Module 8

General Beam Theory

Learning Objectives

- Generalize simple beam theory to three dimensions and general cross sections
- Consider combined effects of bending, shear and torsion
- Study the case of shell beams

8.1 Beams loaded by transverse loads in general directions

So far we have considered beams of fairly simple cross sections (e.g. having symmetry planes which are orthogonal) and transverse loads acting on the planes of symmetry. Figure 8.1 shows examples of beams loaded on a plane which does not coincide with a plane of symmetry of its cross section.

In this section, we will consider beams with cross section of arbitrary shape which are loaded on planes that do not in general coincide with symmetry planes (or as we will see later more precisely, with principal directions of inertia of the cross section).

We will still adopt Euler-Bernoulli hypothesis, which implies that the kinematic assumptions about the allowed deformation modes of the beam remain the same, see Section 7.1.1.

The displacement field is still given by equations (7.4), whereas the strain field is given by equations (7.7). It should be noted that the origin of coordinates in the cross section is still unspecified.

8.1.1 Constitutive law for the cross section

We will assume that the beam is made of linear elastic isotropic materials and use Hooke's law. Since the strain distribution is still bound by the sames constraints, the stress distribution will be as before:

Figure 8.1: Loading of beams in general planes and somewhat general cross sections

$$
\begin{equation*}
\sigma_{11}\left(x_{1}, x_{2}, x_{3}\right)=E \epsilon_{11}\left(x_{1}, x_{2}, x_{3}\right)=E\left[\bar{u}_{1}^{\prime}\left(x_{1}\right)-x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)-x_{3} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)\right] \tag{8.1}
\end{equation*}
$$

Following with the by now usual plan to build a structural theory, we proceed to compute the resultants:

Axial force N_{1}

$$
\begin{align*}
& N_{1}\left(x_{1}\right)=\int_{A} \sigma_{11}\left(x_{1}, x_{2}, x_{3}\right) d A \\
& \\
& =\underbrace{\left[\int_{A} E d A\right]}_{S} \bar{u}_{1}^{\prime}\left(x_{1}\right)-\underbrace{\left[\int_{A} E x_{2} d A\right]}_{S_{2}} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)-\underbrace{\left[\int_{A} E x_{3} d A\right]}_{S_{3}} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right) \tag{8.2}\\
& \\
& \quad N_{1}\left(x_{1}\right)=S \bar{u}_{1}^{\prime}\left(x_{1}\right)-S_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)-S_{3} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)
\end{align*}
$$

where S is the modulus-weighted area or axial stiffness, S_{2}, S_{3} are respectively the modulusweighted first moments of area of the cross section with respect to the \mathbf{e}_{3} and \mathbf{e}_{2} axes.

Bending moments $M_{2}\left(x_{1}\right), M_{3}\left(x_{1}\right)$

$$
\begin{align*}
M_{2}\left(x_{1}\right)= & \int_{A} \sigma_{11} x_{3} d A= \\
= & \underbrace{\left[\int_{A} E x_{3} d A\right]}_{S_{3}} \bar{u}_{1}^{\prime}\left(x_{1}\right)-\underbrace{\left[\int_{A} E x_{2} x_{3} d A\right]}_{H_{23}} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)-\underbrace{\left[\int_{A} E x_{3}^{2} d A\right]}_{H_{22}} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right) \tag{8.3}\\
& \underbrace{}_{M_{2}\left(x_{1}\right)=S_{3} \bar{u}_{1}^{\prime}\left(x_{1}\right)-H_{23} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)-H_{22} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)} \\
M_{3}\left(x_{1}\right)= & -\int_{A} \sigma_{11} x_{2} d A= \tag{8.4}\\
= & -\underbrace{\left[\int_{A} E x_{2} d A\right]}_{S_{2}} \bar{u}_{1}^{\prime}\left(x_{1}\right)+\underbrace{\left[\int_{A} E x_{2}^{2} d A\right]}_{H_{33}} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)+\underbrace{\left[\int_{A}^{\left.E x_{3} x_{2} d A\right]} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)\right.}_{H_{23}} \\
& M_{3}\left(x_{1}\right)=-S_{2} \bar{u}_{1}^{\prime}\left(x_{1}\right)+H_{33} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)+H_{23} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)
\end{align*}
$$

We note that we have used some of the previously defined section stiffness coefficients S, H_{33}, but we have also introduced some new ones. Summarizing all:

Area:	$S=\int_{A} E d A$
First moment of area wrt \mathbf{e}_{3}	$S_{2}=\int_{A} E x_{2} d A$
First moment of area wrt \mathbf{e}_{2}	$S_{3}=\int_{A} E x_{3} d A$
Second moment of area wrt \mathbf{e}_{3}	$H_{22}=\int_{A} E x_{3}^{2} d A$
Second moment of area wrt \mathbf{e}_{2}	$H_{33}=\int_{A} E x_{2}^{2} d A$
Second cross moment of area wrt $\mathbf{e}_{2}, \mathbf{e}_{3}$	$H_{23}=\int_{A} E x_{2} x_{3} d A$

Table 8.1: Modulus-weighted cross section stiffness coefficients

Concept Question 8.1.1. Give an interpretation to the various cross section stiffness coefficients by observing the "strains" and resultant forces they relate

Solution:

- S is the direct stiffness for axial deformation, i.e. it determines what axial force is produced per unit axial deformation.
- S_{2} is the cross stiffness between curvature in the \mathbf{e}_{3} direction (12-plane) and the axial force, i.e. it determines what axial force is produced per unit curvature in that plane. Conversely, it is the cross stiffness determining the moment M_{3} produced per unit axial strain.
- S_{3} similar discussion to S_{2}
- H_{22}, H_{33} are the direct stiffnesses relating section bending strain measure (curvatures) and corresponding bending moment.
- H_{23} is the cross stiffness relating curvature in one plane with moment in the other.

These conclusions also apply in inverse form, i.e. by inverting these relations we obtain coefficients that determine the "sectional strain measure" produced per unit resultant force, e.g. the curvature in a given plane produced per unit axial force or moments in either plane, etc.

The main conclusion from this general beam theory is that there is a coupling among all stress resultants and all "strain measures". Specifically, this means that a curvature in one plane can cause not only a bending moment in the respective plane but also a moment in the plane orthogonal to it as well as an axial force. Also, that the axial strain \bar{u}_{1}^{\prime} can cause moments in both orthogonal planes.

A first simplification of these expressions is obtained if we first find the modulus-weighted centroid of the cross section x_{2}^{c}, x_{3}^{c} and then refer all our quantities with respect to that point (i.e. place the origin of our axes from where we measure x_{2}, x_{3} at that point). In that case, as we saw before:

$$
\begin{equation*}
x_{2}^{c}=\frac{\overbrace{\int_{A} E x_{2} d A}^{S_{2}}}{\underbrace{\int_{A} E d A}_{S}}=0, x_{3}^{c}=\frac{\overbrace{\int_{A} E x_{3} d A}^{S_{3}}}{\underbrace{\int_{A} E d A}_{S}}=0, \tag{8.5}
\end{equation*}
$$

and the coupling between axial and flexural quantities disappears, i.e. the sectional constitutive equations become:

$$
\begin{gather*}
N_{1}\left(x_{1}\right)=S \bar{u}_{1}^{\prime}\left(x_{1}\right) \tag{8.6}\\
M_{2}\left(x_{1}\right)=-H_{23}^{c} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)-H_{22}^{c} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right) \tag{8.7}\\
M_{3}\left(x_{1}\right)=+H_{33}^{c} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)+H_{23}^{c} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)
\end{gather*}
$$

Note that we have also added the superscript ($)^{c}$ to the stiffness coefficients to make it clear that now these quantities need to be evaluated using as the origin the modulus weighted centroid.

In many cases we know the moments and axial force and we are interested in finding the internal stresses and beam deflections. This requires to invert the above relations:

$$
\begin{gather*}
\bar{u}_{1}^{\prime}\left(x_{1}\right)=\frac{1}{S} N_{1}\left(x_{1}\right) \tag{8.9}\\
\bar{u}_{2}^{\prime \prime}\left(x_{1}\right)=\frac{H_{23}^{c}}{\Delta_{H}} M_{2}\left(x_{1}\right)+\frac{H_{22}}{\Delta_{H}} M_{3}\left(x_{1}\right) \tag{8.10}\\
\bar{u}_{3}^{\prime \prime}\left(x_{1}\right)=-\frac{H_{33}^{c}}{\Delta_{H}} M_{2}\left(x_{1}\right)-\frac{H_{23}}{\Delta_{H}} M_{3}\left(x_{1}\right) \tag{8.11}
\end{gather*}
$$

With $\Delta_{H}=H_{22}^{c} H_{33}^{c}-H_{23}^{c} H_{23}^{c}$.

The stresses can then be written as:

$$
\begin{equation*}
\sigma_{11}=E\left[\frac{N_{1}}{S}+x_{3} \frac{H_{33}^{c} M_{2}+H_{23}^{c} M_{3}}{\Delta_{H}}-x_{2} \frac{H_{23}^{c} M_{2}+H_{22}^{c} M_{3}}{\Delta_{H}}\right] \tag{8.12}
\end{equation*}
$$

which can be rearranged in a more useful form as:

$$
\begin{equation*}
\sigma_{11}=E\left[\frac{N_{1}}{S}-\frac{x_{2} H_{23}^{c}-x_{3} H_{33}^{c}}{\Delta_{H}} M_{2}-\frac{x_{2} H_{22}^{c}-x_{3} H_{23}^{c}}{\Delta_{H}} M_{3}\right] \tag{8.13}
\end{equation*}
$$

8.1.2 Equilibrium equations

The equilibrium equations for the general beam theory we are developing will be derived with the same considerations as we did in Section 7.3 .2 with two modifications: 1) addition of equilibrium of moments in the \mathbf{e}_{2} direction, 2) contribution of the axial force. Figures $8.2(\mathrm{a})$ and $8.2(\mathrm{~b})$ show a free-body diagram of a beam slice subjected to both axial and transverse loads in two orthogonal but otherwise arbitrary directions (i.e, the loading direction does not necessarily match the principal axis of the cross section of the beam). The internal and external loads are shown in preparation for enforcing equilibrium.

From figure 8.2(a) we obtain the following relations for the axial N_{1} and shear V_{2} forces, and the bending moment M_{3} in the $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ plane:

$$
\left\{\begin{array}{l}
\frac{d N_{1}}{d x_{1}}=-p_{1}\left(x_{1}\right) \tag{8.14}\\
\frac{d V_{2}}{d x_{1}}=-p_{2}\left(x_{1}\right) \\
\frac{d M_{3}}{d x_{1}}+V_{2}=x_{2 a} p_{1}\left(x_{1}\right)
\end{array}\right.
$$

From figure 8.2(b) we obtain the following relations for the axial N_{1} and shear V_{3} forces, and the bending moment M_{2} in the $\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)$ plane:

$$
\left\{\begin{array}{l}
\frac{d N_{1}}{d x_{1}}=-p_{1}\left(x_{1}\right) \tag{8.15}\\
\frac{d V_{3}}{d x_{1}}=-p_{3}\left(x_{1}\right) \\
\frac{d M_{2}}{d x_{1}}-V_{3}=-x_{3 a} p_{1}\left(x_{1}\right)
\end{array}\right.
$$

These equations can be combined by differentiating the moment equations and replacing

Figure 8.2: Equilibrium in both, $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ and $\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)$ planes of a beam slice subjected to axial and transverse loads in general directions.
the shear force equations in them:

$$
\begin{aligned}
\frac{d^{2} M_{3}}{d x_{1}^{2}} & =\frac{d}{d x_{1}}\left(-V_{2}+x_{2 a} p_{1}\left(x_{1}\right)\right) \\
& =-\frac{d V_{2}}{d x_{1}}+\frac{d}{d x_{1}}\left(x_{2 a} p_{1}\left(x_{1}\right)\right) \\
& =p_{2}\left(x_{1}\right)+\frac{d}{d x_{1}}\left(x_{2 a} p_{1}\left(x_{1}\right)\right) \\
\frac{d^{2} M_{2}}{d x_{1}^{2}} & =\frac{d}{d x_{1}}\left(V_{3}-x_{3 a} p_{1}\left(x_{1}\right)\right) \\
& =\frac{d V_{3}}{d x_{1}}-\frac{d}{d x_{1}}\left(x_{3 a} p_{1}\left(x_{1}\right)\right) \\
& =-p_{3}\left(x_{1}\right)-\frac{d}{d x_{1}}\left(x_{3 a} p_{1}\left(x_{1}\right)\right)
\end{aligned}
$$

To summarize, the two equilibrium equations are:

$$
\begin{align*}
\frac{d^{2} M_{2}}{d x_{1}^{2}} & =-p_{3}\left(x_{1}\right)-\frac{d}{d x_{1}}\left(x_{3 a} p_{1}\left(x_{1}\right)\right) \tag{8.16}\\
\frac{d^{2} M_{3}}{d x_{1}^{2}} & =p_{2}\left(x_{1}\right)+\frac{d}{d x_{1}}\left(x_{2 a} p_{1}\left(x_{1}\right)\right)
\end{align*}
$$

The main peculiarity in these equations is the appearance of the terms involving the axial distributed force p_{1} multiplied by the operative moment arm. This is a direct result of the fact that we cannot assume a priori that this force will be applied at the modulus-weighted centroid and may, thus, produce a contribution to the bending moment.

8.1.3 Governing equations

Replacing the sectional constitutive laws from Section 8.1.1 into the equations from the previous section, we obtain the governing equations:

$$
\left\{\begin{array}{l}
\left(S \bar{u}_{1}^{\prime}\right)^{\prime}=-p_{1} \tag{8.17}\\
\left(H_{3}^{c} \bar{u}_{2}^{\prime \prime}+H_{23}^{c} \bar{u}_{3}^{\prime \prime}\right)^{\prime \prime}=p_{2}+\left(x_{2 a} p_{1}\right)^{\prime} \\
\left(H_{23}^{c} \bar{u}_{2}^{\prime \prime}+H_{22}^{c} \bar{u}_{3}^{\prime \prime}\right)^{\prime \prime}=p_{3}+\left(x_{3 a} p_{1}\right)^{\prime}
\end{array}\right.
$$

Concept Question 8.1.2. Observe the governing equations and try to answer the following questions:

1. What is the main difficulty in solving these equations compared to simple beam theory? - Solution: Clearly, the main problem in solving these equations is that they constitute a coupled system of ODEs.
2. Can you think of any situations in which the solution of the fourth order coupled system of ODEs can be avoided?

Solution:
We can avoid solving the system when the beam problem is statically determinate. In this case we can figure out the resultant force distribution from equilibrium exclusively and we need only solve the second order equations for the sectional constitutive laws in order to figure out the stresses and the deflections.

Boundary conditions When the system has to be solved, appropriate boundary conditions must be provided. Depending on the type of idealization of the physical system, type of support and loading, we can have a combination of imposed displacements, constrained rotations, forces or moments, i.e.

$$
\begin{gather*}
\bar{u}_{1}=\bar{u}_{2}=\bar{u}_{3}=0 \quad \text { and } \quad \bar{u}_{2}^{\prime}=\bar{u}_{3}^{\prime}=0 \tag{8.18}\\
\left\{\begin{array}{l}
N_{1}=P_{1} \\
V_{2}=P_{2}, V_{3}=P_{3} \\
M_{3}=-x_{2 a} P_{1}, M_{2}=x_{3 a} P_{1}
\end{array}\right. \tag{8.19}
\end{gather*}
$$

These can be written as a function of derivatives of the beam deflections. \bar{u}_{1}, \bar{u}_{2} and \bar{u}_{3} :

Figure 8.3: Cantilever beam with a L-shaped cross section.
Concept Question 8.1.3. bending of a beam with a L-shaped cross section. Let us consider a cantilever beam with a L-shaped cross section as depicted in Figure 8.3. It is assumed that the beam is made of a linear homogeneous material, in this context fully described by its Young's modulus $E=2 \times 10^{11} \mathrm{GPa}$. The cross section of the beam is 0.1 m wide and high (b); its thickness, t, is equal to 2 mm , and, its length, l, is equal to 2 m . A load P of 200 N is applied at the free-end of the beam, more precisely at C , it modulus-weighted centroid.

1. Compute the coordinates $\left(x_{2}^{c}, x_{3}^{c}\right)$ of the modulus weighted centroid of the section with respect to the origin O. ■ Solution: We use (8.5) for which we need to compute the axial stiffness (S) of the cross section:

$$
S=\underbrace{E t(b-t)}_{\mathrm{e}_{2} \text { beam }}+\underbrace{E t b}_{\mathrm{e}_{3} \text { beam }} \approx 2 E t b
$$

as well the first moments of area w.r.t to $\mathbf{e}_{3}\left(S_{2}\right)$ and $\mathbf{e}_{2}\left(S_{3}\right)$ which are equal due to the symmetry of the cross section:

$$
\begin{aligned}
S_{2} & =\int_{A} E x_{2} d A=\underbrace{E t \int_{0}^{b-t} x_{2} d x_{2}}_{\mathbf{e}_{2} \text { beam }}+\underbrace{E b \int_{b-t}^{b} x_{2} d x_{2}}_{\mathbf{e}_{3} \text { beam }} \\
& =\frac{E t}{2}(b-t)^{2}+\frac{E b}{2}\left(b^{2}-(b-t)^{2}\right) \approx \frac{E t b^{2}}{2}+E t b^{2}=\frac{3 E t b^{2}}{2}
\end{aligned}
$$

Hence, the coordinates of the centroid are:

$$
x_{2}^{c}=\frac{S_{2}}{S}=\frac{\frac{3 E t b^{2}}{2}}{2 E t b}=\frac{3 b}{4}=x_{3}^{c}
$$

2. Compute the bending stiffnesses in the coordinate system $\left(x_{2}^{c}, x_{3}^{c}\right)$.

■ Solution: We use the relations given in Table 8.1:

$$
\begin{aligned}
& H_{33}^{c}=\int_{A} E\left(x_{2}-x_{2}^{c}\right)^{2} d A=\underbrace{E t \int_{0}^{b-t}\left(x_{2}-x_{2}^{c}\right)^{2} d x_{2}}_{\mathrm{e}_{2} \text { beam }}+\underbrace{E b \int_{b-t}^{b}\left(x_{2}-x_{2}^{c}\right)^{2} d x_{2}}_{\mathrm{e}_{3} \text { beam }} \\
& =E t \int_{-\frac{3 b}{4}}^{\frac{b}{4}-t} x_{2}^{2} d x_{2}+E b \int_{\frac{b}{4}-t}^{\frac{b}{4}} x_{2}^{2} d x_{2} \\
& =\frac{E t}{3}\left(\left(\frac{b}{4}-t\right)^{3}+\left(\frac{3 b}{4}\right)^{3}\right)+\frac{E b}{3}\left(\left(\frac{b}{4}\right)^{3}-\left(\frac{b}{4}-t\right)^{3}\right) \\
& \approx \frac{E t}{3}\left(\frac{b^{3}}{64}+\frac{27 b^{3}}{64}\right)+\frac{E b}{3}\left(\frac{b^{3}}{64}-\frac{b^{3}}{64}+\frac{3 t b^{2}}{16}\right)=E t b^{3}\left(\frac{7}{48}+\frac{3}{48}\right)=\frac{5}{24} E t b^{3} \\
& H_{33}^{c}=H_{22}^{c}=\frac{5}{24} E t b^{3} \\
& H_{23}^{c}=\int_{A} E\left(x_{2}-x_{2}^{c}\right)\left(x_{3}-x_{3}^{c}\right) d A \\
& =\underbrace{E \int_{-\frac{3 b}{4}}^{\frac{b}{4}-t} x_{2} d x_{2} \int_{\frac{b}{4}-t}^{\frac{b}{4}} x_{3} d x_{3}}_{\mathbf{e}_{2} \text { beam }}+\underbrace{E \int_{\frac{b}{4}-t}^{\frac{b}{4}-t} x_{2} d x_{2} \int_{-\frac{3 b}{4}}^{\frac{b}{4}} x_{3} d x_{3}}_{\mathbf{e}_{3} \text { beam }} \\
& =\frac{E}{4} \underbrace{\left(\left(\frac{b}{4}-t\right)^{2}-\frac{9 b^{2}}{16}\right)}_{-\frac{b^{2}}{2}} \underbrace{\left(\frac{b^{2}}{16}-\left(\frac{b}{4}-t\right)^{2}\right)}_{\frac{t b}{2}}+\frac{E}{4} \underbrace{\left(\frac{b^{2}}{16}-\left(\frac{b}{4}-t\right)^{2}\right)}_{\frac{t b}{2}} \underbrace{\left(\frac{b^{2}}{16}-\frac{9 b^{2}}{16}\right)}_{-\frac{b^{2}}{2}} \\
& H_{23}^{c}=-\frac{E t b^{3}}{8} \\
& \Delta_{H}=H_{22}^{c} H_{33}^{c}-H_{23}^{c} H_{23}^{c}=\frac{\left(E t b^{3}\right)^{2}}{36}
\end{aligned}
$$

3. Compute the maximum tensile and compressive stresses in the L-shaped cross section.

Solution: The maximum tensile and compressive stresses in the cross section which at the clamped end of the cantilever beam because it is where the moment M_{2} is maximum and equal to Pl . Because the load P at the free end of the cantilever beam is applied at the modulus weighted centroid, the other resultants, M_{3} and N_{1} are null. Thus, making use of (8.13), σ_{11} is equal to:

$$
\sigma_{11}=-E \frac{x_{2} H_{23}^{c}-x_{3} H_{33}^{c}}{\Delta_{H}} \mathrm{Pl}
$$

The maximum traction stress is found at point $\left(\frac{b}{4}, \frac{b}{4}\right)$ and the maximum compressive stress is found at point $\left(\frac{b}{4},-\frac{3 b}{4}\right)$, both at the clamped end of the beam.

$$
\begin{gathered}
{ }^{t} \sigma_{11}=E P l \frac{\frac{b}{4} H_{33}-\frac{b}{4} H_{23}}{\Delta_{H}}=\frac{3 P l}{h^{2} t} . \\
{ }^{c} \sigma_{11}=-E P l \frac{\frac{b}{4} H_{33}+\frac{3 b}{4} H_{22}}{\Delta_{H}}=-\frac{9 P l}{2 h^{2} t} .
\end{gathered}
$$

4. Determine the neutral axis orientation with respect to \mathbf{e}_{2} - Solution: The neutral axes can be defined as the axes for which the stress $\sigma_{11}=0$:

$$
-E \frac{x_{2} H_{23}^{c}-x_{3} H_{33}^{c}}{\Delta_{H}} \mathrm{Pl}=0
$$

The previous equation defines a line in the $\left(\mathrm{C}, \mathbf{e}_{2}^{c}, \mathbf{e}_{3}^{c}\right)$ defined by the equation: $x_{2} H_{23}^{c}-$ $x_{3} H_{33}^{c}=0$. Its orientation is thus given by the angle β defined as:

$$
\tan (\beta)=\frac{H_{23}}{H_{33}} \Rightarrow \beta=-\operatorname{atan}\left(\frac{3}{5}\right)=-30.964^{\circ}
$$

8.1.4 Decoupling the problem

In section 8.1.1 we wrote both, the axial force N_{1} and the bending moments M_{2} and M_{3} as a function of the axial and bending sectional stiffnesses $S, S_{2}, S_{3}, H_{22}, H_{33}, H_{23}$. These relations were simplified if we referred all our coordinates to the modulus-weighted centroid of the cross section, in which case $S_{2}=0$ and $S_{3}=0$). From the equations of equilibrium obtained in section 8.1.2 we obtain the following matrix system:

$$
\left\{\begin{array}{l}
N_{1}\left(x_{1}\right) \tag{8.20}\\
M_{2}\left(x_{1}\right) \\
M_{3}\left(x_{1}\right)
\end{array}\right\}=\left[\begin{array}{ccc}
S & 0 & 0 \\
0 & H_{22}^{c} & -H_{23}^{c} \\
0 & -H_{23}^{c} & H_{33}^{c}
\end{array}\right]\left\{\begin{array}{c}
\bar{u}_{1}^{\prime}\left(x_{1}\right) \\
-\bar{u}_{3}^{\prime \prime}\left(x_{1}\right) \\
\bar{u}_{2}^{\prime \prime}\left(x_{1}\right)
\end{array}\right\}
$$

Here, we have a partially uncoupled problem. Indeed, the axial force is only related to the first derivative of the displacement along the \mathbf{e}_{1} direction but the displacement components u_{2} and u_{3} are coupled because of the presence of the non-zero cross bending stiffness H_{23}. In order to solve the partially uncoupled problem, the main idea is to determine the directions that the axis of the beam should match in order to the problem to be fully uncoupled. In other words, we want the matrix in equation 8.20 to be diagonal, without any coupling term which leads to:

$$
\begin{equation*}
H_{23}^{c}=\int_{A\left(x_{1}\right)} E x_{2} x_{3} d A=0 \tag{8.21}
\end{equation*}
$$

which also defines the principal centroidal axes of bending. For that purpose, we determine the reference frame (denoted with $\mathrm{a} *$ in the following) where the matrix is diagonal, also well-known as principal directions, and define the components of the diagonal matrix which are the principal/eigen values. Of note, the obtained diagonal matrix will satisfy the two equilibrium relations in equation 8.16 .

Concept Question 8.1.4. Decoupled constitutive laws. Let's consider the associated fully decoupled problem where the matrix in equation 8.20 is diagonal and written as a function of $S^{*}, H_{22}^{c *}$ and $H_{33}^{c *}$ as follows:

$$
\left[\begin{array}{ccc}
S^{*} & 0 & 0 \tag{8.22}\\
0 & H_{22}^{c *} & 0 \\
0 & 0 & H_{33}^{c *}
\end{array}\right]
$$

Write the constitutive laws (expression of axial stress distribution σ_{11}) for this fully decoupled problem as a function of $S^{*}, H_{22}^{c *}$ and $H_{33}^{c *}$.

Solution:

$$
\bar{u}_{1}^{\prime *}=\frac{N_{1}^{*}}{S^{*}} \quad, \quad \bar{u}_{2}^{\prime \prime *}=\frac{M_{3}^{*}}{H_{33}^{c *}} \quad, \quad \bar{u}_{3}^{\prime \prime *}=-\frac{M_{2}^{*}}{H_{22}^{c *}}
$$

hence, the corresponding axial stress distribution reads:

$$
\sigma_{11}^{*}=E\left(\frac{N_{1}^{*}}{S^{*}}+x_{3}^{*} \frac{M_{2}^{*}}{H_{22}^{c *}}-x_{2}^{*} \frac{M_{3}^{*}}{H_{33}^{* *}}\right)
$$

Concept Question 8.1.5. Decoupled governing equations. For the same fully decoupled problem as above, write the three governing equations as a function of $S^{*}, H_{22}^{c *}$ and $H_{33}^{c *}$. Solution: For the axial force, the first relation of equation 8.17 is written as follows:

$$
\frac{d}{d x_{1}^{*}}\left(S^{*} \bar{u}_{1}^{\prime}\right)=-p_{1}^{*}
$$

For the bending moment M_{2}, the second relation of equation 8.17 is written as follows:

$$
\frac{d^{2}}{d x_{1}^{* 2}}\left(H_{33}^{c *} \bar{u}_{2}^{\prime \prime *}\right)=p_{2}^{*}+\frac{d}{d x_{1}^{*}}\left(x_{2 a}^{*} p_{1}^{*}\right)
$$

For the bending moment M_{3}, the third relation of equation 8.17 is written as follows:

$$
\frac{d^{2}}{d x_{1}^{* 2}}\left(H_{22}^{c *} \bar{u}_{3}^{\prime \prime *}\right)=p_{3}^{*}+\frac{d}{d x_{1}^{*}}\left(x_{3 a}^{*} p_{1}^{*}\right)
$$

Concept Question 8.1.6. Principal centroidal axes of bending. We consider the fully decoupled problem associated with the diagonal matrix in equation 8.22. Herein, the centroidal axes of bending, also defined as the reference frame, correspond to the principal direction of the diagonal matrix. In this exercise we want to determine both the principal directions and the eigen values $S^{*}, H_{22}^{c *}$ and $H_{33}^{c *}$.

Show that $S^{*}=S$ and that leads to diagonalize a 2×2 matrix you specify.
Solution: Herein, the non-diagonal 3×3 matrix in equation 8.20 is partially diagonal and S is an eigen value, hence $S^{*}=S$. This matrix can be diagonalized by diagonalizing the following 2×2 sub-matrix:

$$
\left[\begin{array}{cc}
H_{22}^{c} & -H_{23}^{c} \\
-H_{23}^{c} & H_{33}^{c}
\end{array}\right]
$$

Using either the general formulae of the diagonalization of a 2×2 matrix or the Mohr's circle relations, to define an expression for both the eigen values and the principal directions.

- Solution: By definition, any point on the centroidal axis of bending are such that $H_{23}^{c}=0$. The orientation (α) of the centroidal axes of bending is written as follows:

$$
\tan (2 \alpha)=\frac{2 H_{23}^{c}}{H_{33}^{c}-H_{22}^{c}}
$$

and the two eigen values reads:

$$
H_{22}^{c *}=\frac{H_{33}^{c}+H_{22}^{c}}{2}-\Delta \quad, \quad H_{33}^{c *}=\frac{H_{33}^{c}+H_{22}^{c}}{2}+\Delta
$$

To summarize, solving a three-dimensional general beam problem consists in decoupling the problem in three separate problems by expressing the compatibility equations, the constitutive laws and the governing equations in the reference frame characterized by the principal centroidal axes of bending. For that purpose, we follow the steps listed below:

- (i) Compute the centroid of the section using the equation 8.5
- (ii) Compute the bending stiffnesses in this axis system using the relations in the table 8.1
- (iii) Compute the orientation of the principal axes of bending using the equation 8.1.6
- (iv) Compute the principal bending stiffnesses using equation 8.1.6

8.2 Bending, shearing and torsion of shell beams

Figure 8.4: Semi-monocoque construction of a wing

Aircraft and also some space structures are designed and built using a so-called semimonocoque structural concept. This essentially means that the structure is made of a shell with stiffeners, as shown in Figure 8.4

We will idealize this section by assuming that (see Figure 8.5):

- the flanges and stringers carry only axial stresses σ_{11}
- the skins and webs carry only shear stresses $\sigma_{1 s}$

Figure 8.5: Idealization of semi-monocoque structure as a shell beam
We will analyze the wing as a cantilevered beam under combined bending, shear and torsion.

For bending we will assume general beam theory (Euler-Bernouilli hypotheses) with discrete (point) area elements (flanges, stringers) defining the cross-section properties.

For torsion, we will also assume that the hypotheses of Saint Venant theory are applicable: 1) cross section shape is maintained (this requires rigid ribs space closely enough), 2) crosssection is free to warp our of its plane.

The basic elements of the theory have been developed. The application is rich in details which is best done by example.

8.2.1 Single-cell shell beams

We first consider the case of single-cell beams.
Concept Question 8.2.1. Example - Single Cell Box-Beam Let's consider a single cell boxbeam of length $l=2 \mathrm{~m}$ as depicted in Figure 8.2.1. The Young's modulus of the material is E. The beam is clamped at one end (at $x_{1}=0$) and free at another end (at $x_{1}=L$) where a concentrated load of $10,000 \mathrm{~N}$ is prescribed at node 1 .

The surface areas of the stringers are:

$$
A^{(1)}=A^{(6)}=400 \mathrm{~mm}^{2} \text { and } A^{(2)}=A^{(3)}=A^{(4)}=A^{(5)}=200 \mathrm{~mm}^{2}
$$

The remaining dimensions and skin thicknesses are shown in the figure.

1. Determine the moment M_{2}, shear force V_{3} and torque T distributions along x_{1} from equilibrium considerations. - Solution: As we did in Unified, the resultant force distribution is obtained by stating the equilibrium of a section of the beam where the cut is made at any cross-section x_{1} and imposing $\sum \mathbf{F}=\mathbf{0}$ and $\sum \mathbf{M}=\mathbf{0}$.

$$
\begin{aligned}
\sum F_{3} & ==0 \\
& =10,000-V_{3}
\end{aligned}
$$

$$
V_{3}=10,000 \mathrm{~N}
$$

and

$$
M_{2}=-10,000 \times\left(2-x_{1}\right) \text { N.m }
$$

$$
T=-10,000 \times d \text { N.m }
$$

where d is a distance between the line of application of the load and the shear center (to be defined soon.
2. Determine the position of the modulus-weighted centroid $\left(x_{2}^{c}, x_{3}^{c}\right)$ (see figure 8.2.1).

Solution: Here, we determine the position of the modulus-weighted centroid using equation 8.5 and taking (for example) node 6 as the initial origin of the coordinate frame (any other point would be just as good).

$$
\begin{aligned}
x_{2}^{c} & =\frac{\int_{A} E x_{2} d A}{\int_{A} E d A} \\
& =\frac{\int_{A} x_{2} d A}{\int_{A} d A} \\
& =\frac{\sum A^{(i)} x_{2}^{(i)}}{\sum A^{(i)}}=\frac{2 \times 200 \times 200+2 \times 200 \times 400}{2 \times(400+200+200)} \frac{\mathrm{mm}^{\not 2}}{\mathrm{~mm}}=150 \mathrm{~mm}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{3}^{c} & =\frac{\int_{A} E x_{3} d A}{\int_{A} E d A} \\
& =\frac{\int_{A} x_{3} d A}{\int_{A} d A} \\
& =\frac{\sum A^{(i)} x_{3}^{(i)}}{\sum A^{(i)}}=100 \mathrm{~mm}
\end{aligned}
$$

to summarize, we obtain:

$$
\left(x_{2}^{c}, x_{3}^{c}\right)=(150 \mathrm{~mm}, 100 \mathrm{~mm})
$$

3. Determine the axial stress component σ_{11}. For that purpose you will (i) determine the relation between σ_{11} and the deformation ϵ_{11} hence the displacement u_{1}, then (ii) determine the relation between the displacement u_{1} and the axial and bending stiffnesses, and (iii) determine the values of the stiffnesses. - Solution: Here, the axial stress is related to the axial strain using Hooke's law:

$$
\sigma_{11}=E \epsilon_{11}
$$

and from compatiblity relation we obtain the relation between the axial strain and the displacement:

$$
\epsilon_{11}=u_{1,1}=u_{1}^{\prime}
$$

and

$$
u_{1}^{\prime}=\bar{u}_{1}^{\prime}\left(x_{1}\right)-x_{3} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)-x_{2} \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)
$$

since there is no axial force and no bending with respect to e_{3} due to the symmetry of the beam, we have:

$$
u_{1}^{\prime}=-x_{3} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)
$$

so

$$
\sigma_{11}=-E x_{3} \bar{u}_{3}^{\prime \prime}\left(x_{1}\right)
$$

and

$$
\bar{u}_{3}^{\prime \prime}\left(x_{1}\right)=-\frac{M_{2}}{H_{22}^{c}}
$$

Finally

$$
\begin{equation*}
\sigma_{11}=\frac{E M_{2} x_{3}}{H_{22}^{c}} \tag{8.23}
\end{equation*}
$$

Let's calculate H_{22}^{c}

$$
\begin{aligned}
H_{22}^{c} & =\int_{A} E x_{3}^{2} d A \\
& =E \sum A^{(i)} x_{3}^{2} \\
& =E\left(\left(x_{3}^{(1)}\right)^{2} A^{(1)}+\left(x_{3}^{(6)}\right)^{2} A^{(6)}+\left(x_{3}^{(2)}\right)^{2} A^{(2)}+\left(x_{3}^{(5)}\right)^{2} A^{(5)}+\left(x_{3}^{(3)}\right)^{2} A^{(3)}+\left(x_{3}^{(4)}\right)^{2} A^{(4)}\right) \\
& =E\left(2 \times\left(x_{3}^{(1)}\right)^{2} A^{(1)}+2 \times\left(x_{3}^{(2)}\right)^{2} A^{(2)}+2 \times\left(x_{3}^{(3)}\right)^{2} A^{(3)}\right) \\
& =E\left(2 \times 100^{2} \times 400+2 \times 100^{2} \times 200+2 \times 100^{2} \times 200\right) \\
& =E \times 16 \times 10^{6} \mathrm{~mm}^{4}=E \times 16 \times 10^{-6} \times \mathrm{m}^{4}
\end{aligned}
$$

at a given cross-section $\left(x_{1}\right)$ we obtain at joints 1,2 and 3:

$$
\begin{aligned}
\sigma_{11} & =-\frac{10,000 \times\left(2-x_{1}\right)}{16 \times 10^{-6}} \times 0.1 \mathrm{~Pa} \\
& =-62.5 \times\left(2-x_{1}\right) \mathrm{MPa}
\end{aligned}
$$

and at joints 4,5 and 6 :

$$
\begin{aligned}
\sigma_{11} & =-\frac{10,000 \times\left(2-x_{1}\right)}{16 \times 10^{-6}} \times(-0.1) \mathrm{Pa} \\
& =62.5 \times\left(2-x_{1}\right) \mathrm{MPa}
\end{aligned}
$$

4. Shear stresses. Considering that the skin elements of the box beam are very thin, what assumption can we make about the shear stress state through the thickness of any of the skin elements?

Solution: It is reasonable to assume that the shear stress $\sigma_{1 s}$ is uniform through the thickness and aligned with the direction s of each skin element.
5. In order to study the effect of the shearing force in the shell-beam, it is convenient to introduce the notion of the shear flow, f, as we did in torsion theory (at that point we use the symbol q for the shear flow, we are changing it for consistency with Bauchau's book):

$$
\begin{equation*}
f^{(i)}=\sigma_{1 s}^{(i)} t \tag{8.24}
\end{equation*}
$$

Draw the different shear flows in each of the skin elements on a section of the shellbeam.

Solution: The flows are shown in Figure 8.6.

Figure 8.6: Shear flows in any section of the box-beam.
6. Write an equation of equilibrium relating the shear flows $f^{(1)}, f^{(6)}$ adjacent to joint 1 by considering the variation of the axial stress force $n_{1}^{(1)}=\sigma_{11}^{(1)} A^{(1)}$ along the axis \mathbf{e}_{1} (the small caps denotes that this is not the total axial force in the cross section but just on this stiffener). ■ Solution: Let us consider an elementary slice of size $d x_{1}$ around joint 1 as depicted in Figure 8.7. It is worth noting at this point, that the following assumptions are implicitly made in this schematic:

- Stringe carries axial load,
- Skin carries shear flow.

Writing the equilibrium of forces along the axis $\mathbf{e}_{\mathbf{1}}$ leads to the following expression:

$$
\begin{equation*}
-n_{1}^{(1)}+n_{1}^{(1)}+n_{1}^{(1) \prime} d x_{1}+f^{(1)} d x_{1}-f^{(6)} d x_{1}=0 \tag{8.25}
\end{equation*}
$$

which further simplifies:

$$
\begin{equation*}
-n_{1}^{(1) \prime}=f^{(1)}-f^{(6)} \tag{8.26}
\end{equation*}
$$

Figure 8.7: Equilibrium of joint 1

This expression can be further generalized to more complex joints with any number of converging skin elements to:

$$
\begin{equation*}
-n_{1}^{(1) \prime}=f^{(\mathrm{out})}-f^{(\mathrm{in})} \tag{8.27}
\end{equation*}
$$

Note that in the above expression, the angle formed by the two skins at the joint don't matter!
7. Show from the previously derived equilibrium equation that a joint equation of the following form:

$$
\begin{equation*}
f^{(\text {out })}-f^{(\text {in })}=-\frac{Q_{2} V_{3}}{H_{22}^{c}} \tag{8.28}
\end{equation*}
$$

can be established where $Q_{2}=E A x_{3}$ is the modulus-weighted first moment of area about \mathbf{e}_{2}. Solution: Replacing in (8.26) the expression of the axial resultant n_{1} in terms of the axial stress gives:

$$
\begin{equation*}
f^{(\text {out })}-f^{(\text {in })}=-\left(A \sigma_{11}\right)^{\prime}=-A \sigma_{11}^{\prime} \tag{8.29}
\end{equation*}
$$

We then make use of (8.23) and re-write the previous expression:

$$
\begin{aligned}
f_{\text {out }}-f_{\text {in }} & =-\left(A \sigma_{11}\right)^{\prime}=-A\left(\frac{E M_{2} x_{3}}{H_{22}^{c}}\right)^{\prime}=-A \frac{E \overbrace{M_{2}^{\prime}}^{V_{3}} x_{3}}{H_{22}^{c}}=-A \frac{E V_{3} x_{3}}{H_{22}^{c}} \\
& =-\underbrace{A E x_{3}}_{Q_{2}} \frac{V_{3}}{H_{22}^{c}}
\end{aligned}
$$

8. Now the shear stresses arise due to reasons:

- Shear resultant V_{2} and V_{3}
- Twisting moment T

It is convenient to break up the analysis into two separate problems:

- "Pure shear"
- "Pure torsion"

The schematic of each problem is illustrated in Figures 8.8(a) and 8.8(b), where d is the distance to the shear center.

Figure 8.8: Convenient break up of the problem into two separate problems
Considering $V_{3}=10000 \mathrm{~N}$ and $T=-10000 \mathrm{~N} \times d$, write the equilibrium equation for each joint i of the "Pure Shear" problem, Figure 8.8(a).

Solution:
The equilibrium equation for each joint i is

$$
f^{(\text {out })}-f^{(\mathrm{in})}=-\frac{Q_{2} V_{3}}{E I_{22}}=-\frac{A^{(i)} x_{3}{ }^{(i)} V_{3}}{I_{22}}
$$

where $I_{22}=\int_{A} x_{3}^{2} d A=\sum_{i} A^{(i)} x_{3}^{(i) 2}$ is the moment of inertia.
In this problem we have that $x_{3}{ }^{(i)}= \pm 10 \mathrm{~cm}$ and $I_{22}=2 \times 4 \mathrm{~cm}^{2} \times(10 \mathrm{~cm})^{2}+4 \times 2 \mathrm{~cm}^{2} \times$ $(10 \mathrm{~cm})^{2}=1600 \mathrm{~cm}^{4}$, which leads to

$$
\begin{aligned}
f^{(1)}-f^{(6)} & =-4 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=-250 \mathrm{~N} / \mathrm{cm} \\
f^{(2)}-f^{(1)} & =-2 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=-125 \mathrm{~N} / \mathrm{cm} \\
f^{(3)}-f^{(2)} & =-2 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=-125 \mathrm{~N} / \mathrm{cm} \\
f^{(4)}-f^{(3)} & =-2 \mathrm{~cm}^{2} \times(-10 \mathrm{~cm}) \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=125 \mathrm{~N} / \mathrm{cm} \\
f^{(5)}-f^{(4)} & =-2 \mathrm{~cm}^{2} \times(-10 \mathrm{~cm}) \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=125 \mathrm{~N} / \mathrm{cm} \\
f^{(6)}-f^{(5)} & =-4 \mathrm{~cm}^{2} \times(-10 \mathrm{~cm}) \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=250 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

9. Can you calculate the shear flows $\left\{f^{(i)}\right\}_{i=1, \ldots, 6}$ from the above system of equations? Solution:

We cannot calculate the shear flows because we have 6 equations but only 5 are linearly independent (any equation can be obtained from the sum of the others). We need an additional equation.
10. An additional equation is obtained by the requirement of torque equivalence between the externally applied torque and the internal torque provided by the shear flows. This torque can be computed with respect to any point in the cross section not in the shear center, i.e. in the line of application of the load for the first (pure shear problem). Write the general equation and apply it to this problem ■ Solution: The equation for "torque equivalence" (it is the torque equilibrium) is given by

$$
\sum_{i} T^{(i)}=T_{\text {applied }}
$$

where $T^{(i)}$ are the internal torques produced by the shear forces in each skin and in this problem $T_{\text {applied }}=-V_{3} d$. For convenience, we compute torque equivalence with respect to the point where joint 6 is located (this eliminates the maximum number of terms in the equation). However, any other point can be chosen as long as it is not on the line in the direction of the load passing through the shear center. The internal torques can be calculated as $T^{(i)}=f^{(i)} l^{(i)} d^{(i)}$, where $l^{(i)}$ is the length in which the shear flow in skin $i f^{(i)}$ is acting, and $d^{(i)}$ is the moment arm of skin i.

$$
\begin{aligned}
-f^{(1)} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}-f^{(2)} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}-f^{(3)} \times 20 \mathrm{~cm} \times 40 \mathrm{~cm} & =10000 \mathrm{~N} \times d \\
-f^{(1)}-f^{(2)}-2 f^{(3)} & =25 \mathrm{~N} / \mathrm{cm}^{2} \times d .
\end{aligned}
$$

11. The last equation to close the system is obtained by imposing the no twist condition. From torsion theory for thin closed sections, we obtained that the torque-rate-of-twist relation is given by

$$
\oint_{\partial \Omega} \tau d s=2 G \alpha A .
$$

Use this expression to obtain a generic equation to impose the no-twist condition in closed shell-beams: ■ Solution: For the case of "pure shear" the rate-of-twist is zero $(\alpha=0)$, which leads to

$$
\oint_{\partial \Omega} \tau d s=\oint_{\partial \Omega} \frac{f}{t} d s=0=\sum_{i} \frac{f^{(i)}}{t^{(i)}} l^{(i)}
$$

12. Specialize the no-twist condition to our problem:

Solution: We obtain:
$\frac{f^{(1)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(2)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(3)} \times 20 \mathrm{~cm}}{0.8 \mathrm{~mm}}+\frac{f^{(4)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(5)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(6)} \times 20 \mathrm{~cm}}{1.2 \mathrm{~mm}}=0$ or,

$$
\begin{equation*}
f^{(1)}+f^{(2)}+\frac{1}{2} f^{(3)}+f^{(4)}+f^{(5)}+\frac{1}{3} f^{(6)}=0 \tag{8.30}
\end{equation*}
$$

13. Solve the system and obtain the six shear flows and the position of the shear center for the case of pure shear.

- Solution: A convenient approach to solve the system and obtain $f^{(i)}, i=1, \ldots, 6$ and d is to start with the joint equilibrium equations, and express all $f^{(i)}$ in terms of one, say $f^{(1)}$:

$$
\begin{aligned}
& f^{(2)}=f^{(1)}-125 \mathrm{~N} / \mathrm{cm} \\
& f^{(3)}=f^{(2)}-125 \mathrm{~N} / \mathrm{cm}=f^{(1)}-250 \mathrm{~N} / \mathrm{cm} \\
& f^{(4)}=f^{(1)}-125 \mathrm{~N} / \mathrm{cm} \\
& f^{(5)}=f^{(1)} \\
& f^{(6)}=f^{(1)}+250 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

Placing into 'No Twist Condition' (8.30) gives

$$
f^{(1)}+\left(f^{(1)}-125\right)+\frac{1}{2}\left(f^{(1)}-250\right)+f^{(1)}-125+f^{(1)}+\frac{1}{3}\left(f^{(1)}+250\right)=0
$$

which leads to

$$
\begin{aligned}
f^{(1)} & =\frac{291.67}{4.833} \mathrm{~N} / \mathrm{cm} \\
& =60.345 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

As a result,

$$
\begin{aligned}
& f^{(2)}=f^{(1)}-125=-64.655 \mathrm{~N} / \mathrm{cm} \\
& f^{(3)}=-189.66 \mathrm{~N} / \mathrm{cm} \\
& f^{(4)}=-64.655 \mathrm{~N} / \mathrm{cm} \\
& f^{(5)}=60.345 \mathrm{~N} / \mathrm{cm} \\
& f^{(6)}=310.34 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

Then Torque Boundary Condition (7)

$$
f^{(1)}+f^{(2)}+2 f^{(3)}=-25 d
$$

can be written as

$$
60.345-64.655+2 \times(-189.66)=-25 d
$$

which gives

$$
d=15.345 \mathrm{~cm}=0.15345 \mathrm{~m} .
$$

14. Verify the solution by computing the resulting internal forces and comparing with the external loads

Solution: Horizontal:

$$
\begin{align*}
& {\left[\left(f^{(1)}+f^{(2)}\right)-\left(f^{(4)}+f^{(5)}\right)\right] \times 20 \mathrm{~cm} } \tag{8.31}\\
= & \left(f^{(1)}+f^{(1)}-125-\left(f^{(1)}-125\right)-f^{(1)}\right) \times 20 \mathrm{~cm} \tag{8.32}\\
= & 0 \tag{8.33}
\end{align*}
$$

Vertical:

$$
\begin{align*}
& \left(f^{(6)}-f^{(3)}\right) \times 20 \mathrm{~cm} \tag{8.34}\\
= & {\left[f^{(1)}+250-\left(f^{(1)}-250\right)\right] \times 20 \mathrm{~cm} } \tag{8.35}\\
= & 500 \mathrm{~N} / \mathrm{cm} \times 20 \mathrm{~cm} \tag{8.36}\\
= & 10000 \mathrm{~N} . \tag{8.37}
\end{align*}
$$

15. If the load were applied at the shear center, there would be no twist of the section. However we still need to deal with the second part, "pure torsion", which results from translating the applied shear force from the point of application to the shear center.
Now that we know the location of the shear center, compute the torque produced by the applied shear force:

Solution: $\quad T=-10000 \mathrm{~N} \times d=-1534.5 \mathrm{Nm}$.
16. Write the equations of joint equilibrium for the case of pure torsion. Can you compute the shear flows from these equations alone? What can you conclude about the shear flows for the pure torsion case?

Solution: Since there is no shear, each equation becomes:

$$
f^{(o u t)}-f^{(\text {in })}=-\frac{Q_{2} V_{3}}{I_{2}}=0
$$

When applied to all the joints, we obtain:

$$
\begin{gathered}
f^{(1)}-f^{(6)}=0, \\
f^{(2)}-f^{(1)}=0, \\
\text { etc. }
\end{gathered}
$$

We cannot determine the shear flows from internal equilibrium alone. We need the relation with the externally applied torque.
The equations imply: $f^{(1)}=f^{(2)}=f^{(3)}=f^{(4)}=f^{(5)}=f^{(6)}$, as we knew from torsion theory.
17. Apply the Torque Boundary Condition and obtain an equation to close the system. Use the fact that all the shear fluxes are the same to solve the system.

Solution:

$$
\sum_{i} T^{(i)}=T_{\text {applied }}
$$

Taking moments for example with respect to stringer (6),

$$
-f^{(1)} \times(20 \mathrm{~cm}) \times(20 \mathrm{~cm})-f^{(2)} \times(20 \mathrm{~cm}) \times(20 \mathrm{~cm})-f^{(3)} \times(20 \mathrm{~cm}) \times 2(20 \mathrm{~cm})=-1534.5
$$

$$
f^{(1)}=\frac{\nrightarrow 1534.5}{\nrightarrow 4 \times(0.2 \mathrm{~m})^{2}}=9590.5 \mathrm{~N} / \mathrm{m}=95.905 \mathrm{~N} / \mathrm{cm} .
$$

Note: Could also get above from Bredt's formula $f=\sigma_{1 s} t=\frac{T}{2 A}$, but the approach shown is more general.
18. Draw schematics of the cross section with the numeric values and directions of the shear flows obtained for the pure shear and pure torsion cases, then draw a diagram for the combined flows. Interpret the results.

■ Solution: Figure 8.9 shows the schematics:

It can be seen that in the pure shear case the vertical shear flows are oriented in the direction of the shear force and add up to it. The horizontal flows converge to joint 2 in the compressed part of the beam and diverge from node 5 in the part of the beam under tension. For the case of pure torsion, the flows are as we saw for thin closed sections: uniform and all oriented in the same direction. The full solution results from adding up these two with no obvious orientation of the shear fluxes.

8.2.2 Multi-cell shell beams

When we have box beams with several close cells, a few different considerations are in order.

Concept Question 8.2.2. Consider the box beam but with an additional web (2 cell wing), as illustrated in Figure 8.10

The thickness of the new web is 1.2 mm . Note that since the stringers have not changed, the axial stresses due to bending remain exactly the same. For the analysis of the shear stresses, we follow the ideas introduced in the problem for one cell, and we break up the analysis into two separate problems: "pure shear" and "pure torsion".

(a) "Pure Shear"

(b) "Pure Torsion"

(c) Sum

Figure 8.9: Solutions for the "Pure Shear" case, the "Pure Torsion" case and the superposition of both cases.

Figure 8.10: Box-beam with two cells

1. Write the equilibrium equation for the joints for the "pure shear" problem. How many unknowns and how many independent equations do you obtain?
■ Solution:

$$
\begin{aligned}
f^{(1)}-f^{(6)} & =-4 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=-250 \mathrm{~N} / \mathrm{cm} \\
f^{(2)}-f^{(1)}-f^{(7)} & =-2 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=-125 \mathrm{~N} / \mathrm{cm} \\
f^{(3)}-f^{(2)} & =-2 \mathrm{~cm}^{2} \times 10 \mathrm{~cm} \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=-125 \mathrm{~N} / \mathrm{cm} \\
f^{(4)}-f^{(3)} & =-2 \mathrm{~cm}^{2} \times(-10 \mathrm{~cm}) \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=125 \mathrm{~N} / \mathrm{cm} \\
f^{(5)}+f^{(7)}-f^{(4)} & =-2 \mathrm{~cm}^{2} \times(-10 \mathrm{~cm}) \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=125 \mathrm{~N} / \mathrm{cm} \\
f^{(6)}-f^{(5)} & =-4 \mathrm{~cm}^{2} \times(-10 \mathrm{~cm}) \times 10000 \mathrm{~N} \times \frac{1}{1600 \mathrm{~cm}^{4}}=250 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

This system has 5 linearly independent equations and 7 unknowns shear flows $\left\{f^{(i)}\right\}_{i=1, \ldots, 7}$
2. Impose the torque boundary condition to obtain another equation. Are you any closer to solving the system?

Solution:

$-f^{(1)} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}-f^{(2)} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$

$$
\begin{aligned}
-f^{(3)} \times 20 \mathrm{~cm} \times 40 \mathrm{~cm}+f^{(7)} & \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}=10000 \mathrm{~N} \times d \\
& -f^{(1)}-f^{(2)}-2 f^{(3)}+f^{(7)}=25 \mathrm{~N} / \mathrm{cm}^{2} \times d .
\end{aligned}
$$

We obtain an additional equation, but we also introduce a new unknown (the distance to the shear center d), still two equations short.
3. Apply the no-twist condition for the special conditions of this problem. How many equations do you get from this?
■ Solution: The no-twist condition must be satisfied for each individual cell. Thus, we obtain two more equations, resulting in a system of 8 equations and 8 unknowns.

$$
\begin{aligned}
\alpha_{\text {Front }} & =\frac{1}{2 G A_{\text {Front }}} \oint_{\partial \Omega} \tau d s=0 . \\
\alpha_{\text {Rear }} & =\frac{1}{2 G A_{\text {Rear }}} \oint_{\partial \Omega} \tau d s=0
\end{aligned}
$$

Specializing the two no-twist condition to our problem

$$
\begin{aligned}
\frac{f^{(1)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}-\frac{f^{(7)} \times 20 \mathrm{~cm}}{1.2 \mathrm{~mm}}+\frac{f^{(5)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(6)} \times 20 \mathrm{~cm}}{1.2 \mathrm{~mm}} & =0 \\
f^{(1)}-\frac{1}{3} f^{(7)}+f^{(5)}+\frac{1}{3} f^{(6)} & =0
\end{aligned}
$$

$$
\begin{aligned}
\frac{f^{(2)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(3)} \times 20 \mathrm{~cm}}{0.8 \mathrm{~mm}}+\frac{f^{(4)} \times 20 \mathrm{~cm}}{0.4 \mathrm{~mm}}+\frac{f^{(7)} \times 20 \mathrm{~cm}}{1.2 \mathrm{~mm}} & =0 \\
f^{(2)}+\frac{1}{2} f^{(3)}+f^{(4)}+\frac{1}{3} f^{(7)} & =0
\end{aligned}
$$

4. Solve the system of equations and obtain the shear flows for the pure shear problem. Comment on the shear flow distribution of the two-cell vs the single-cell box beam

Solution: Solving the system of equations, we obtain

$$
\begin{aligned}
f^{(1)} & =-14.9254 \mathrm{~N} / \mathrm{cm} \\
f^{(2)} & =5.5970 \mathrm{~N} / \mathrm{cm} \\
f^{(3)} & =-119.4030 \mathrm{~N} / \mathrm{cm} \\
f^{(4)} & =5.5970 \mathrm{~N} / \mathrm{cm} \\
f^{(5)} & =-14.9254 \mathrm{~N} / \mathrm{cm} \\
f^{(6)} & =235.0746 \mathrm{~N} / \mathrm{cm} \\
f^{(7)} & =145.5224 \mathrm{~N} / \mathrm{cm} \\
d & =15.7463 \mathrm{~cm}
\end{aligned}
$$

If one compares the new distribution of shear flows with that of the single cell box beam for the case of pure shear, we find that they are more evenly distributed.
5. Now consider the "Pure Torsion" problem, obtain the joint equilibrium equations. How many equations and unknowns do you get?

- Solution: Again, since there is no shear, we get the same equations with zero right hand sides

$$
\begin{aligned}
f^{(1)}-f^{(6)} & =0 \\
f^{(2)}-f^{(1)}-f^{(7)} & =0 \\
f^{(3)}-f^{(2)} & =0 \\
f^{(4)}-f^{(3)} & =0 \\
f^{(5)}+f^{(7)}-f^{(4)} & =0 \\
f^{(6)}-f^{(5)} & =0
\end{aligned}
$$

As before, this system has 5 linearly independent equations and 7 unknown shear flows $\left\{f^{(i)}\right\}_{i=1, \ldots, 7}$.
6. Apply torque boundary condition

Solution:

$$
-f^{(1)}-f^{(2)}-2 f^{(3)}+f^{(7)}=-25 \mathrm{~N} / \mathrm{cm}^{2} \times d=-393.6567,
$$

where we use the shear center previously calculated.
7. Since we expect to have twist due to the torque, what other kinematic condition would make sense in this case? Apply it and show that this closes the system of equations

- Solution: The applicable kinematic condition in this case is that the twist of each cell has to be the same so that the assumptions for torsion are satisfied (sections preserve their shape)

$$
\begin{aligned}
\frac{1}{2 G A_{\text {Front }}} \oint_{\partial \Omega}^{\alpha_{\text {Front }}} & =\alpha_{\text {Rear }} \\
\tau d s & =\frac{1}{2 G A_{\text {Rear }}} \oint_{\partial \Omega} \tau d s
\end{aligned}
$$

Specializing this condition to our problem

$$
\begin{aligned}
f^{(1)}-\frac{1}{3} f^{(7)}+f^{(5)}+\frac{1}{3} f^{(6)} & =f^{(2)}+\frac{1}{2} f^{(3)}+f^{(4)}+\frac{1}{3} f^{(7)} \\
f^{(1)}-f^{(2)}-\frac{1}{2} f^{(3)}-f^{(4)}+f^{(5)}+\frac{1}{3} f^{(6)}-\frac{2}{3} f^{(7)} & =0
\end{aligned}
$$

8. Solve the system of equations for the pure torsion problem:

Solution: we obtain

$$
\begin{aligned}
f^{(1)} & =101.0740 \mathrm{~N} / \mathrm{cm} \\
f^{(2)} & =95.7543 \mathrm{~N} / \mathrm{cm} \\
f^{(3)} & =95.7543 \mathrm{~N} / \mathrm{cm} \\
f^{(4)} & =95.7543 \mathrm{~N} / \mathrm{cm} \\
f^{(5)} & =101.0740 \mathrm{~N} / \mathrm{cm} \\
f^{(6)} & =101.0740 \mathrm{~N} / \mathrm{cm} \\
f^{(7)} & =-5.3197 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

9. Add the shear flows for the pure shear and pure torsion problems to obtain the total shear flows:

$$
\begin{aligned}
f^{(1)} & =86.1486 \mathrm{~N} / \mathrm{cm} \\
f^{(2)} & =101.3514 \mathrm{~N} / \mathrm{cm} \\
f^{(3)} & =-23.6486 \mathrm{~N} / \mathrm{cm} \\
f^{(4)} & =101.3514 \mathrm{~N} / \mathrm{cm} \\
f^{(5)} & =86.1486 \mathrm{~N} / \mathrm{cm} \\
f^{(6)} & =336.1486 \mathrm{~N} / \mathrm{cm} \\
f^{(7)} & =140.2027 \mathrm{~N} / \mathrm{cm}
\end{aligned}
$$

10. Sketch the shear flows for both the pure shear and pure torsion cases as well as the combined (full) solution to the problem.

(a) "Pure Shear"

(b) "Pure Torsion"

(c) Sum

Figure 8.11: Solutions for the "Pure Shear" case, the "Pure Torsion" case and the superposition of both cases.

The same ideas are followed for wings composed by 3 or more cells.

8.2.3 Open-cell shell beams

Concept Question 8.2.3. Consider now an open section as the one illustrated in Figure 8.2.3

The computation of the axial stresses and deflections due to bending or axial loads is done as before.

The computation of the shear stresses requires a few special considerations. Again, we break up the analysis into two separate problems: pure shear and pure torsion.

1. Computation of the shear fluxes for the pure shear problem: Again, we assume in this case that the shear force is applied on the shear center so that there is no twist. For the open section of the figure

Write the joint equilibrium equations and show that the shear fluxes in each skin can solved for from these equations alone. Explain why this is the case.
2. Computation of the shear center location: Explain how you can determine this by enforcing torque equivalence.

Solution: This can be done directly from the torque equivalence between the internal torque produced by the shear fluxes and the torque produced by the shear force acting at the shear center with respect to any point in the plane (not passing through the shear center)
3. Solution of the pure torsion problem: Reflect on the nature of the shear stresses due to torsion in the case of open vs closed cross sections (Remember the membrane analogy?). Draw a sketch of the type of shear stress distribution in this case Does it make sense to talk about shear flows in this case? ■ Solution: From the membrane analogy for open sections, we know that the shear stresses are linear through the thickness of the skin:

$$
\sigma_{1 s}=\frac{2 T}{J} x_{t}
$$

where $J=\sum_{i} J^{(i)}=\frac{1}{3} \sum_{i} l^{(i)}\left(t^{(i)}\right)^{3}$ is the structural stiffness and $x_{t} s$ the coordinate through the thickness normal to the direction s measured from the centerline of the skin.

In this case, it doesn't make sense to talk about shear flow (it is actually zero due to symmetry of the shear stress diagram through the thickness)
The sketch is shown in Figure 8.12
4. Why is the open section a bad idea? - Solution: as we saw in torsion, the torsional stiffness of the open section is very small.

Figure 8.12: Schematic of the computation of shear flows in the skins of an open-cell shell beam for pure shear and shear stresses (no flows) for pure torsion. The resulting shear stresses are obtained by adding up the two

