12 + σ2

13 + σ2
21 + σ2

22 + σ2
23 + σ2

31 + σ2
32 + σ2

33+

− 1

3
(σ2

11 + σ2
22 + σ2

33 + 2σ11σ22 + 2σ22σ33 + 2σ33σ11)
]

=
1

3

(
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ22σ33 − σ33σ11

)
+ σ2

12 + σ2
23 + σ2

31 (5.6)

which matches the expression above

Now we can define a criterion that makes physical sense for materials that yield when
the intensity of the overall “state of shear” reaches a critical value, τy the yield stress under
shear):

√
J2 = τy (5.7)

Concept Question 5.2.9. Show that this criterion reduces to σ12 = τy for a case of pure
shear Solution: For pure shear (say σ12 6= 0 all other stress components equal to zero),
it follows directly from Concept Question 5.2.8 that

√
J2 = σ12 = τy
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Concept Question 5.2.10. 1. Show that according to this criterion (
√
J2 = τy), under

uni-axial stress loading yield occurs when the applied stress (say σ11), reaches the value
σ11 =

√
3τy. Solution: In this case,

√
J2 =

√
1

3
σ11 = τy,⇒ σ11 =

√
3τy

2. Obtain a relationship between the yield stress under pure shear τy and the yield stress
under uni-axial stress σy

Solution: We know that under uni-axial stress, the material yields when the
applied stress reaches σy, then, from the previous question we can conclude that:

σ11 = σy =
√

3τy

3. Rewrite the von Mises yield criterion in terms of the yield stress σy. Solution:
From equations (5.7) and (5.5):

J2 =
1

6

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

]
+ σ2

12 + σ2
23 + σ2

31 = τ 2
y =

1

3
σ2
y

3J2 =
1

2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6

(
σ2

12 + σ2
23 + σ2

31

)]
= σ2

y (5.8)

Concept Question 5.2.11. Obtain an expression for the von Mises yield criterion in terms
of the principal stresses σI , σII , σIII . Solution: This follows readily
by setting the shear stress components to zero in (5.8) and replacing the normal cartesian
stress components with the principal stresses:

1

2

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]
= σ2

y

We notice that we recover the expression at the beginning of the section (5.2).

Remark’s about von Mises yield criterion:

• As Tresca’s criterion, it can be readily seen that a hydrostatic state of stress σI =
σII = σIII = p will not produce yielding.

• the von Mises criterion provides a single expression to check for yielding instead of the
three different equations in Tresca’s criterion.


