Module 7

Simple Beam Theory

Learning Objectives

- Review simple beam theory
- Generalize simple beam theory to three dimensions and general cross sections
- Consider combined effects of bending, shear and torsion
- Study the case of shell beams

7.1 Review of simple beam theory

Readings: BC 5 Intro, 5.1
A beam is a structure which has one of its dimensions much larger than the other two. The importance of beam theory in structural mechanics stems from its widespread success in practical applications.

7.1.1 Kinematic assumptions

Readings: BC 5.2
Beam theory is founded on the following two key assumptions known as the EulerBernoulli assumptions:

- Cross sections of the beam do not deform in a significant manner under the application of transverse or axial loads and can be assumed as rigid

Concept Question 7.1.1. With reference to Figure 7.1,

1. what is the main implication of this assumption on the kinematic description (overall displacement field) of the cross section?

Solution: The cross section can only undergo a rigid-body motion in its plane, i.e. two rigid body translations and one rotation.

Figure 7.1: First kinematic assumption in Euler-Bernoulli beam theory: rigid in-plane deformation of cross sections.
2. To simplify further the discussion, assume for now that there is no rotation of the cross section around the \mathbf{e}_{3} axis. Write the most general form of the cross-section in-plane displacement components: - Solution: The cross section can only translate rigidly in the \mathbf{e}_{2} and \mathbf{e}_{3} directions, i.e. the displacement components in the plane cannot depend on the position in the plane x_{2}, x_{3} and:

$$
\begin{equation*}
u_{2}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{2}\left(x_{1}\right), u_{3}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{3}\left(x_{1}\right) \tag{7.1}
\end{equation*}
$$

- During deformation, the cross section of the beam is assumed to remain planar and normal to the deformed axis of the beam.

Concept Question 7.1.2. With reference to Figure 7.3,

1. what is the main implication of this assumption on the kinematic description (overall displacement field) of the cross section?

Solution:
The cross section can only translate rigidly in the axial direction, or rotate with respect to the \mathbf{e}_{2} and \mathbf{e}_{3} axes by angles θ_{2} and θ_{3}, respectively (using the angles shown in the figure), both angles are of course allowed to be a function of x_{1} : $\theta_{2}=\theta_{2}\left(x_{1}\right), \theta_{3}=\theta_{3}\left(x_{1}\right)$.
2. Based on these kinematic assumptions, write the most general form of the crosssection out-of-plane displacement component: Solution: The rigid out-of-plane translation allows for a uniform displacement of the form: $u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{1}\left(x_{1}\right)$ as it would be the case for a truss element which sustains

Figure 7.2: Second kinematic assumption in Euler-Bernoulli beam theory: cross sections remain planar after deformation.
a uniform uni-axial strain. The rotations θ_{2} and θ_{3} will give contributions to the total axial displacement which are linear in the in-plane coordinates x_{3} and x_{2} respectively, see Figure 7.3. It can be easily inferred from the figure that these contributions adopt the form: $x_{3} \theta_{2}\left(x_{1}\right)$ and $-x_{2} \theta_{3}\left(x_{1}\right)$, respectively. It should be carefully noted that assuming both positive angles, this contribution indeed has a negative sign.
In summary, the out-of-plane kinematic restrictions imposed by the second EulerBernoulli assumption results in the following form of the u_{1} displacement component:

$$
\begin{equation*}
u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{1}\left(x_{1}\right)+x_{3} \theta_{2}\left(x_{1}\right)-x_{2} \theta_{3}\left(x_{1}\right) \tag{7.2}
\end{equation*}
$$

It should be noted that we have not defined the origin of the coordinate system but we have implicitly assumed that it corresponds to the intersection of the lines which do not exhibit stretch or contraction under out-of-plane rotations of the cross sections. Later we will define these lines as the neutral axes for bending.
3. If you noticed, we have not applied the constraint that the sections must remain normal to the deformed axis of the beam. Use this part of the assumption to establish a relation between the displacements fields $\bar{u}_{2}\left(x_{1}\right), \bar{u}_{3}\left(x_{1}\right)$ and the angle fields $\theta_{2}\left(x_{1}\right), \theta_{3}\left(x_{1}\right)$, respectively, see Figure ??.

Figure 7.3: Implications of the assumption that cross sections remain normal to the axis of the beam upon deformation.

Solution: from the figure one can see clearly that:

$$
\begin{equation*}
\theta_{2}=-\frac{d \bar{u}_{3}}{d x_{1}}, \theta_{3}=\frac{d \bar{u}_{2}}{d x_{1}} \tag{7.3}
\end{equation*}
$$

Concept Question 7.1.3. Combine the results from all the kinematic assumptions to obtain a final assumed form of the general 3D displacement field in terms of the three unknowns $\bar{u}_{1}\left(x_{1}\right), \bar{u}_{2}\left(x_{1}\right), \bar{u}_{3}\left(x_{1}\right)$:

Solution:

$$
\begin{gather*}
u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{1}\left(x_{1}\right)-x_{3} \bar{u}_{3}^{\prime}\left(x_{1}\right)-x_{2} \bar{u}_{2}^{\prime}\left(x_{1}\right) \tag{7.4}\\
u_{2}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{2}\left(x_{1}\right) \tag{7.5}\\
u_{3}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{3}\left(x_{1}\right) \tag{7.6}
\end{gather*}
$$

These assumptions have been extensively confirmed for slender beams made of isotropic materials with solid cross-sections.

Concept Question 7.1.4. Use the kinematic assumptions of Euler-Bernoulli beam theory to derive the general form of the strain field: - Solution: It follows directly from (7.4) that:

$$
\begin{gather*}
\epsilon_{11}=u_{1,1}=\bar{u}_{1}^{\prime}\left(x_{1}\right)-x_{3} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)-x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right) \\
\epsilon_{22}=u_{2,2}=\frac{\partial \bar{u}_{2}\left(x_{1}\right)}{\partial x_{2}}=0 \\
\epsilon_{33}=u_{3,3}=\frac{\partial \bar{u}_{3}\left(x_{1}\right)}{\partial x_{3}}=0 \\
2 \epsilon_{23}=u_{2,3}+u_{3,2}=\frac{\partial \bar{u}_{2}\left(x_{1}\right)}{\partial x_{3}}+\frac{\partial \bar{u}_{3}\left(x_{1}\right)}{\partial x_{2}}=0 \\
2 \epsilon_{31}=u_{3,1}+u_{1,3}=\bar{u}_{3}^{\prime}\left(x_{1}\right)+\frac{\partial}{\partial x_{3}}\left(\bar{u}_{1}\left(x_{1}\right)-x_{3} \bar{u}_{3}^{\prime}\left(x_{1}\right)-x_{2} \bar{u}_{2}^{\prime}\left(x_{2}\right)\right)=\bar{u}_{3}^{\prime}\left(x_{1}\right)-\underbrace{\frac{\partial x_{3}}{\partial x_{3}}}_{1} \bar{u}_{3}^{\prime}\left(x_{1}\right)=0 \tag{7.11}\\
2 \epsilon_{12}=u_{1,2}+u_{2,1}=\frac{\partial}{\partial x_{2}}\left(\bar{u}_{1}\left(x_{1}\right)-x_{3} \bar{u}_{3}^{\prime}\left(x_{1}\right)-x_{2} \bar{u}_{2}^{\prime}\left(x_{2}\right)\right)+\bar{u}_{2}^{\prime}\left(x_{1}\right)=-\underbrace{\frac{\partial x_{2}}{\partial x_{2}}}_{1} \bar{u}_{2}^{\prime}\left(x_{1}\right)+\bar{u}_{2}^{\prime}\left(x_{1}\right)=0 \tag{7.12}
\end{gather*}
$$

Concept Question 7.1.5. It is important to reflect on the nature of the strains due to bending. Interpret the components of the axial strain ϵ_{11} in Euler-Bernoulli beam theory

Solution:

- The first term represents a uniform strain in the cross section just as those arising in bars subject to uni-axial stress
- The second and third terms tell us that the axial fibers of the beam stretch and contract proportionally to the distance to the neutral axis. The constant of proportionality is the second derivative of the function describing the deflections of the axis of the beam. This can be seen as a linearized version of the local value of the curvature.
- There are no shear strains!!!! This is a direct consequence of assuming that the crosssection remains normal to the deformed axis of the beam.
- There are no strains in the plane. This is a direct consequence of assuming that the cross section is rigid.

One of the main conclusions of the Euler-Bernoulli assumptions is that in this particular beam theory the primary unknown variables are the three displacement functions $\bar{u}_{1}\left(x_{1}\right), \bar{u}_{2}\left(x_{1}\right), \bar{u}_{3}\left(x_{1}\right)$ which are only functions of x_{1}. The full displacement, strain and therefore stress fields do depend on the other independent variables but in a prescribed way that follows directly from the kinematic assumptions and from the equations of elasticity. The purpose of formulating a beam theory is to obtain a description of the problem expressed entirely on variables that depend on a single independent spatial variable x_{1} which is the coordinate along the axis of the beam.

7.1.2 Definition of stress resultants

Readings: BC 5.3
Stress resultants are equivalent force systems that represent the integral effect of the internal stresses acting on the cross section. Thus, they eliminate the need to carry over the dependency of the stresses on the spatial coordinates of the cross section x_{2}, x_{3}.

The axial or normal force is defined by the expression:

$$
\begin{equation*}
N_{1}\left(x_{1}\right)=\int_{A} \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right) d A \tag{7.13}
\end{equation*}
$$

The transverse shearing forces are defined by the expressions:

$$
\begin{align*}
& V_{2}\left(x_{1}\right)=\int_{A} \sigma_{12}\left(x_{1}, x_{2}, x_{3}\right) d A \tag{7.14}\\
& V_{3}\left(x_{1}\right)=\int_{A} \sigma_{13}\left(x_{1}, x_{2}, x_{3}\right) d A \tag{7.15}
\end{align*}
$$

The bending moments are defined by the expressions:

$$
\begin{align*}
& M_{2}\left(x_{1}\right)=\int_{A} x_{3} \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right) d A \tag{7.17}\\
& M_{3}\left(x_{1}\right)=-\int_{A} x_{2} \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right) d A \tag{7.18}
\end{align*}
$$

The negative sign is needed to generate a positive bending moment with respect to axis \mathbf{e}_{3}, see Figure 7.4

Figure 7.4: Sign conventions for the sectional stress resultants

7.2 Axial loading of beams

Readings: BC 5.4

Figure 7.5: Beams subjected to axial loads.

Consider the case where there are no transverse loading on the beam, Figure 7.5. The only external loads possible in this case are either concentrated forces such as the load P_{1}, or distributed forces per unit length $p_{1}\left(x_{1}\right)$.

7.2.1 Kinematics

In this case, we will assume that the cross sections will not rotate upon deformation.

Concept Question 7.2.1. Based on this assumption, specialize the general displacement (7.4) and strain field (7.7) to this class of problems and comment on the implications of the possible deformations obtained in this theory - Solution: Since there are no rotations, $\theta_{2}=-\bar{u}_{3}^{\prime}\left(x_{1}\right)=0, \theta_{3}=\bar{u}_{2}^{\prime}\left(x_{1}\right)=0$ and we obtain for $u_{1}\left(x_{1}\right)=\bar{u}_{1}\left(x_{1}\right)$.

The boundary condition at $x_{1}=0$ dictates $\bar{u}_{2}(0)=\bar{u}_{3}(0)=0$, which combined with the previous assumption of no rotation implies that the transverse deflections are zero every-
where, $\bar{u}_{2}\left(x_{1}\right)=\bar{u}_{3}\left(x_{1}\right)=0$. The displacement field is then:

$$
\begin{gathered}
u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{1}\left(x_{1}\right) \\
u_{2}\left(x_{1}, x_{2}, x_{3}\right)=0 \\
u_{3}\left(x_{1}, x_{2}, x_{3}\right)=0
\end{gathered}
$$

The strain field follows directly from this as:

$$
\epsilon_{11}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{1}^{\prime}\left(x_{1}\right)
$$

and all the other strain components are zero. The assumption of allowing only rigid motions of the cross section implies that there cannot be any in-plane strains. This creates a state of uni-axial strain.

7.2.2 Constitutive law for the cross section

We will assume a linear-elastic isotropic material and that the transverse stresses $\sigma_{22}, \sigma_{33} \sim 0$. By Hooke's law, the axial stress σ_{11} is given by:

$$
\sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=E \epsilon_{11}\left(x_{1}, x_{2}, x_{3}\right)
$$

Replacing the strain field for this case:

$$
\begin{equation*}
\sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=E \bar{u}_{1}^{\prime}\left(x_{1}\right) \tag{7.20}
\end{equation*}
$$

In other words, we are assuming a state of uni-axial stress.
Concept Question 7.2.2. This exposes an inconsistency in Euler-Bernoulli beam theory. What is it and how can we justify it? Solution: The inconsistency is that we are assuming the kinematics to be uni-axial strain, and the kinetics to be uni-axial stress. In other words one can either have:

$$
\epsilon_{22}=\epsilon_{33}=0
$$

(Euler-Bernoulli hypothesis) or

$$
\sigma_{22}=\sigma_{33}=0
$$

These two cannot co-exist except when the Poisson ratio is zero. However, this in general has a small effect in most problems of practical interest. The theory is developed assuming that we can ignore both these strains and stresses.

The axial force can be obtained by replacing (7.20) in (7.13):

$$
N_{1}\left(x_{1}\right)=\int_{A\left(x_{1}\right)} E \bar{u}_{1}^{\prime}\left(x_{1}\right) d A=\underbrace{\int_{A\left(x_{1}\right)} E d A}_{S\left(x_{1}\right)} \bar{u}_{1}^{\prime}\left(x_{1}\right)
$$

We will define:

$$
\begin{equation*}
S\left(x_{1}\right)=\int_{A\left(x_{1}\right)} E\left(x_{1}, x_{2}, x_{3}\right) d A \tag{7.21}
\end{equation*}
$$

as the axial stiffness of the beam, where we allow the Young's modulus to vary freely both in the cross section and along the axis of the beam, and we allow for non-uniform cross section geometries. In the case that the section is homogeneous in the cross section $(E=$ $E\left(x_{1}, x_{2}, x_{3}\right)$), we obtain: $S\left(x_{1}\right)=E\left(x_{1}\right) A\left(x_{1}\right)$ (This may happen for example in functionallygraded materials). Further, if the section is uniform along x_{1} and the material is homogeneous ($E=$ const), we obtain: $S=E A$.

We can then write a constitutive relation between the axial force and the appropriate measure of strain for the beam:

$$
\begin{equation*}
N_{1}\left(x_{1}\right)=S\left(x_{1}\right) \bar{u}_{1}^{\prime}\left(x_{1}\right) \tag{7.22}
\end{equation*}
$$

Figure 7.6: Cross section of a composite layered beam.
Concept Question 7.2.3. Axial loading of a composite beam

1. Compute the axial stiffness of a composite beam of width w, which has a uniform cross section with n different layers in direction \mathbf{e}_{3}, where the elastic modulus of layer i is
E^{i} and its thickness is $t^{i}=x_{3}^{i+1}-x_{3}^{i}$, as shown in the figure. ■ Solution: From equation (7.21,

$$
\begin{aligned}
S=\int_{A\left(x_{1}\right)} E\left(x_{1}, x_{2}, x_{3}\right) d A=\sum_{i=1}^{n} \int_{A_{i}} E^{i} d A^{i}=\sum_{i=1}^{n} E^{i} \int_{A_{i}} d A^{i} & \\
& =\sum_{i=1}^{n} E^{i} \underbrace{\overbrace{\left(x_{3}^{i+1}-x_{3}^{i}\right)}^{t^{i}}}_{A_{i}}
\end{aligned}
$$

Note that we could define an effective weighted averaged Young's modulus E $E^{e f f}$ such that:

$$
S=E^{e f f} A=\sum_{i=1}^{n} E^{i} A_{i}, \Rightarrow E^{e f f}=\sum_{i=1}^{n} \frac{A_{i}}{A} E^{i}
$$

2. Compute the stress distribution in the cross section assuming the axial force distribution $N_{1}\left(x_{1}\right)$ is known: - Solution: Recalling that the axial strain at x_{1} is uniform $\epsilon_{11}=\bar{u}^{\prime}\left(x_{1}\right)$, and that the stress is given by 7.20 , we obtain:

$$
\begin{equation*}
\sigma_{11}\left(x_{1}, x_{2}, x_{3}^{i}<x_{3}<x_{3}^{i+1}\right)=E^{i} \bar{u}^{\prime}\left(x_{1}\right)=\frac{E^{i}}{S} N_{1}\left(x_{1}\right) \tag{7.23}
\end{equation*}
$$

3. Interpret the stress distribution obtained.

Solution: The stress is discontinuous in the cross section. As the section is forced to deform uniformly in the axial direction, layers that are stiffer develop higher stresses

Having completed a kinematic and constitutive description, it remains to formulate an appropriate way to enforce equilibrium of beams loaded axially.

7.2.3 Equilibrium equations

For structural elements, we seek to impose equilibrium in terms of resultant forces (rather than at the material point as we did when we derived the equations of stress equilibrium). To this end, we consider the free body diagram of a slice of the beam as shown in Figure 7.7. At x_{1} the axial force is $N_{1}\left(x_{1}\right)$, at $x_{1}+d x_{1}, N_{1}\left(x_{1}+d x_{1}\right)=N_{1}\left(x_{1}\right)+N^{\prime}\left(x_{1}\right) d x_{1}$. The distributed force per unit length $p_{1}\left(x_{1}\right)$ produces a force in the positive x_{1} direction equal to $p_{1}\left(x_{1}\right) d x_{1}$. Equilibrium of forces in the \mathbf{e}_{1} direction requires:

$$
-N_{1}\left(x_{1}\right)+p_{1}\left(x_{1}\right) d x_{1}+N_{1}\left(x_{1}\right)+N^{\prime}\left(x_{1}\right) d x_{1}=0
$$

which implies:

$$
\begin{equation*}
\frac{d N_{1}}{d x_{1}}+p_{1}=0 \tag{7.24}
\end{equation*}
$$

Figure 7.7: Axial forces acting on an infinitesimal beam slice.

7.2.4 Governing equations

Concept Question 7.2.4. 1. Derive a governing differential equation for the axiallyloaded beam problem by combining Equations (7.22) and (7.24). ■ Solution:

$$
\begin{equation*}
\frac{d S\left(x_{1}\right) \bar{u}_{1}^{\prime}\left(x_{1}\right)}{d x_{1}}+p_{1}=0 \tag{7.25}
\end{equation*}
$$

2. What type of elasticity formulation does this equation correspond to? - Solution: It corresponds to a displacement formulation and the equation obtained is a Navier equation.
3. What principles does it enforce?

Solution: It enforces compatibility, the constitutive law and equilibrium.

Concept Question 7.2.5. The derived equation requires boundary conditions.

1. How many boundary conditions are required? ■ Solution: It's a second order differential equation, thus it requires two boundary conditions
2. What type of physical boundary conditions make sense for this problem and how are they expressed mathematically?

Solution: The bar can be

- fixed, this implies that the displacement is specified to be zero

$$
\bar{u}_{1}=0
$$

- free (unloaded), which implies that:

$$
N_{1}=S \bar{u}_{1}^{\prime}=0, \Rightarrow \bar{u}_{1}^{\prime}=0
$$

- subjected to a concentrated load P_{1}, which implies that:

$$
N_{1}=S \bar{u}_{1}^{\prime}=P_{1}
$$

This completes the formulation for axially-loaded beams.

Figure 7.8: Schematic of a helicopter blade rotating at an angular speed ω
Concept Question 7.2.6. Helicopter blade under centrifugal load A helicopter blade of length $L=5 m$ is rotating at an angular velocity $\omega=600 \mathrm{rpm}$ about the \mathbf{e}_{2} axis. The blade is made of a carbon-fiber reinforced polymer (CFRP) composite with mass density $\rho=1500 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, a Young's modulus $E=80 G P a$ and a yield stress $\sigma_{y}=50 \mathrm{MPa}$. The area of the cross-section of the blade decreases linearly from a value $A_{0}=100 \mathrm{~cm}^{2}$ at the root to $A_{1}=A_{0} / 2=50 \mathrm{~cm}^{2}$ at the tip.

1. give the expression of the distributed axial load corresponding to the centrifugal force

- Solution: The area can then be written as

$$
\begin{aligned}
& A\left(x_{1}\right)=A_{0}+\left(A_{1}-A_{0}\right) \frac{x_{1}}{L}=A_{0}\left(1-\frac{x_{1}}{2 L}\right)=10^{-2} \mathrm{~m}^{2}\left(1-\frac{x_{1}}{10 \mathrm{~m}}\right) \\
& p_{1}\left(x_{1}\right)=\rho A\left(x_{1}\right) \omega^{2} x_{1}=6000 \pi^{2}\left(1-\frac{x_{1}}{10 \mathrm{~m}}\right) x_{1} \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

2. Integrate the equilibrium equation (7.24) and apply appropriate boundary conditions to obtain the axial force distribution $N_{1}\left(x_{1}\right)$ in the blade.

Solution:

$$
N_{1}^{\prime}\left(x_{1}\right)+\rho\left[A_{0}\left(1-\frac{x_{1}}{2 L}\right)\right] \omega^{2} x_{1}=0
$$

$$
N_{1}\left(x_{1}\right)=\rho \omega^{2} A_{0} x_{1}^{2}\left(\frac{x_{1}}{6 L}-\frac{1}{2}\right)+C
$$

The boundary condition is: $N_{1}(L)=0$, let's go ahead and apply it:

$$
0=\rho \omega^{2} A_{0} L^{2} \underbrace{\left(\frac{L}{6 K}-\frac{1}{2}\right)}_{-1 / 3}+C \Rightarrow C=\frac{1}{3} \rho \omega^{2} A_{0} L^{2}
$$

Replacing in the previous expression:

$$
N_{1}\left(x_{1}\right)=\frac{1}{6} \rho \omega^{2} L^{2} A_{0}\left(\eta^{3}-3 \eta^{2}+2\right)
$$

where we defined $\eta=x_{1} / L$.
3. What is the maximum axial force and where does it happen? - Solution: The maximum in the range $0 \leq \eta \leq 1$ is at $\eta=0$. The maximum happens at $x_{1}=0$ and the value is: $N_{1}^{\max }=N_{1}(0)=\frac{1}{3} \rho \omega^{2} L^{2} A_{0}=685389 \mathrm{~N}$
4. Provide an expression for the axial stress distribution $\sigma_{11}\left(x_{1}\right)$

Solution:

$$
\sigma_{11}\left(x_{1}\right)=\frac{N_{1}\left(x_{1}\right)}{A\left(x_{1}\right)}=\frac{\frac{1}{6} \rho \omega^{2} L^{2} \not A_{0}\left(\eta^{3}-3 \eta^{2}+2\right)}{A_{0}\left(1-\frac{\eta}{2}\right)}
$$

5. What is the maximum stress, where does it happen, does the material yield?

Solution: For the values given, one can find the maximum to be $\sigma_{11}^{\max }=36 M P a$ and it happens at $x_{1}=0.194 L$. There is no yielding as $\sigma_{11}^{\max }<\sigma_{y}$ and we are considering uni-axial stress.
6. The displacement can be obtained by integrating the strain:

$$
\epsilon_{11}=\bar{u}_{1}^{\prime}\left(x_{1}\right)=\frac{\sigma_{11}\left(x_{1}\right)}{E}
$$

and applying the boundary condition $\bar{u}_{1}(0)=0$. The solution can be readily found to be:

$$
\bar{u}_{1}\left(x_{1}\right)=\frac{\rho \omega^{2} L^{3}}{3 E}\left[2 \eta+\frac{\eta^{2}}{2}-\frac{\eta^{3}}{3}+2 \log \left(1-\frac{\eta}{2}\right)\right]
$$

Verify that the correct strain is obtained and that the boundary condition is satisfied:
Solution: The boundary condition is readily verified. The strain is:

$$
\bar{u}_{1}^{\prime}\left(x_{1}\right)=\frac{\rho \omega^{2} L^{3}}{3 E}\left[2+\eta-\eta^{2}-\frac{1}{1-\frac{\eta}{2}}\right]
$$

which is the same as we obtained above.

Figure 7.9: Beam subjected to tranverse loads

7.3 Beam bending

Readings: BC 5.5
Beams have the defining characteristic that they can resist loads acting transversely to its axis, Figure 7.9 by bending or deflecting outside of their axis. This bending deformation causes internal axial and shear stresses which can be described by equipolent stress resultant moments and shearing forces.

We will start by analyzing beam bending in the plane $\mathbf{e}_{1}, \mathbf{e}_{2}$. Combined bending in different planes can be treated later by using the principle of superposition.

The Euler-Bernoulli kinematic hypothesis (7.4) reduces in this case to

$$
u_{1}\left(x_{1}, x_{2}, x_{3}\right)=-x_{2} \bar{u}_{2}^{\prime}\left(x_{1}\right), u_{2}\left(x_{1}, x_{2}, x_{3}\right)=\bar{u}_{2}\left(x_{1}\right), u_{3}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

The strains to:

$$
\epsilon_{11}\left(x_{1}, x_{2}, x_{3}\right)=u_{1,1}=-x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)
$$

7.3.1 Constitutive law for the cross section

Hooke's law reduces one more time to:

$$
\begin{equation*}
\sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=E \epsilon_{11}\left(x_{1}, x_{2}, x_{3}\right)=-E x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right) \tag{7.26}
\end{equation*}
$$

Concept Question 7.3.1. Assuming E is constant in the cross section, comment on the form of the stress distribution

Solution: it is readily seen that a linear stress distribution through the thickness is linear in x_{2}.

We now proceed to compute the stress resultants of section 7.1.2.

Concept Question 7.3.2. Location of the neutral axis: We will see in this question that the x_{2} location of the fibers that do not stretch in the \mathbf{e}_{1} direction, which is where we are going to place our origin of the x_{2} coordinates is determined by the requirement of axial equilibrium of internal stresses.

1. The only applied external forces are in the \mathbf{e}_{2} direction. Based on this, what can you say about the axial force $N_{1}\left(x_{1}\right)$?

- Solution: From force equilibrium in direction \mathbf{e}_{1} we conclude that the axial force must vanish at all cross sections x_{1}, i.e. $N_{1}\left(x_{1}\right)=0, \forall x_{1}$

2. Write the expression for the axial force

Solution: From equation (7.13)

$$
N_{1}\left(x_{1}\right)=\int_{A\left(x_{1}\right)} \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right) d A=\int_{A\left(x_{1}\right)}(-1) E x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right) d A=(-1)\left[\int_{A\left(x_{1}\right)} E x_{2} d A\right] \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)
$$

3. From here, obtain an expression that enforces equilibrium in the \mathbf{e}_{1} direction. Interpret its meaning - Solution: Setting the axial force to zero, and noticing that the curvature $\bar{u}_{2}^{\prime \prime}\left(x_{1}\right) \neq 0$, we obtain that the square bracket in the previous relation must vanish:

$$
\int_{A\left(x_{1}\right)} E x_{2} d A=0
$$

This can be interpreted as a modulus-weighted first moment of area of the cross section. For uniform E, we obtain simply: $\int_{A\left(x_{1}\right)} x_{2} d A=0$.
4. Define the modulus-weighted centroid of the cross section by the condition:

$$
S\left(x_{1}\right) x_{2}^{c}\left(x_{1}\right)=\int_{A\left(x_{1}\right)} E x_{2} d A, \Rightarrow x_{2}^{c}\left(x_{1}\right)=\frac{1}{S\left(x_{1}\right)} \int_{A\left(x_{1}\right)} E x_{2} d A
$$

and interpret the meaning of using x_{2}^{c} as the origin of the coordinate system $■$ Solution: it can be seen that setting the zero for x_{2} at x_{2}^{c}, the modulus-weighted first moment of area of the cross section vanishes.
5. Compare the location of the modulus-weighted centroid, the center of mass and the center of area for a general cross section and for a homogeneous one ■ Solution:

$$
x_{2}^{c}=\frac{\int_{A} E x_{2} d A}{\int_{A\left(x_{1}\right)} E d A}, x_{2}^{m}=\frac{\int_{A} \rho x_{2} d A}{\int_{a} \rho d A}, x_{2}^{a}=\frac{\int_{A} x_{2} d A}{\int_{A} d A}
$$

These locations don't match in general. For homogeneous cross sections:

$$
x_{2}^{c}=\frac{E \int_{A} x_{2} d A}{E \int_{A} d A}=x_{2}^{m}=\frac{\notint_{A} x_{2} d A}{\not \rho \int_{A} d A}=x_{2}^{a}=\frac{\int_{A} x_{2} d A}{\int_{A} d A}
$$

, they do.

We now consider the internal bending moment.

Concept Question 7.3.3. Specialize the definition of the M_{3} stress resultant (7.17)

$$
M_{3}\left(x_{1}\right)=-\int_{A\left(x_{1}\right)} x_{2} \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right) d A
$$

to the case under consideration by using the stress distribution resulting from the EulerBernoulli hypothesis, $\sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=-E x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)$ to obtain a relation between the bending moment and the local curvature $\bar{u}_{2}^{\prime \prime}\left(x_{1}\right)$.

- Solution: By direct substitution and some algebraic manipulation we obtain:

$$
M_{3}\left(x_{1}\right)=\notint_{A\left(x_{1}\right)} x_{2}(\nearrow \Psi) E x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right) d A=\underbrace{\left[\int_{A\left(x_{1}\right)} E x_{2}^{2} d A\right]}_{H_{33}^{C}\left(x_{1}\right)} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)
$$

We can see that we obtain a linear relation between the bending moment and the local curvature (moment-curvature relationship):

$$
\begin{equation*}
M_{3}\left(x_{1}\right)=H_{33}^{c}\left(x_{1}\right) \bar{u}_{2}^{\prime \prime}\left(x_{1}\right) \tag{7.27}
\end{equation*}
$$

The constant of proportionality will be referred to as the centroidal bending stiffness (also sometimes known as the flexural rigidity):

$$
\begin{equation*}
H_{33}^{c}\left(x_{1}\right)=\int_{A\left(x_{1}\right)} E x_{2}^{2} d A \tag{7.28}
\end{equation*}
$$

In the case of a homogeneous cross section of Young's modulus $E\left(x_{1}\right)$:

$$
H_{33}^{c}\left(x_{1}\right)=E\left(x_{1}\right) \underbrace{\int_{A\left(x_{1}\right)} x_{2}^{2} d A}_{I_{33}}
$$

we obtain the familiar:

$$
M=E I \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)
$$

Concept Question 7.3.4. Modulus-weighted centroid, Bending stiffness and bending stress distribution in a layered composite beam A composite beam of width b, which has a uniform cross section with n different layers in direction \mathbf{e}_{2}, where the elastic modulus of layer i is E^{i} and its thickness is $t^{i}=x_{2}^{i+1}-x_{2}^{i}$, as shown in Figure 7.10 .

1. Compute the position of the modulus-weighted centroid

The modulus weighted centroid is obtained by computing the modulus weighted first moment of area:

$$
\begin{aligned}
\int_{A} E x_{2} d A=\sum_{i=1}^{n} E^{i} & \int_{A^{i}} x_{2} d A=\sum_{i=1}^{n} E^{i} b \int_{x_{2}^{i}}^{x_{2}^{i}+t^{i}} x_{2} d A \\
& =\sum_{i=1}^{n} E^{i} b \frac{1}{2}\left(\left(x_{2}^{i}\right)^{2}+2 x_{2}^{i} t^{i}+\left(t^{i}\right)^{2}-\left(x_{2}^{i}\right)^{2}\right)=\sum_{i=1}^{n} E^{i} A^{i}\left(x_{2}^{i}+\frac{t^{i}}{2}\right)
\end{aligned}
$$

Figure 7.10: Cross section of a composite layered beam.
and dividing by the modulus weighted area (or axial stiffness):

$$
\begin{gathered}
S=\int_{A} E d A=\sum_{i=1}^{n} E^{i} A^{i} \\
\Rightarrow x_{2}^{c}=\frac{\sum_{i=1}^{n} E^{i} A^{i}\left(x_{2}^{i}+\frac{t^{i}}{2}\right)}{\sum_{i=1}^{n} E^{i} A^{i}}
\end{gathered}
$$

2. Compute the bending stiffness

Solution: From equation 7.28,

$$
\begin{aligned}
H_{33}^{c}=\int_{A\left(x_{1}\right)} E\left(x_{1}, x_{2}, x_{3}\right) x_{2}^{2} d A=\sum_{i=1}^{n} \int_{A_{i}} E^{i} x_{2}^{2} d A^{i}= & \sum_{i=1}^{n} E^{i} \int_{A_{i}} x_{2}^{2} d A^{i} \\
& =\sum_{i=1}^{n} E^{i} b \frac{1}{3}\left[\left(x_{2}^{i+1}\right)^{3}-\left(x_{2}^{i}\right)^{3}\right]
\end{aligned}
$$

where care should be exercised to measure the distance x_{2} from the location of the modulus weighted centroid x_{2}^{c}.
3. Compute the σ_{11} stress distribution in the cross section assuming the bending moment
M_{3} is known:
Solution: Recalling (7.26), we obtain:

$$
\sigma_{11}\left(x_{1}, x_{2}^{i}<x_{2}<x_{2}^{i+1}, x_{3}\right)=E^{i} \epsilon_{11}\left(x_{1}, x_{2}, x_{3}\right)=-E^{i} x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)=-E^{i} x_{2} \frac{M_{3}}{H_{33}^{c}}
$$

4. Interpret the stress distribution obtained.

Solution: The axial strain distribution is linear over the cross section, this forces the stress distribution to be piecewise linear within each layer of different elastic modulus, but discontinuous at interlayer boundaries.
5. Specialize to the case that the section is homogeneous with Young's modulus E :

Solution: In this case, $H_{33}^{c}=E I_{33}$, and the previous equation becomes the familiar formula for simple beam theory:

$$
\begin{equation*}
\sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=-E x_{2} \frac{M_{3}}{E I_{33}}, \Rightarrow \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=-x_{2} \frac{M_{3}\left(x_{1}\right)}{I_{33}} \tag{7.29}
\end{equation*}
$$

Concept Question 7.3.5. Bi-material cross section properties

Figure 7.11: Bi-material beam
For the cantilevered beam shown in Figure 7.11,

1. Compute the location of the modulus-weighted centroid:

Solution:

$$
x_{2}^{c}=x_{2}^{c}=\frac{\sum_{i=1}^{n} E^{i} A^{i}\left(x_{2}^{i}+\frac{t^{i}}{2}\right)}{\sum_{i=1}^{n} E^{i} A^{i}}
$$

Figure 7.12: Equilibrium of a beam slice subjected to transverse loads

7.3.2 Equilibrium equations

Concept Question 7.3.6. Consider the equilibrium of a slice of a beam subjected to transverse loads. Using the figure,

1. write the equation of equilibrium of forces in the \mathbf{e}_{2} direction and then derive a differential equation relating the shear force $V_{2}\left(x_{1}\right)$ and the distributed external force $p_{2}\left(x_{1}\right)$.

Solution:

$$
\begin{array}{ll}
=V_{2}\left(x_{1}\right)+p_{2}\left(x_{1}\right) d x_{1}+V_{2}\left(x_{1}\right)+V_{2}^{\prime}\left(x_{1}\right) d x_{1}=0, & \\
\quad \Rightarrow V_{2}^{\prime}\left(x_{1}\right)+p_{2}\left(x_{1}\right)=0 \tag{7.30}
\end{array}
$$

2. do the same for equilibrium of moments in the \mathbf{e}_{3} axis about point \mathbf{O}. Solution:

$$
\begin{align*}
=M_{3}\left(x x_{1}\right)+V_{2}\left(x_{1}\right) d x_{1}-p_{2}\left(x_{1}\right) d x_{1} \frac{d x_{1}}{2}+M_{3} \text { h.o.t. } & M_{3}^{\prime}\left(x_{1}\right) d x_{1}=0 \\
& \Rightarrow M_{3}^{\prime}\left(x_{1}\right)+V_{2}\left(x_{1}\right)=0 \tag{7.31}
\end{align*}
$$

3. Eliminate the Shear force from the previous two equations to obtain a single equilibrium equation relating the bending moment and the applied distributed load: ■ Solution: Differentiate the second $\left(M_{3}^{\prime}\left(x_{1}\right)+V_{2}\left(x_{1}\right)\right)^{\prime}=M_{3}^{\prime \prime}\left(x_{1}\right)+V_{2}^{\prime}\left(x_{1}\right)=0$ and replace in the first to obtain:

$$
\begin{align*}
& -M_{3}^{\prime \prime}\left(x_{1}\right)+p_{2}\left(x_{1}\right)=0 \\
& \quad \Rightarrow M_{3}^{\prime \prime}\left(x_{1}\right)=p_{2}\left(x_{1}\right) \tag{7.32}
\end{align*}
$$

7.3.3 Governing equations

Concept Question 7.3.7. 1. Derive a governing differential equation for the transverselyloaded beam problem by combining Equations (7.27) and 7.32). - Solution:

$$
\begin{equation*}
\left(H_{33}\left(x_{1}\right) \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)\right)^{\prime \prime}=p_{2}\left(x_{1}\right) \tag{7.33}
\end{equation*}
$$

2. What type of elasticity formulation does this equation correspond to? - Solution: It corresponds to a displacement formulation and the equation obtained is a Navier equation.
3. What principles does it enforce?

Solution: It enforces compatibility, the constitutive law and equilibrium.

Concept Question 7.3.8. The equation requires four boundary conditions since it is a fourth-order differential equation. Express the following typical boundary conditions mathematically

1. clamped at one end - Solution: this implies that the deflection and the rotation are restricted at that point

$$
\bar{u}_{2}=0, \bar{u}_{2}^{\prime}=0
$$

2. simply supported or pinned ■ Solution: this implies that the deflection is restricted but the the slope is arbitrary. The freedom to rotate implies that the support cannot support a bending moment reaction and $M_{3}=0$ at that point

$$
\bar{u}_{2}=0, M_{3}=H_{33}^{c} \bar{u}_{2}^{\prime \prime}=0, \Rightarrow u_{2}^{\prime \prime}=0
$$

3. free (unloaded) ■ Solution: implies that both the bending moment and the shear force must vanish:

$$
u_{2}^{\prime \prime}=0, V_{2}=-M_{3}^{\prime}=-\left(H_{33}^{c} \bar{u}_{2}^{\prime \prime}\right)^{\prime}=0
$$

4. subjected to a concentrated transverse load P_{2} ■ Solution: this implies that that the bending moment must vanish but the shear force must equal the applied load

$$
u_{2}^{\prime \prime}=0, V_{2}=-M_{3}^{\prime}=-\left(H_{33}^{c} \bar{u}_{2}^{\prime \prime}\right)^{\prime}=P_{2}
$$

Concept Question 7.3.9. Cantilevered beam under uniformly distributed transverse load
A cantilevered beam (clamped at $x_{1}=0$ and free at $x_{1}=L$) is subjected to a uniform load per unit length p_{0}.

1. Specialize the general beam equation to this problem ■ Solution: The governing equation for $\bar{u}_{2}\left(x_{1}\right)$ reads

$$
H_{33}^{c} \bar{u}_{2}^{I V}=p_{0}
$$

as the bending stiffness is constant.
2. Write down the boundary conditions for this problem:

- Solution: At the clamped end $x_{1}=0$, the transverse displacement and rotation of the section (slope of the beam) are both zeros, i.e.

$$
\bar{u}_{2}(0)=\bar{u}_{2}^{\prime}(0)=0 .
$$

At the free end $x_{1}=L$, the bending moment and the shear force are zero, i.e.

$$
H_{33}^{c} \bar{u}_{2}^{\prime \prime}(L)=0,-H_{33}^{c} \bar{u}_{2}^{\prime \prime \prime}(L)=0
$$

3. Integrate the governing equation and apply the boundary conditions to obtain the deflection $\bar{u}_{2}\left(x_{1}\right)$, bending moment $M_{3}\left(x_{1}\right)$ and shear force $V_{2}\left(x_{1}\right)$. $■$ Solution: The governing equation can be integrated directly and the the following general expression for the deflection is obtained: After the first integration we get:

$$
H_{33}^{c} \bar{u}_{2}^{\prime \prime \prime}=p_{0} x_{1}+c_{1}=-V_{2}\left(x_{1}\right)
$$

After the second

$$
H_{33}^{c} \bar{u}_{2}^{\prime \prime}=\frac{p_{0}}{2} x_{1}^{2}+c_{1} x_{1}+c_{2}=M_{3}\left(x_{1}\right)
$$

After the third

$$
H_{33}^{c} \bar{u}_{2}^{\prime}=\frac{p_{0}}{6} x_{1}^{3}+\frac{c_{1}}{2} x_{1}^{2}+c_{2} x_{1}+c_{3}
$$

After the last

$$
H_{33}^{c} \bar{u}_{2}\left(x_{1}\right)=\frac{1}{24} p_{0} x_{1}^{4}+\frac{c_{1}}{6} x_{1}^{3}+\frac{c_{2}}{2} x_{1}^{2}+c_{3} x_{1}+c_{4}
$$

The clamped boundary condition at $x_{1}=0$ implies: $\bar{u}_{2}(0)=c_{4}=0, \bar{u}_{2}^{\prime}(0)=c_{3}=0$. The free boundary condition at $x_{1}=L$ implies: $V_{2}(L)=p_{0} L+c_{1}=0, \Rightarrow c_{1}=-p_{0} L$, and $M_{3}(L)=\frac{p_{0}}{2} L^{2}+\underbrace{\left(-p_{0} L\right)}_{c_{1}} L+c_{2}=0, \Rightarrow c_{2}=\frac{p_{0}}{2} L^{2}$. Replacing in the expressions
above :

$$
V_{2}\left(x_{1}\right)=p_{0} L\left(1-\frac{x_{1}}{L}\right)
$$

$$
\begin{aligned}
& M_{3}\left(x_{1}\right)=\frac{p_{0}}{2} x_{1}^{2}+\underbrace{\left(-p_{0} L\right)}_{c_{1}} x_{1}+\underbrace{\frac{p_{0}}{2} L^{2}}_{c_{2}}=\frac{p_{0}}{2} L^{2}\left[1-2 \frac{x_{1}}{L}+\left(\frac{x_{1}}{L}\right)^{2}\right] \\
& M_{3}\left(x_{1}\right)=\frac{p_{0}}{2} L^{2}\left[1-\left(\frac{x_{1}}{L}\right)\right]^{2} \\
& H_{33}^{c} \bar{u}_{2}\left(x_{1}\right)=\frac{1}{24} p_{0} x_{1}^{4}+\overbrace{\frac{\left(-p_{0} L\right)}{6}}^{c_{1}} x_{1}^{3}+\overbrace{\frac{\overbrace{p_{0}}^{2} L^{2}}{c_{2}} x_{1}^{2}}^{\bar{u}_{2}\left(x_{1}\right)=\frac{p_{0} L^{4}}{24 H_{33}^{c}}\left(\frac{x_{1}}{L}\right)^{2}\left[\left(\frac{x_{1}}{L}\right)^{2}-4\left(\frac{x_{1}}{L}\right)+6\right]}
\end{aligned}
$$

4. Compute the maximum deflection, maximum moment and maximum σ_{11} stress (for the case of a solid rectangular wing spar of length $L=1 \mathrm{~m}$, width $b=5 \mathrm{~mm}$, height $h=3 \mathrm{~cm}$, and Young's modulus $E=100 G P a$ when the load is $p_{0}=10 \mathrm{~N} / \mathrm{m}$.
Solution: In this case, the stiffness $H_{33}^{c}=E I=\frac{E b h^{3}}{12}=200 \mathrm{~N} \cdot \mathrm{~m}^{2}$ and their locations: The maximum deflection clearly occurs at the free end and takes the value

$$
\bar{u}_{2}^{\max }=\bar{u}_{2}(L)=\frac{p_{0} L^{4}}{8 E I}=3.1 \mathrm{~cm} .
$$

The maximum moment clearly occurs at the root of the cantilever $x_{1}=0$ and takes the value:

$$
M_{3}^{\max }=M_{3}(L)=\frac{p_{0}}{2} L^{2}=11.25 \mathrm{~N} \cdot \mathrm{~m}
$$

The maximum stress can then be obtained from equation 7.29

$$
\sigma_{11}^{\max }=\sigma_{11}\left(0, \pm \frac{h}{2}, x_{3}\right)=\mp \frac{h}{2} \frac{M_{3}\left(x_{1}\right)}{I_{33}}=\mp 56.25 \mathrm{MPa}
$$

5. Give an expression for the spatial distribution of the stresses resulting from beam theory

Solution:
6. Compare this distribution with the solution obtained from 2D elasticity using the Airy stress function approach and comment on the results. Are there any conditions under which the solutions match? What happens as the beams gets very short and very long relative to the height?

Solution:

