
Module 8

General Beam Theory

Learning Objectives

• Generalize simple beam theory to three dimensions and general cross sections

• Consider combined effects of bending, shear and torsion

• Study the case of shell beams

8.1 Beams loaded by transverse loads in general direc-

tions

Readings: BC 6

So far we have considered beams of fairly simple cross sections (e.g. having symmetry
planes which are orthogonal) and transverse loads acting on the planes of symmetry. Figure
8.1 shows examples of beams loaded on a plane which does not coincide with a plane of
symmetry of its cross section.

In this section, we will consider beams with cross section of arbitrary shape which are
loaded on planes that do not in general coincide with symmetry planes (or as we will see
later more precisely, with principal directions of inertia of the cross section).

We will still adopt Euler-Bernoulli hypothesis, which implies that the kinematic assump-
tions about the allowed deformation modes of the beam remain the same, see Section 7.1.1.

The displacement field is still given by equations (7.4), whereas the strain field is given
by equations (7.7). It should be noted that the origin of coordinates in the cross section is
still unspecified.

8.1.1 Constitutive law for the cross section

We will assume that the beam is made of linear elastic isotropic materials and use Hooke’s
law. Since the strain distribution is still bound by the sames constraints, the stress distri-
bution will be as before:
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Figure 8.1: Loading of beams in general planes and somewhat general cross sections

σ11(x1, x2, x3) = Eε11(x1, x2, x3) = E[ū′1(x1)− x2ū
′′
2(x1)− x3ū

′′
3(x1)] (8.1)

Following with the by now usual plan to build a structural theory, we proceed to compute
the resultants:

Axial force N1

N1(x1) =

∫
A

σ11(x1, x2, x3)dA

=
[∫

A

EdA
]

︸ ︷︷ ︸
S

ū′1(x1)−
[∫

A

Ex2dA
]

︸ ︷︷ ︸
S2

ū′′2(x1)−
[∫

A

Ex3dA
]

︸ ︷︷ ︸
S3

ū′′3(x1)

N1(x1) = Sū′1(x1)− S2ū
′′
2(x1)− S3ū

′′
3(x1) (8.2)

where S is the modulus-weighted area or axial stiffness, S2, S3 are respectively the modulus-
weighted first moments of area of the cross section with respect to the e3 and e2 axes.
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Bending moments M2(x1),M3(x1)

M2(x1) =

∫
A

σ11x3dA =

=
[∫

A

Ex3dA
]

︸ ︷︷ ︸
S3

ū′1(x1)−
[∫

A

Ex2x3dA
]

︸ ︷︷ ︸
H23

ū′′2(x1)−
[∫

A

Ex2
3dA

]
︸ ︷︷ ︸

H22

ū′′3(x1)

M2(x1) = S3ū
′
1(x1)−H23ū

′′
2(x1)−H22ū

′′
3(x1) (8.3)

M3(x1) = −
∫
A

σ11x2dA =

= −
[∫

A

Ex2dA
]

︸ ︷︷ ︸
S2

ū′1(x1) +
[∫

A

Ex2
2dA

]
︸ ︷︷ ︸

H33

ū′′2(x1) +
[∫

A

Ex3x2dA
]

︸ ︷︷ ︸
H23

ū′′3(x1)

M3(x1) = −S2ū
′
1(x1) +H33ū

′′
2(x1) +H23ū

′′
3(x1) (8.4)

We note that we have used some of the previously defined section stiffness coefficients
S,H33, but we have also introduced some new ones. Summarizing all:

Area: S =
∫
A
EdA

First moment of area wrt e3 S2 =
∫
A
Ex2dA

First moment of area wrt e2 S3 =
∫
A
Ex3dA

Second moment of area wrt e3 H22 =
∫
A
Ex2

3dA
Second moment of area wrt e2 H33 =

∫
A
Ex2

2dA
Second cross moment of area wrt e2, e3 H23 =

∫
A
Ex2x3dA

Table 8.1: Modulus-weighted cross section stiffness coefficients

Concept Question 8.1.1. Give an interpretation to the various cross section stiffness
coefficients by observing the “strains” and resultant forces they relate Solution:

• S is the direct stiffness for axial deformation, i.e. it determines what axial force is
produced per unit axial deformation.

• S2 is the cross stiffness between curvature in the e3 direction (12-plane) and the axial
force, i.e. it determines what axial force is produced per unit curvature in that plane.
Conversely, it is the cross stiffness determining the moment M3 produced per unit axial
strain.

• S3 similar discussion to S2

• H22, H33 are the direct stiffnesses relating section bending strain measure (curvatures)
and corresponding bending moment.
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• H23 is the cross stiffness relating curvature in one plane with moment in the other.

These conclusions also apply in inverse form, i.e. by inverting these relations we obtain
coefficients that determine the “sectional strain measure” produced per unit resultant force,
e.g. the curvature in a given plane produced per unit axial force or moments in either plane,
etc.

The main conclusion from this general beam theory is that there is a coupling among all
stress resultants and all “strain measures”. Specifically, this means that a curvature in one
plane can cause not only a bending moment in the respective plane but also a moment in
the plane orthogonal to it as well as an axial force. Also, that the axial strain ū′1 can cause
moments in both orthogonal planes.

A first simplification of these expressions is obtained if we first find the modulus-weighted
centroid of the cross section xc2, x

c
3 and then refer all our quantities with respect to that point

(i.e. place the origin of our axes from where we measure x2, x3 at that point). In that case,
as we saw before:

xc2 =

S2︷ ︸︸ ︷∫
A

Ex2dA∫
A

EdA︸ ︷︷ ︸
S

= 0, xc3 =

S3︷ ︸︸ ︷∫
A

Ex3dA∫
A

EdA︸ ︷︷ ︸
S

= 0, (8.5)

and the coupling between axial and flexural quantities disappears, i.e. the sectional
constitutive equations become:

N1(x1) = Sū′1(x1) (8.6)

M2(x1) = −Hc
23ū
′′
2(x1)−Hc

22ū
′′
3(x1) (8.7)

M3(x1) = +Hc
33ū
′′
2(x1) +Hc

23ū
′′
3(x1) (8.8)

Note that we have also added the superscript ()c to the stiffness coefficients to make it clear
that now these quantities need to be evaluated using as the origin the modulus weighted
centroid.

In many cases we know the moments and axial force and we are interested in finding the
internal stresses and beam deflections. This requires to invert the above relations:

ū′1(x1) =
1

S
N1(x1) (8.9)

ū′′2(x1) =
Hc

23

∆H

M2(x1) +
H22

∆H

M3(x1) (8.10)

ū′′3(x1) = −H
c
33

∆H

M2(x1)− H23

∆H

M3(x1) (8.11)

With ∆H = Hc
22H

c
33 −Hc

23H
c
23.
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The stresses can then be written as:

σ11 = E

[
N1

S
+ x3

Hc
33M2 +Hc

23M3

∆H

− x2
Hc

23M2 +Hc
22M3

∆H

]
(8.12)

which can be rearranged in a more useful form as:

σ11 = E

[
N1

S
− x2H

c
23 − x3H

c
33

∆H

M2 −
x2H

c
22 − x3H

c
23

∆H

M3

]
(8.13)

8.1.2 Equilibrium equations

The equilibrium equations for the general beam theory we are developing will be derived with
the same considerations as we did in Section 7.3.2 with two modifications: 1) addition of
equilibrium of moments in the e2 direction, 2) contribution of the axial force. Figures 8.2(a)
and 8.2(b) show a free-body diagram of a beam slice subjected to both axial and transverse
loads in two orthogonal but otherwise arbitrary directions (i.e, the loading direction does
not necessarily match the principal axis of the cross section of the beam). The internal and
external loads are shown in preparation for enforcing equilibrium.

From figure 8.2(a) we obtain the following relations for the axial N1 and shear V2 forces,
and the bending moment M3 in the (e1,e2) plane:



dN1

dx1

= −p1(x1)

dV2

dx1

= −p2(x1)

dM3

dx1

+ V2 = x2ap1(x1)

(8.14)

From figure 8.2(b) we obtain the following relations for the axial N1 and shear V3 forces,
and the bending moment M2 in the (e1,e3) plane:



dN1

dx1

= −p1(x1)

dV3

dx1

= −p3(x1)

dM2

dx1

− V3 = −x3ap1(x1)

(8.15)

These equations can be combined by differentiating the moment equations and replacing
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Figure 8.2: Equilibrium in both, (e1,e2) and (e1,e3) planes of a beam slice subjected to axial
and transverse loads in general directions.

the shear force equations in them:

d2M3

dx2
1

=
d

dx1

(−V2 + x2ap1(x1))

= −dV2

dx1

+
d

dx1

(x2ap1(x1))

= p2(x1) +
d

dx1

(x2ap1(x1))

d2M2

dx2
1

=
d

dx1

(V3 − x3ap1(x1))

=
dV3

dx1

− d

dx1

(x3ap1(x1))

= −p3(x1)− d

dx1

(x3ap1(x1))

To summarize, the two equilibrium equations are:

d2M2

dx2
1

= −p3(x1)− d

dx1

(x3ap1(x1))

d2M3

dx2
1

= p2(x1) +
d

dx1

(x2ap1(x1))

(8.16)
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The main peculiarity in these equations is the appearance of the terms involving the axial
distributed force p1 multiplied by the operative moment arm. This is a direct result of the
fact that we cannot assume a priori that this force will be applied at the modulus-weighted
centroid and may, thus, produce a contribution to the bending moment.

8.1.3 Governing equations

Replacing the sectional constitutive laws from Section 8.1.1 into the equations from the
previous section, we obtain the governing equations:

(Su′1)
′
= −p1

(Hc
33u
′′
2 +Hc

23u
′′
3)
′′

= p2 + (x2ap1)′

(Hc
23u
′′
2 +Hc

22u
′′
3)
′′

= p3 + (x3ap1)′

(8.17)

Concept Question 8.1.2. Observe the governing equations and try to answer the following
questions:

1. What is the main difficulty in solving these equations compared to simple beam theory?
Solution: Clearly, the main problem in solving these equations is that they

constitute a coupled system of ODEs.

2. Can you think of any situations in which the solution of the fourth order coupled
system of ODEs can be avoided? Solution:
We can avoid solving the system when the beam problem is statically determinate. In
this case we can figure out the resultant force distribution from equilibrium exclusively
and we need only solve the second order equations for the sectional constitutive laws
in order to figure out the stresses and the deflections.

Boundary conditions When the system has to be solved, appropriate boundary condi-
tions must be provided. Depending on the type of idealization of the physical system, type
of support and loading, we can have a combination of imposed displacements, constrained
rotations, forces or moments, i.e.

u1 = u2 = u3 = 0 and u′2 = u′3 = 0 (8.18)


N1 = P1

V2 = P2 , V3 = P3

M3 = −x2aP1 , M2 = x3aP1

(8.19)

These can be written as a function of derivatives of the beam deflections. u1, u2 and u3:
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Figure 8.3: Cantilever beam with a L-shaped cross section.

Concept Question 8.1.3. bending of a beam with a L-shaped cross section. Let us consider
a cantilever beam with a L-shaped cross section as depicted in Figure 8.3. It is assumed that
the beam is made of a linear homogeneous material, in this context fully described by its
Young’s modulus E = 2× 1011 GPa. The cross section of the beam is 0.1 m wide and high
(b); its thickness, t, is equal to 2 mm, and, its length, l, is equal to 2 m. A load P of 200 N
is applied at the free-end of the beam, more precisely at C, it modulus-weighted centroid.

1. Compute the coordinates (xc2, x
c
3) of the modulus weighted centroid of the section with

respect to the origin O. Solution: We use (8.5) for which we need to compute the
axial stiffness (S) of the cross section:

S = Et(b− t)︸ ︷︷ ︸
e2 beam

+ Etb︸︷︷︸
e3 beam

≈ 2Etb

as well the first moments of area w.r.t to e3 (S2) and e2 (S3) which are equal due to
the symmetry of the cross section:

S2 =

∫
A

Ex2dA = Et

∫ b−t

0

x2dx2︸ ︷︷ ︸
e2 beam

+Eb

∫ b

b−t
x2dx2︸ ︷︷ ︸

e3 beam

=
Et

2
(b− t)2 +

Eb

2

(
b2 − (b− t)2) ≈ Etb2

2
+ Etb2 =

3Etb2

2

Hence, the coordinates of the centroid are:

xc2 =
S2

S
=

3Etb2

2
2Etb

=
3b

4
= xc3



8.1. BEAMS LOADED BY TRANSVERSE LOADS IN GENERAL DIRECTIONS 185

2. Compute the bending stiffnesses in the coordinate system (xc2, x
c
3). Solution: We

use the relations given in Table 8.1:

Hc
33 =

∫
A

E(x2 − xc2)2dA = Et

∫ b−t

0

(x2 − xc2)2dx2︸ ︷︷ ︸
e2 beam

+Eb

∫ b

b−t
(x2 − xc2)2dx2︸ ︷︷ ︸
e3 beam

= Et

∫ b
4
−t

− 3b
4

x2
2dx2 + Eb

∫ b
4

b
4
−t
x2

2dx2

=
Et

3

((
b

4
− t
)3

+

(
3b

4

)3
)

+
Eb

3

((
b

4

)3

−
(
b

4
− t
)3
)

≈ Et

3

(
b3

64
+

27b3

64

)
+
Eb

3

(
b3

64
− b3

64
+

3tb2

16

)
= Etb3

(
7

48
+

3

48

)
=

5

24
Etb3

Hc
33 = Hc

22 =
5

24
Etb3

Hc
23 =

∫
A

E(x2 − xc2)(x3 − xc3)dA

= E

∫ b
4
−t

− 3b
4

x2dx2

∫ b
4

b
4
−t
x3dx3︸ ︷︷ ︸

e2 beam

+E

∫ b
4
−t

b
4
−t

x2dx2

∫ b
4

− 3b
4

x3dx3︸ ︷︷ ︸
e3 beam

=
E

4

((
b

4
− t
)2

− 9b2

16

)
︸ ︷︷ ︸

− b2
2

(
b2

16
−
(
b

4
− t
)2
)

︸ ︷︷ ︸
tb
2

+
E

4

(
b2

16
−
(
b

4
− t
)2
)

︸ ︷︷ ︸
tb
2

(
b2

16
− 9b2

16

)
︸ ︷︷ ︸

− b2
2

Hc
23 = −Etb

3

8

∆H = Hc
22H

c
33 −Hc

23H
c
23 =

(Etb3)2

36

3. Compute the maximum tensile and compressive stresses in the L-shaped cross section.
Solution: The maximum tensile and compressive stresses in the

cross section which at the clamped end of the cantilever beam because it is where the
moment M2 is maximum and equal to Pl. Because the load P at the free end of the
cantilever beam is applied at the modulus weighted centroid, the other resultants, M3

and N1 are null. Thus, making use of (8.13), σ11 is equal to:

σ11 = −Ex2H
c
23 − x3H

c
33

∆H

Pl

The maximum traction stress is found at point ( b
4
, b

4
) and the maximum compressive

stress is found at point ( b
4
,−3b

4
), both at the clamped end of the beam.
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tσ11 = EPl
b
4
H33 − b

4
H23

∆H

=
3Pl

h2t
.

cσ11 = −EPl
b
4
H33 + 3b

4
H22

∆H

= − 9Pl

2h2t
.

4. Determine the neutral axis orientation with respect to e2 Solution: The neutral
axes can be defined as the axes for which the stress σ11 = 0:

−Ex2H
c
23 − x3H

c
33

∆H

Pl = 0

The previous equation defines a line in the (C, ec2, e
c
3) defined by the equation: x2H

c
23−

x3H
c
33 = 0. Its orientation is thus given by the angle β defined as:

tan(β) =
H23

H33

⇒ β = −atan

(
3

5

)
= −30.964◦

8.1.4 Decoupling the problem

In section 8.1.1 we wrote both, the axial force N1 and the bending moments M2 and M3

as a function of the axial and bending sectional stiffnesses S, S2, S3, H22, H33, H23. These
relations were simplified if we referred all our coordinates to the modulus-weighted centroid
of the cross section, in which case S2 = 0 and S3 = 0). From the equations of equilibrium
obtained in section 8.1.2 we obtain the following matrix system:

N1(x1)
M2(x1)
M3(x1)

 =

 S 0 0
0 Hc

22 −Hc
23

0 −Hc
23 Hc

33


u′1(x1)
−u′′3(x1)
u′′2(x1)

 (8.20)

Here, we have a partially uncoupled problem. Indeed, the axial force is only related to the
first derivative of the displacement along the e1 direction but the displacement components
u2 and u3 are coupled because of the presence of the non-zero cross bending stiffness H23. In
order to solve the partially uncoupled problem, the main idea is to determine the directions
that the axis of the beam should match in order to the problem to be fully uncoupled. In
other words, we want the matrix in equation 8.20 to be diagonal, without any coupling term
which leads to:

Hc
23 =

∫
A(x1)

Ex2x3dA = 0 (8.21)
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which also defines the principal centroidal axes of bending. For that purpose, we determine
the reference frame (denoted with a ∗ in the following) where the matrix is diagonal, also
well-known as principal directions, and define the components of the diagonal matrix which
are the principal/eigen values. Of note, the obtained diagonal matrix will satisfy the two
equilibrium relations in equation 8.16.

Concept Question 8.1.4. Decoupled constitutive laws. Let’s consider the associated fully
decoupled problem where the matrix in equation 8.20 is diagonal and written as a function
of S∗, Hc∗

22 and Hc∗
33 as follows:  S∗ 0 0

0 Hc∗
22 0

0 0 Hc∗
33

 (8.22)

Write the constitutive laws (expression of axial stress distribution σ11) for this fully
decoupled problem as a function of S∗, Hc∗

22 and Hc∗
33. Solution:

u′∗1 =
N∗1
S∗

, u′′∗2 =
M∗

3

Hc∗
33

, u′′∗3 = −M
∗
2

Hc∗
22

hence, the corresponding axial stress distribution reads:

σ∗11 = E

(
N∗1
S∗

+ x∗3
M∗

2

Hc∗
22

− x∗2
M∗

3

Hc∗
33

)

Concept Question 8.1.5. Decoupled governing equations. For the same fully decoupled
problem as above, write the three governing equations as a function of S∗, Hc∗

22 and Hc∗
33.

Solution: For the axial force, the first relation of equation 8.17 is written as follows:

d

dx∗1

(
S∗u

′

1

)
= −p∗1

For the bending moment M2, the second relation of equation 8.17 is written as follows:

d2

dx∗21

(Hc∗
33u
′′∗
2 ) = p∗2 +

d

dx∗1
(x∗2ap

∗
1)

For the bending moment M3, the third relation of equation 8.17 is written as follows:

d2

dx∗21

(Hc∗
22u
′′∗
3 ) = p∗3 +

d

dx∗1
(x∗3ap

∗
1)
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Concept Question 8.1.6. Principal centroidal axes of bending. We consider the fully de-
coupled problem associated with the diagonal matrix in equation 8.22. Herein, the centroidal
axes of bending, also defined as the reference frame, correspond to the principal direction of
the diagonal matrix. In this exercise we want to determine both the principal directions and
the eigen values S∗, Hc∗

22 and Hc∗
33.

Show that S∗ = S and that leads to diagonalize a 2× 2 matrix you specify.
Solution: Herein, the non-diagonal 3× 3 matrix in equation 8.20 is

partially diagonal and S is an eigen value, hence S∗ = S. This matrix can be diagonalized
by diagonalizing the following 2× 2 sub-matrix:[

Hc
22 −Hc

23

−Hc
23 Hc

33

]

Using either the general formulae of the diagonalization of a 2× 2 matrix or the Mohr’s
circle relations, to define an expression for both the eigen values and the principal directions.

Solution: By definition, any point on the centroidal axis of bending are such that
Hc

23 = 0. The orientation (α) of the centroidal axes of bending is written as follows:

tan(2α) =
2Hc

23

Hc
33 −Hc

22

and the two eigen values reads:

Hc∗
22 =

Hc
33 +Hc

22

2
−∆ , Hc∗

33 =
Hc

33 +Hc
22

2
+ ∆

To summarize, solving a three-dimensional general beam problem consists in decoupling
the problem in three separate problems by expressing the compatibility equations, the consti-
tutive laws and the governing equations in the reference frame characterized by the principal
centroidal axes of bending. For that purpose, we follow the steps listed below:

• (i) Compute the centroid of the section using the equation 8.5

• (ii) Compute the bending stiffnesses in this axis system using the relations in the table
8.1

• (iii) Compute the orientation of the principal axes of bending using the equation 8.1.6

• (iv) Compute the principal bending stiffnesses using equation 8.1.6

8.2 Bending, shearing and torsion of shell beams

Readings: BC Chapter 8
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Figure 8.4: Semi-monocoque construction of a wing
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Aircraft and also some space structures are designed and built using a so-called semi-
monocoque structural concept. This essentially means that the structure is made of a shell
with stiffeners, as shown in Figure 8.4

We will idealize this section by assuming that (see Figure 8.5):

• the flanges and stringers carry only axial stresses σ11

• the skins and webs carry only shear stresses σ1s

Figure 8.5: Idealization of semi-monocoque structure as a shell beam

We will analyze the wing as a cantilevered beam under combined bending, shear and
torsion.

For bending we will assume general beam theory (Euler-Bernouilli hypotheses) with dis-
crete (point) area elements (flanges, stringers) defining the cross-section properties.

For torsion, we will also assume that the hypotheses of Saint Venant theory are applicable:
1) cross section shape is maintained (this requires rigid ribs space closely enough), 2) cross-
section is free to warp our of its plane.

The basic elements of the theory have been developed. The application is rich in details
which is best done by example.
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8.2.1 Single-cell shell beams

We first consider the case of single-cell beams.

Concept Question 8.2.1. Example - Single Cell Box-Beam Let’s consider a single cell box-
beam of length l = 2 m as depicted in Figure 8.2.1. The Young’s modulus of the material is
E. The beam is clamped at one end (at x1 = 0) and free at another end (at x1 = L) where
a concentrated load of 10, 000 N is prescribed at node 1.

1 2 3

6 5 4

(xc2, x
c
3)

b

10, 000N

e3

e2

e1

1.2mm

0.8mm

0.4mm

0.4mm

0.4mm

0.4mm

200mm 200mm

200mm

The surface areas of the stringers are:

A(1) = A(6) = 400mm2 and A(2) = A(3) = A(4) = A(5) = 200mm2

The remaining dimensions and skin thicknesses are shown in the figure.

1. Determine the moment M2, shear force V3 and torque T distributions along x1 from
equilibrium considerations. Solution: As we did in Unified, the resultant force
distribution is obtained by stating the equilibrium of a section of the beam where the
cut is made at any cross-section x1 and imposing

∑
F = 0 and

∑
M = 0.

∑
F3 = = 0

= 10, 000− V3



192 MODULE 8. GENERAL BEAM THEORY

V3 = 10, 000 N

and

M2 = −10, 000× (2− x1) N.m

T = −10, 000× d N.m

where d is a distance between the line of application of the load and the shear center
(to be defined soon.

2. Determine the position of the modulus-weighted centroid (xc2, xc3) (see figure 8.2.1).
Solution: Here, we determine the position of the modulus-weighted centroid using
equation 8.5 and taking (for example) node 6 as the initial origin of the coordinate
frame (any other point would be just as good).

xc2 =

∫
A
Ex2dA∫
A
EdA

=

∫
A
x2dA∫
A
dA

=

∑
A(i)x

(i)
2∑

A(i)
=

2× 200× 200 + 2× 200× 400

2× (400 + 200 + 200)

mm�2

���mm
= 150 mm

and

xc3 =

∫
A
Ex3dA∫
A
EdA

=

∫
A
x3dA∫
A
dA

=

∑
A(i)x

(i)
3∑

A(i)
= 100 mm

to summarize, we obtain:

(xc2, xc3) = (150 mm, 100 mm)

3. Determine the axial stress component σ11. For that purpose you will (i) determine
the relation between σ11 and the deformation ε11 hence the displacement u1, then
(ii) determine the relation between the displacement u1 and the axial and bending
stiffnesses, and (iii) determine the values of the stiffnesses. Solution: Here, the
axial stress is related to the axial strain using Hooke’s law:

σ11 = Eε11
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and from compatiblity relation we obtain the relation between the axial strain and the
displacement:

ε11 = u1,1 = u′1

and

u′1 = ū′1(x1)− x3ū
′′
3(x1)− x2ū

′′
2(x1)

since there is no axial force and no bending with respect to e3 due to the symmetry of
the beam, we have:

u′1 = −x3ū
′′
3(x1)

so

σ11 = −Ex3ū
′′
3(x1)

and

ū′′3(x1) = −M2

Hc
22

Finally

σ11 =
EM2x3

Hc
22

(8.23)

Let’s calculate Hc
22

Hc
22 =

∫
A

Ex2
3dA

= E
∑

A(i)x2
3

= E
(

(x
(1)
3 )2A(1) + (x

(6)
3 )2A(6) + (x

(2)
3 )2A(2) + (x

(5)
3 )2A(5) + (x

(3)
3 )2A(3) + (x

(4)
3 )2A(4)

)
= E

(
2× (x

(1)
3 )2A(1) + 2× (x

(2)
3 )2A(2) + 2× (x

(3)
3 )2A(3)

)
= E

(
2× 1002 × 400 + 2× 1002 × 200 + 2× 1002 × 200

)
= E × 16× 106 mm4 = E × 16× 10−6 × m4

at a given cross-section (x1) we obtain at joints 1, 2 and 3:

σ11 = −10, 000× (2− x1)

16× 10−6
× 0.1Pa

= −62.5× (2− x1) MPa

and at joints 4, 5 and 6:

σ11 = −10, 000× (2− x1)

16× 10−6
× (−0.1)Pa

= 62.5× (2− x1) MPa
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4. Shear stresses. Considering that the skin elements of the box beam are very thin, what
assumption can we make about the shear stress state through the thickness of any of
the skin elements? Solution: It is reasonable to assume that
the shear stress σ1s is uniform through the thickness and aligned with the direction s
of each skin element.

5. In order to study the effect of the shearing force in the shell-beam, it is convenient to
introduce the notion of the shear flow, f , as we did in torsion theory (at that point we
use the symbol q for the shear flow, we are changing it for consistency with Bauchau’s
book):

f (i) = σ
(i)
1s t (8.24)

Draw the different shear flows in each of the skin elements on a section of the shell-
beam. Solution: The flows are shown in Figure 8.6.

6

1

5 4

2 3

f (5) f (4)

f (1) f (2)

f (6) f (3)

Figure 8.6: Shear flows in any section of the box-beam.

6. Write an equation of equilibrium relating the shear flows f (1), f (6) adjacent to joint 1
by considering the variation of the axial stress force n

(1)
1 = σ

(1)
11 A

(1) along the axis e1

(the small caps denotes that this is not the total axial force in the cross section but
just on this stiffener). Solution: Let us consider an elementary slice of size
dx1 around joint 1 as depicted in Figure 8.7. It is worth noting at this point, that the
following assumptions are implicitly made in this schematic:

• Stringe carries axial load,

• Skin carries shear flow.

Writing the equilibrium of forces along the axis e1 leads to the following expression:

− n(1)
1 + n

(1)
1 + n

(1)′
1 dx1 + f (1)dx1 − f (6)dx1 = 0 (8.25)

which further simplifies:

− n(1)′
1 = f (1) − f (6) (8.26)
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1
dx1f (1)

f (1)

f (6)

f (6)

n
(1)
1 + n

(1)′
1 dx1

n
(1)
1

e1

Figure 8.7: Equilibrium of joint 1

This expression can be further generalized to more complex joints with any number of
converging skin elements to:

− n(1)′
1 = f (out) − f (in) (8.27)

Note that in the above expression, the angle formed by the two skins at the joint don’t
matter!

7. Show from the previously derived equilibrium equation that a joint equation of the
following form:

f (out) − f (in) = −Q2V3

Hc
22

(8.28)

can be established where Q2 = EAx3 is the modulus-weighted first moment of area
about e2. Solution: Replacing in (8.26) the expression of the axial resultant n1

in terms of the axial stress gives:

f (out) − f (in) = −(Aσ11)′ = −Aσ′11 (8.29)

We then make use of (8.23) and re-write the previous expression:

fout − fin = −(Aσ11)′ = −A
(
EM2x3

Hc
22

)′
= −AE

V3︷︸︸︷
M ′

2 x3

Hc
22

= −AEV3x3

Hc
22

= −AEx3︸ ︷︷ ︸
Q2

V3

Hc
22

8. Now the shear stresses arise due to reasons:

• Shear resultant V2 and V3

• Twisting moment T
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It is convenient to break up the analysis into two separate problems:

• “Pure shear”

• “Pure torsion”

The schematic of each problem is illustrated in Figures 8.8(a) and 8.8(b), where d is
the distance to the shear center.

6

1

5 4

2 3

f (5) f (4)

f (1) f (2)

f (6) f (3)

−V3

b

d

(a) “Pure Shear” (no twist)

6

1

5 4

2 3

f (5) f (4)

f (1) f (2)

f (6) f (3)Tb

(b) “Pure Torsion”

Figure 8.8: Convenient break up of the problem into two separate problems

Considering V3 = 10000N and T = −10000N × d, write the equilibrium equation for
each joint i of the “Pure Shear” problem, Figure 8.8(a).

Solution:

The equilibrium equation for each joint i is

f (out) − f (in) = −Q2V3

EI22

= −A
(i)x3

(i)V3

I22

,

where I22 =
∫
A
x2

3dA =
∑

iA
(i)x

(i)2
3 is the moment of inertia.

In this problem we have that x3
(i) = ±10cm and I22 = 2×4cm2×(10cm)2 +4×2cm2×

(10cm)2 = 1600cm4, which leads to

f (1) − f (6) = −4cm2 × 10cm× 10000N× 1

1600cm4
= −250N/cm

f (2) − f (1) = −2cm2 × 10cm× 10000N× 1

1600cm4
= −125N/cm

f (3) − f (2) = −2cm2 × 10cm× 10000N× 1

1600cm4
= −125N/cm

f (4) − f (3) = −2cm2 × (−10cm)× 10000N× 1

1600cm4
= 125N/cm

f (5) − f (4) = −2cm2 × (−10cm)× 10000N× 1

1600cm4
= 125N/cm

f (6) − f (5) = −4cm2 × (−10cm)× 10000N× 1

1600cm4
= 250N/cm
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9. Can you calculate the shear flows
{
f (i)
}
i=1,...,6

from the above system of equations?

Solution:

We cannot calculate the shear flows because we have 6 equations but only 5 are linearly
independent (any equation can be obtained from the sum of the others). We need an
additional equation.

10. An additional equation is obtained by the requirement of torque equivalence between
the externally applied torque and the internal torque provided by the shear flows. This
torque can be computed with respect to any point in the cross section not in the shear
center, i.e. in the line of application of the load for the first (pure shear problem).
Write the general equation and apply it to this problem Solution: The equation
for “torque equivalence” (it is the torque equilibrium) is given by∑

i

T (i) = Tapplied,

where T (i) are the internal torques produced by the shear forces in each skin and in
this problem Tapplied = −V3d. For convenience, we compute torque equivalence with
respect to the point where joint 6 is located (this eliminates the maximum number of
terms in the equation). However, any other point can be chosen as long as it is not
on the line in the direction of the load passing through the shear center. The internal
torques can be calculated as T (i) = f (i)l(i)d(i), where l(i) is the length in which the
shear flow in skin i f (i) is acting, and d(i) is the moment arm of skin i.

−f (1) × 20cm× 20cm− f (2) × 20cm× 20cm− f (3) × 20cm× 40cm = 10000N× d
−f (1) − f (2) − 2f (3) = 25N/cm2 × d.

11. The last equation to close the system is obtained by imposing the no twist condition.
From torsion theory for thin closed sections, we obtained that the torque-rate-of-twist
relation is given by ∮

∂Ω

τds = 2GαA.

Use this expression to obtain a generic equation to impose the no-twist condition in
closed shell-beams: Solution: For the case of “pure shear” the rate-of-twist is
zero (α = 0), which leads to∮

∂Ω

τds =

∮
∂Ω

f

t
ds = 0 =

∑
i

f (i)

t(i)
l(i).
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12. Specialize the no-twist condition to our problem:

Solution: We obtain:

f (1) × 20 cm

0.4 mm
+
f (2) × 20 cm

0.4 mm
+
f (3) × 20 cm

0.8 mm
+
f (4) × 20 cm

0.4 mm
+
f (5) × 20 cm

0.4 mm
+
f (6) × 20 cm

1.2 mm
= 0

or,

f (1) + f (2) +
1

2
f (3) + f (4) + f (5) +

1

3
f (6) = 0 (8.30)

13. Solve the system and obtain the six shear flows and the position of the shear center
for the case of pure shear.

Solution: A convenient approach to solve the system and obtain f (i), i = 1, ..., 6
and d is to start with the joint equilibrium equations, and express all f (i) in terms of
one, say f (1):

f (2) = f (1) − 125 N/cm

f (3) = f (2) − 125 N/cm = f (1) − 250 N/cm

f (4) = f (1) − 125 N/cm

f (5) = f (1)

f (6) = f (1) + 250 N/cm .

Placing into ’No Twist Condition’ (8.30) gives

f (1) + (f (1) − 125) +
1

2
(f (1) − 250) + f (1) − 125 + f (1) +

1

3
(f (1) + 250) = 0

which leads to

f (1) =
291.67

4.833
N/cm

= 60.345 N/cm .

As a result,
f (2) = f (1) − 125 = −64.655 N/cm

f (3) = −189.66 N/cm

f (4) = −64.655 N/cm

f (5) = 60.345 N/cm

f (6) = 310.34 N/cm .

Then Torque Boundary Condition (7)

f (1) + f (2) + 2f (3) = −25d
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can be written as

60.345− 64.655 + 2× (−189.66) = −25d ,

which gives
d = 15.345 cm = 0.15345 m.

14. Verify the solution by computing the resulting internal forces and comparing with the
external loads

Solution: Horizontal:

[(f (1) + f (2))− (f (4) + f (5))]× 20 cm (8.31)

=(f (1) + f (1) − 125− (f (1) − 125)− f (1))× 20 cm (8.32)

=0 (8.33)

Vertical:

(f (6) − f (3))× 20 cm (8.34)

=[f (1) + 250− (f (1) − 250)]× 20 cm (8.35)

=500 N/cm× 20 cm (8.36)

=10000 N . (8.37)

15. If the load were applied at the shear center, there would be no twist of the section.
However we still need to deal with the second part, “pure torsion”, which results from
translating the applied shear force from the point of application to the shear center.

Now that we know the location of the shear center, compute the torque produced by
the applied shear force:

Solution: T = −10000 N× d = −1534.5 Nm.

16. Write the equations of joint equilibrium for the case of pure torsion. Can you compute
the shear flows from these equations alone? What can you conclude about the shear
flows for the pure torsion case?

Solution: Since there is no shear, each equation becomes:

f (out) − f (in) = −Q2V3

I2

= 0 ,

When applied to all the joints, we obtain:

f (1) − f (6) = 0 ,

f (2) − f (1) = 0 ,

etc.



200 MODULE 8. GENERAL BEAM THEORY

We cannot determine the shear flows from internal equilibrium alone. We need the
relation with the externally applied torque.

The equations imply: f (1) = f (2) = f (3) = f (4) = f (5) = f (6), as we knew from torsion
theory.

17. Apply the Torque Boundary Condition and obtain an equation to close the system.
Use the fact that all the shear fluxes are the same to solve the system.

Solution:∑
i

T (i) = Tapplied .

Taking moments for example with respect to stringer (6),

−f (1)×(20 cm)×(20 cm)−f (2)×(20 cm)×(20 cm)−f (3)×(20 cm)×2(20 cm) = −1534.5

f (1) = ��−1534.5

��−4× (0.2 m)2
= 9590.5 N/m = 95.905 N/cm .

Note: Could also get above from Bredt’s formula f = σ1st = T
2A

, but the approach
shown is more general.

18. Draw schematics of the cross section with the numeric values and directions of the
shear flows obtained for the pure shear and pure torsion cases, then draw a diagram
for the combined flows. Interpret the results.

Solution: Figure 8.9 shows the schematics:

It can be seen that in the pure shear case the vertical shear flows are oriented in the
direction of the shear force and add up to it. The horizontal flows converge to joint 2
in the compressed part of the beam and diverge from node 5 in the part of the beam
under tension. For the case of pure torsion, the flows are as we saw for thin closed
sections: uniform and all oriented in the same direction. The full solution results from
adding up these two with no obvious orientation of the shear fluxes.

8.2.2 Multi-cell shell beams

When we have box beams with several close cells, a few different considerations are in order.

Concept Question 8.2.2. Consider the box beam but with an additional web (2 cell wing),
as illustrated in Figure 8.10

The thickness of the new web is 1.2 mm. Note that since the stringers have not changed,
the axial stresses due to bending remain exactly the same. For the analysis of the shear
stresses, we follow the ideas introduced in the problem for one cell, and we break up the
analysis into two separate problems: “pure shear” and “pure torsion”.
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6

1

5 4

2 3

60.3 64.7

60.3 64.7

310.3 189.7

10, 000

b

15.3

(a) “Pure Shear”

6

1

5 4

2 3

95.9 95.9

95.9 95.9

95.9 95.9
1534.5

b

(b) “Pure Torsion”

6

1

5 4

2 3

156.2 31.2

156.2 31.2

406.2 93.8

10, 000

b

1534.5

(c) Sum

Figure 8.9: Solutions for the “Pure Shear” case, the “Pure Torsion” case and the superpo-
sition of both cases.
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5 4
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f (1) f (2)

f (3)

f (4)f (5)

f (6) f (7)b

d

Figure 8.10: Box-beam with two cells
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1. Write the equilibrium equation for the joints for the “pure shear” problem. How many
unknowns and how many independent equations do you obtain?

Solution:

f (1) − f (6) = −4cm2 × 10cm× 10000N× 1

1600cm4
= −250N/cm

f (2) − f (1) − f (7) = −2cm2 × 10cm× 10000N× 1

1600cm4
= −125N/cm

f (3) − f (2) = −2cm2 × 10cm× 10000N× 1

1600cm4
= −125N/cm

f (4) − f (3) = −2cm2 × (−10cm)× 10000N× 1

1600cm4
= 125N/cm

f (5) + f (7) − f (4) = −2cm2 × (−10cm)× 10000N× 1

1600cm4
= 125N/cm

f (6) − f (5) = −4cm2 × (−10cm)× 10000N× 1

1600cm4
= 250N/cm

This system has 5 linearly independent equations and 7 unknowns shear flows
{
f (i)
}
i=1,...,7

2. Impose the torque boundary condition to obtain another equation. Are you any closer
to solving the system?

Solution:

− f (1) × 20cm× 20cm− f (2) × 20cm× 20cm

− f (3) × 20cm× 40cm + f (7) × 20cm× 20cm = 10000N× d
− f (1) − f (2) − 2f (3) + f (7) = 25N/cm2 × d.

We obtain an additional equation, but we also introduce a new unknown (the distance
to the shear center d), still two equations short.

3. Apply the no-twist condition for the special conditions of this problem. How many
equations do you get from this?

Solution: The no-twist condition must be satisfied for each individual cell. Thus,
we obtain two more equations, resulting in a system of 8 equations and 8 unknowns.

αFront =
1

2GAFront

∮
∂Ω

τds = 0.

αRear =
1

2GARear

∮
∂Ω

τds = 0.

Specializing the two no-twist condition to our problem

f (1) × 20cm

0.4mm
− f (7) × 20cm

1.2mm
+
f (5) × 20cm

0.4mm
+
f (6) × 20cm

1.2mm
= 0

f (1) − 1

3
f (7) + f (5) +

1

3
f (6) = 0
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f (2) × 20cm

0.4mm
+
f (3) × 20cm

0.8mm
+
f (4) × 20cm

0.4mm
+
f (7) × 20cm

1.2mm
= 0

f (2) +
1

2
f (3) + f (4) +

1

3
f (7) = 0

4. Solve the system of equations and obtain the shear flows for the pure shear problem.
Comment on the shear flow distribution of the two-cell vs the single-cell box beam

Solution: Solving the system of equations, we obtain

f (1) = −14.9254N/cm

f (2) = 5.5970N/cm

f (3) = −119.4030N/cm

f (4) = 5.5970N/cm

f (5) = −14.9254N/cm

f (6) = 235.0746N/cm

f (7) = 145.5224N/cm

d = 15.7463cm

If one compares the new distribution of shear flows with that of the single cell box
beam for the case of pure shear, we find that they are more evenly distributed.

5. Now consider the “Pure Torsion” problem, obtain the joint equilibrium equations. How
many equations and unknowns do you get?

Solution: Again, since there is no shear, we get the same equations with zero
right hand sides

f (1) − f (6) = 0

f (2) − f (1) − f (7) = 0

f (3) − f (2) = 0

f (4) − f (3) = 0

f (5) + f (7) − f (4) = 0

f (6) − f (5) = 0

As before, this system has 5 linearly independent equations and 7 unknown shear flows{
f (i)
}
i=1,...,7

.

6. Apply torque boundary condition Solution:

−f (1) − f (2) − 2f (3) + f (7) = −25N/cm2 × d = −393.6567,

where we use the shear center previously calculated.
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7. Since we expect to have twist due to the torque, what other kinematic condition would
make sense in this case? Apply it and show that this closes the system of equations

Solution: The applicable kinematic condition in this case is that the twist of
each cell has to be the same so that the assumptions for torsion are satisfied (sections
preserve their shape)

αFront = αRear
1

2GAFront

∮
∂Ω

τds =
1

2GARear

∮
∂Ω

τds

Specializing this condition to our problem

f (1) − 1

3
f (7) + f (5) +

1

3
f (6) = f (2) +

1

2
f (3) + f (4) +

1

3
f (7)

f (1) − f (2) − 1

2
f (3) − f (4) + f (5) +

1

3
f (6) − 2

3
f (7) = 0

8. Solve the system of equations for the pure torsion problem:

Solution: we obtain

f (1) = 101.0740N/cm

f (2) = 95.7543N/cm

f (3) = 95.7543N/cm

f (4) = 95.7543N/cm

f (5) = 101.0740N/cm

f (6) = 101.0740N/cm

f (7) = −5.3197N/cm

9. Add the shear flows for the pure shear and pure torsion problems to obtain the total
shear flows:

Solution:

f (1) = 86.1486N/cm

f (2) = 101.3514N/cm

f (3) = −23.6486N/cm

f (4) = 101.3514N/cm

f (5) = 86.1486N/cm

f (6) = 336.1486N/cm

f (7) = 140.2027N/cm
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10. Sketch the shear flows for both the pure shear and pure torsion cases as well as the
combined (full) solution to the problem.
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5 4

2 3
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5.614.9

253.1 145.7

10, 000

b

15.7

(a) “Pure Shear”

6

1

5 4

2 3
101.1 95.8

95.8

95.8101.1

101.1
5.3

393.7
b

(b) “Pure Torsion”
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5 4

2 3
116.0 90.2

215.2

90.2116.0

134.0 150.8

10, 000
393.7

b

(c) Sum

Figure 8.11: Solutions for the “Pure Shear” case, the “Pure Torsion” case and the superpo-
sition of both cases.

The same ideas are followed for wings composed by 3 or more cells.

8.2.3 Open-cell shell beams

Concept Question 8.2.3. Consider now an open section as the one illustrated in Figure
8.2.3

The computation of the axial stresses and deflections due to bending or axial loads is
done as before.

The computation of the shear stresses requires a few special considerations. Again, we
break up the analysis into two separate problems: pure shear and pure torsion.

1. Computation of the shear fluxes for the pure shear problem: Again, we assume in this
case that the shear force is applied on the shear center so that there is no twist. For
the open section of the figure
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Write the joint equilibrium equations and show that the shear fluxes in each skin can
solved for from these equations alone. Explain why this is the case.

2. Computation of the shear center location: Explain how you can determine this by
enforcing torque equivalence.

Solution: This can be done directly from the torque equivalence
between the internal torque produced by the shear fluxes and the torque produced by
the shear force acting at the shear center with respect to any point in the plane (not
passing through the shear center)

3. Solution of the pure torsion problem: Reflect on the nature of the shear stresses due to
torsion in the case of open vs closed cross sections (Remember the membrane analogy?).
Draw a sketch of the type of shear stress distribution in this case Does it make sense
to talk about shear flows in this case? Solution: From the membrane analogy for
open sections, we know that the shear stresses are linear through the thickness of the
skin:

σ1s =
2T

J
xt,

where J =
∑

i J
(i) = 1

3

∑
i l

(i)
(
t(i)
)3

is the structural stiffness and xts the coordinate
through the thickness normal to the direction s measured from the centerline of the
skin.

In this case, it doesn’t make sense to talk about shear flow (it is actually zero due to
symmetry of the shear stress diagram through the thickness)

The sketch is shown in Figure 8.12

4. Why is the open section a bad idea? Solution: as we saw in torsion, the
torsional stiffness of the open section is very small.
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Figure 8.12: Schematic of the computation of shear flows in the skins of an open-cell shell
beam for pure shear and shear stresses (no flows) for pure torsion. The resulting shear
stresses are obtained by adding up the two


