
Module 6

Torsion

Learning Objectives

6.1 Formulation of the basic equations of torsion of

prismatic bars (St. Venant)

Readings: Sadd 9.3, Timoshenko Chapter 11
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Figure 6.1: Torsion of a prismatic bar

We will employ the semi-inverse method, that is, we will make assumptions as to the
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74 MODULE 6. TORSION

deformation of the twisted bar, enforce the governing equations of the theory of elasticity and
from them derive simplified equations on a reduced set of variables. Due to the uniqueness
of solutions, we can be sure that the assumptions made and the solutions found are correct
for the torsion problem.

The assumptions about the deformation resulting from the applied torque M3 = T are:

• Each x3 = constant plane section rotates as a rigid body about the central axis,
although it is allowed to warp in the x3 direction

• The rotation angle of each section β is a linear function of x3, i.e. β(x3) = αx3, where
α is the constant rate of twist or angle of twist per unit length.
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Figure 6.2: Rigid in-plane rotation displacements for the torsion problem

Concept Question 6.1.1. Based on these assumptions and the schematic of the figure,
derive the displacements corresponding to the rotation of the cross section at x3

The out-of-plane warping displacement is assumed to be independent of x3. Our dis-
placement assumption is thus reflected in the following expressions: function u3 is assumed
to be

u1 = −αx3x2

u2 = αx3x1

u3 = u3(x1, x2)

(6.1)

6.2 Stress formulation

We start by looking at the implications of our kinematic assumptions in our strain-displacement
relations:
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Concept Question 6.2.1. Use the strain-displacement relations εij = 1
2
(ui,j +uj,i) and the

kinematic assumptions in equations (6.1) to derive the general form of the strains in the
torsion problem.

Next, we need to consider our constitutive relations (isotropic material assumed).

Concept Question 6.2.2. Use Hooke’s law εij = 1
E

[
(1 + ν)σij − νσkkδij

]
and the specific

form of the strains resulting from the assumptions of torsion theory to derive the following
relations between the stresses and the assumed displacements:

σ11 = σ22 = σ33 = 0 (6.2)

σ23 = G(αx1 + u3,2) (6.3)

σ31 = G(−αx2 + u3,1) (6.4)

σ12 = 0 (6.5)

If we follow the stress formulation, at this point we would apply the strain compatibility
relations, but it is more direct to derive a special compatibility relation for the torsion
problem. To this end, differentiate equation (6.3) with respect to x1

σ23,1 = G(α + u3,21)

, equation (6.4) with respect to x2

σ31,2 = G(−α + u3,12)

and subtract to obtain:
σ31,2 − σ32,1 = −2Gα (6.6)

As we have done for plane stress problems, we will seek a scalar function that automati-
cally satisfies the equilibrium equations. Let’s see what the stress equilibrium equations look
like for the torsion problem:

Concept Question 6.2.3. Specialize the general equations of stress equilibrium: σij,j = 0
(no body forces) to the torsion problem (no need to express them in terms of the strains or
displacement assumptions as we will use a stress function)

Now we can choose a stress function that will automatically satisfy equation (??):

σ31 = φ,2, σ32 = −φ,1 (6.7)

It can be readily verified that this choice does indeed satisfy the equilibrium equations.
To obtain the final governing equation for the stress function, we need to combine equa-

tions (6.7) with the compatibility equation (6.6)
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Concept Question 6.2.4. Do it!

This is the final governing equation we will use in the description of torsion based on
the stress formulation. The type of equation (Laplacian equal to constant) is known as the
Poisson equation.

It requires the provision of adequate boundary conditions. As we know, stress formula-
tions are useful when we can provide traction boundary conditions

Concept Question 6.2.5. Specialize the general traction boundary conditions σijnj = t̄i
to the torsion problem (Hint consider the loading on the (lateral) cylindrical surface of the
bar and focus on a specific cross-section)

Replacing the stresses as a function of φ and observing that the tangent vector on the
boundary is s = s1, s2 = −n2, n1, we obtain:

φ,2s2 + (−φ,1)(−s1) = 0,→ φ,1s1 + φ,2s2 = 0

∇φ · s = 0, or
∂φ

∂s
= 0 (6.8)

that is, the gradient of the stress function is orthogonal to the tangent or parallel to the
normal at the boundary of the cross section, which in turn implies that φ is constant on the
boundary of the cross section. The value of the constant is really immaterial, as adding a
constant to φ will not affect the stresses. For convenience, we will assume this value to be
zero. (We will see that in the case of multiply-connected sections this has to be relaxed).
To summarize, the torsion problem for simply-connected cross sections is reduced to the
following boundary value problem:

φ,11 + φ,22 = −2Gα inside the area of the cross section (6.9)

φ = 0 on the boundary (6.10)

It remains to relate the function φ to the external torque M3 = T applied and to verify
that all other stress resultants are zero at the end of the bar.

At the bar end (x3 = 0, L), the internal stresses need to balance the external forces.
Ignoring the details of how the external torque is applied and invoking St. Venant’s principle,
we can state, see figure:

F1 =

∫
A

σ13dx2dx1 =

∫
x1

∫
x2

φ,x2dx2dx1 =

∫
x1

[φ]
xtop2

xbottom2
dx1, ⇒ F1 = 0

where A is the area of the cross section. Similarly,

F2 =

∫
A

σ23dx2dx1 = 0

For the applied torque M3 = T we need to make sure that:

T =

∫
A

(σ23x1 − σ13x2)dA =

∫
A

(−φ,1x1 − φ,2x2)dA = −
(∫

A

φ,ixidA

)
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Figure 6.3: Force and moment balance at bar ends

Integrating by parts by using ((φxi),i = φ,ixi + φxi,i) and xi,i = x1,1 + x2,2 = 2:

T = −
(∫

A

(φxi),idA− 2φdA

)
The first term can be converted into a boundary line integral by using the divergence theorem
on the plane

∫
A

()i,idA =
∫
∂A

()inids, where ni are the components of the normal to the
boundary and ds is the arc length:

T = −
∫
∂A

φxinids+

∫
A

2φdA

The first term vanishes since φ = 0 at the boundary and we obtain:

T = 2

∫
A

φdA (6.11)

6.3 Solution approach

The following box summarizes the overall solution procedure:

1. Compute the stress function by solving Poisson equation and associated boundary
condition (6.9)

2. Obtain torque - rate of twist relation T = T (α) from equation (6.11)

3. Compute stresses σ23, σ31 from equations (6.7), strains ε23, ε31 follow directly from the
constitutive law

4. Compute warping function u3(x1, x2) by integrating equations (6.4) and (6.3)

A powerful method of approaching the solution of the Poisson equation for the torsion prob-
lem is based on the observation that φ vanishes at the boundary of the cross section. There-
fore, if we have an implicit description of the boundary of our cross section f(x1, x2) = 0,
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we could use the inverse method where we assume a functional dependence of φ(x1, x2) of
the form φ(x1, x2) = Kf(x1, x2), where K is a constant to be determined. Although this
does not provide a general solution to the Poisson equation, it is useful in several problems
of interest. Once again as we have done when using the inverse method, if our assumed
functional form satisfies the governing equations and the boundary conditions, uniqueness
guarantees that we have found the one and only solution to our problem of interest.

Concept Question 6.3.1. Torsion of an elliptical bar
Consider a bar with elliptical cross section as shown in the figure subject to a torque T

at its ends. The boundary is described by the implicit equation

f(x1, x2) =
x2

1

a2
+
x2

2

b2
− 1 = 0

a
b

x1

x2

Figure 6.4: Elliptical cross-section.

1. Propose a functional form for the stress function φ :

2. Use the governing equation ∇2φ = φ,11 + φ,22 = −2Gα to determine the value of the
constant K and the final expression for φ.

3. Determine the relationship between the applied torque T and the rate of twist α by
using the torque-φ relation (6.11) T = 2

∫
A
φdA. Interpret this important relation.

4. Use the relations (6.7): σ31 = φ,2, σ32 = −φ,1 to compute the shear stresses σ13 and
σ23 as a function of the torque T .

5. Determine the stress resultant defined by the relation τ =
√
σ2

31 + σ2
23.

6. Determine the maximum stress resultant τmax and its location in the cross section.
Assume a > b. What happens to the individual stress components at that point?

7. An elliptical bar has dimensions L = 1m, a = 2cm, b = 1cm and is made of a material
with shear modulus G = 40GPa and yield stress σ0 = 100MPa. Compute the maxi-
mum twist angle before the material yields plastically and the value of the torque T at
that point. Assume a yield criterion based on the maximum shear stress (also known
as Tresca yield criterion), i.e. the material yields plastically when τmax = σ0.

8. Calculate the warping displacement u3 as a function of T .
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9. Specialize the results for the elliptical cross section to the case of a circle of radius
r = a = b

6.4 Membrane analogy

For a number of cross sections it is not easy to find analytical solutions to the torsion problem
as presented in the previous section. Prandtl (1903) introduced an analogy that has proven
very useful in the analysis of torsion problems. Consider a thin membrane subject to a
uniform pressure load pa shown in Figure 6.6.

Figure 6.5: Schematic of a membrane subject to a uniform pressure

N is the membrane force per unit length which is uniform in all the membrane and in
all directions. It can be shown that the normal deflection of the membrane u3(x1, x2) is
governed by the equation:

u3,11 + u3,22 = − p

N
(6.12)

The boundary condition is simply u3(x1, x2) = 0.
We observe that there is a mathematical parallel or analogy between the membrane and

torsion problems:

Membrane Torsion
u3(x1, x2) φ(x1, x2)
p
N

2Gα
u3,1 φ,1 = −σ23

u3,2 φ,2 = σ31

V =
∫
A
u3dA

T
2
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The analogy gives a good “physical” picture for φ which is useful as it is easy to visualize
deflections of membranes of odd shapes. It has even been used as an experimental technique
involving measurements of soap films (see Timoshenko’s book). Looking at contours of u3 is
particularly useful.

By observing the table, we can see that:

• the shear stresses are proportional to the slope of the membrane. This can be gleaned
from the density of contour lines: the closer, the higher the slope and the higher the
stress, the stress resultant is oriented parallel to the contour line.

• if we measure the volume encompassed by the deformed shape of the membrane, we
can obtain the torque applied.

In particular, we can draw insights into the overall torsion behavior of general cross
sections.

Figure 6.6: Examples of membranes subject to uniform pressure and sketch of deflection
contour lines

Concept Question 6.4.1. Consider the torsion of a rectangular bar of sides a, b. An
analytical solution can be obtained by using Fourier series (outside scope of this class).
However, the membrane analogy gives us important insights about the stress field. Sketch
contours of φ and make comments about the characteristics of the stress field.
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Concept Question 6.4.2. Consider the cases of cross section with corners such as those
shown in Figure 6.7. What can we learn from the membrane analogy about the stress
distribution due to torsion near the corner in the case of

1. convex corner

2. concave corner

Figure 6.7: Membrane analogy: corners

Concept Question 6.4.3. Torsion of a narrow rectangular cross section: In this
question, we will make use of the membrane analogy to estimate the stress distribution in a
narrow rectangular cross section as shown in Figure 6.8.

1. Sketch the cross section of the bar and use the membrane analogy to estimate the
deformed shape of the membrane u3 and from that the shape of the contour lines of
φ. Comment on the dominant spatial dependence of φ and from there, the expected
torsion response.

2. Based on your conclusions, obtain φ(x1) by simplifying and then integrating the gov-
erning equation.

3. Obtain the torque-rate-of-twist relation T−α using the expression (6.11) T = 2
∫
A
φdA

4. The torsional stiffness of the bar is defined as GJ , where G the shear modulus is the
material and J is the geometric contribution to the structural stiffness. Find J for this
case and comment on the structural efficiency of this cross section:

5. Find the stresses and further support your conclusions about structural efficiency:

The discussion for a narrow rectangular cross section is also applicable to other narrow
(open) shapes, see examples in Figure 6.9,
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x1
x2

x3

T

a

b

L

Figure 6.8: Torsion of a narrow rectangular bar

Figure 6.9: Other narrow open cross sections for which the solution for the rectangular case
is useful
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Concept Question 6.4.4. Justify this statement and comment on the general torsional
structural efficiency of narrow open shapes.

From the membrane analogy, one can observe that the volume of the deformed membrane
for general narrow open cross-sections comprising several segments such as in an channel or
I-beam, can be approximated by the sum of the individual volumes. The additive character
of the integral then tells us that the torque-rate-of-twist relation can be obtained by adding
the torsional stiffness of the individual components. Specifically,

Figure 6.10: Combining the membrane analogy and the solution for a rectangular thin
section to solve general open thin section torsion problems

T = GJα = 2

∫
A

(φ1 + φ2 + . . . )dA = 2

∫
A1

φ1dA+ 2

∫
A2

φ2dA+ · · · = GJ1α +GJ2α + . . .

T = G
n∑
i=1

Ji︸ ︷︷ ︸
J

α

In the case of the channel beam, Figure 6.10, Ji =
bih

3
i

3
. We observe that as we extend the

lengths of each component, the torsional stiffness only grows linearly with the total length.
We will see that the situation is very different for the case of closed sections.

As for the stresses, they maximum stress will differ in each component of the thin section
if the thickness is not uniform, since:

σ23 = −φ,1 =
2T

J
x1

where J is the total geometric contribution to the stiffness
∑n

i=1
bih

3
i

3
, so that the maximum

stress in each section is determined by its thickness:

σ
(i)
23 =

T

J
hi
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The approach for thin open sections can be applied as an approximation for very slender
monolithic wing cross sections, such as shown in Figure 6.11

Figure 6.11: Use of membrane analogy for the torsion of slender monolithic wing cross
sections

In this case, we can see that to a first approximation, the hypothesis for narrow sections
apply and the same equations hold as long as we compute the torsional stiffness as:

J ∼ 1

3

∫ yT

yL

h(x2)3dx2

6.5 Torsion of bars with hollow, thick-wall sections

Readings: Sadd 9.3, 9.6

Consider cylindrical bars subject to torsion with a cross section as shown in Figure 6.12.
Just as we did for the exterior boundary, we will assume that the interior boundary or
boundaries are traction free. This implies that the shear stress is parallel to the boundary
tangent, see Figure 6.13. We will call this the shear stress resultant τ = σs3 =

√
σ2

31 + σ2
23.

It also implies that ∂φ
∂s

= 0 (see equation (6.8)) and φ = const at the interior boundaries
as well as on the external boundary. However, we cannot assume that the constant will be
the same. In fact, each boundary ∂Ωi will be allowed to have a different constant φi. We
can still assign one constant arbitrarily which we will keep setting as zero for the external
surface, i.e. φ0 = 0 on ∂Ω0.

The values of the constant for each internal boundary is obtained by imposing the con-
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Figure 6.12: Torsion of a hollow thick-wall cross section

Figure 6.13: Shear stress resultant
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dition that the warping displacement be continuous (single valued):

0 =

∮
∂Ωi

du3 =

∮
∂Ωi

(u3,1dx1 + u3,2dx2)

=

∮
∂Ωi

[(σ31

G
+ αx2

)
dx1 +

(σ23

G
− αx1

)
dx2

]
=

1

G

∮
∂Ωi

(σ31dx1 + σ23dx2) + α

∮
∂Ωi

(x2dx1 − x1dx2)

The first integrand σ31dx1 +σ23dx2 = τds, where τ is the resultant shear stress and ds is the
arc length. The second integral can be rewritten using Green’s theorem:∮

∂Ωi

(x2dx1 − x1dx2) = −
∫∫

Ωi

x1,1 + x2,2dΩ = 2A(Ωi)

Summarizing,

0 =
1

G

∮
∂Ωi

τds− 2αA(Ωi),

∮
∂Ωi

τds = 2 Gα︸︷︷︸
T/J

A(Ωi) = 2
A

J
T (6.13)

The value of the constant φi on each internal boundary ∂Ωi can be determined by applying
this expression to each interior boundary.

Internal holes also lead to a modification of the external torque equilibrium condition at
the end of the bar equation (6.11). For the case of N holes, we obtain:

T = 2

∫
A

φdA+
N∑
i=1

2φiA(Ωi) (6.14)

With the exception of a few simple cases, it is generally difficult to obtain analytical
solutions to torsion problems with holes. We will look at a few specific cases.

These results are also very important in the context of box-beams, as we shall see later
in the class.

Concept Question 6.5.1. Consider the case of a Hollow elliptical section It is important
that the interior boundary be an ellipse scaled from the outer boundary, that is the ellipse
semi-radii are ka, kb, where k < 1.

1. write the implicit equation of the interior boundary

2. Show that this implies that the interior boundary coincides with a contour line of the
stress function we developed for the solid elliptical section and find the value of φ1 = C
for which the contour line matches the interior boundary for a given k.

3. Evaluate the value of φ on the interior boundary when k = 0.5 relative to the value of
φ at the center of the bar in the solid section
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x1

x2

Figure 6.14: Torsion of a bar with a hollow elliptical cross section

4. Comment on the possibility of using the same function φ in both cases (solid and hol-
low): does it satisfy the governing equation φ,ii = −2Gα and the boundary conditions?
What about the warping displacement compatibility condition (6.13)?

5. Is there anything at all that changes, e.g. stiffness, stresses and rate of twist for a given
torque, etc.?

6. Compute the torsional efficiency η = J
A

of the hollow elliptical cross section relative
to the solid section as a function of k. How would you optimize the cross section to
maximize stiffness relative to weight?

6.6 Torsion of bars with thin hollow cross-sections

Consider the limit case of a very thin hollow (closed) section, Figure 6.15

Figure 6.15: Thin hollow cross section
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Since the inner and outer boundaries are nearly parallel, the resultant shear stress will
be nearly parallel to the median line throughout.

Also, the gradient of φ across the thickness and therefore the resultant stress will be
almost constant and equal to ∂φ

∂n
∼ φ1−φ0

t(s)
, where t(s) is the thickness.

This is in stark contrast to the thin open sections where φ was zero on both boundaries
across the thickness (it is in fact the same boundary) and φ adopted a parabolic profile
inbetween which resulted in a linear shear stress distribution which changed signs across the
thickness.

We can also make the following approximation in the computation of the warping dis-
placement compatibility condition (6.13):∮

∂Ω

τds ∼ 2GαA

where A ∼ Aouter ∼ Ainner.
The resisting torque provided by this cross section can then be computed as, Figure 6.16

Figure 6.16: Computation of the torque for a closed thin section

dT = h(s)τ(s)t(s)ds, T =

∮
∂Ω

dT =

∮
∂Ω

τ(s)t(s)h(s)ds

where h(s) is the moment arm.
We can show that the product τ(s)t(s) is a constant along the boundary for any s. Based

on Figure 6.6 and imposing equilibrium:

∑
F3 = 0 : −τAtAdx3 + τBtBdx3 = 0 ⇒ τAtA = τBtB, q = τ(s)t(s) = constant

where we have defined q as the shear flow.
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Then,

T = τt

∮
∂Ω

h(s)ds

but hds = 2dΩ, then:
T = 2τtA(Ω)

τ =
T

2At

which is known as Bredt’s formula. To find the torque-rate-of-twist relation, we replace in∮
∂Ω

T

2At︸︷︷︸
τ

ds = 2GαA

and we obtain:

T = G
4A2∮
∂Ω

ds
t

α

From where we find that the stiffness is given by:

J =
4A2∮
∂Ω

ds
t

Concept Question 6.6.1. Compare the result of this approximation with the exact theory
for a hollow circular bar of radius R and thickness t


