Rate Limiting:
1. What is it?
2. Where does it come from?
3. What is the effect?
4. What analysis tools can we apply?

Consider two systems:

(a) \(u_c \xrightarrow{1/Ts+1} u_1 \)
(b) \(u_c \xrightarrow{1/Ts+1} u_2 \)

System (a):

\(n_c = \frac{u_c}{n} \)
\(u_c = 3 \)
\(u_c = 2 \)
\(u_c = 1 \)

Output reaches 63% of input in \(T \) seconds regardless of amplitude of \(u_c \).

\[u_i = (1 - e^{-t/T})u_c \]
\[\dot{u}_i = \frac{1}{T} e^{-t/T}u_c \]
\(\dot{u}_{max} = |\dot{u}_i|_{t=0} = \frac{u_c}{T} \) increases as \(u_c \) goes up.

System (b):

\(u_{z, max} = \frac{2}{T} \)

Rise Time Depends on Amplitude of Input! NONLINEAR
1) A rate-limited actuator or device is one whose maximum rate of change or "slew rate" is limited to some maximum value.

2) Rate-limited systems are nonlinear — their behavior depends on the amplitude of their input or motion.

What causes rate limiting?

Usually an amplitude limit in a feedback system.

Example: Electric Servo (e.g., Futaba R/C Servo)

Step input on U_{com}: r/w_s.

w_s goes at max rate for much of the time.

U, U_{com}: Rate limited until this time.
That's why servo specs are given in terms of slew rate or time to travel 90° etc. → because a bandwidth specification is not appropriate.

What is the effect?

→ **Limits Bandwidth:**

 E.G.: Cannot achieve high frequency, high amplitude motion

 I.E. Aggressive lead compensation may fail.

 N.B. (a linear actuator model will not capture this problem)

Consider sinusoidal input to a rate limiter

INPUT:

\[U_c = A \sin \omega t \]
\[U_c = A \omega \cos \omega t \]
\[U_{c_{\text{max}}} = \frac{A \omega}{A} \]

Both amplitude & frequency effect max rate in a sinusoid!

OUTPUT:
Even if small-amplitude BW is high, system will "roll off" due to rate limits if amplitude is too large.

Smaller amplitude — follows perfectly $\mu = 1$

Larger amplitude — slightly lower μ, some delay

Larger still: 90° max phase lag, amplitude continues to decrease

Rate limit essentially limit bandwidth

Amplitude of input determines effective BW

First-order, Bandlimited System:

\[
\begin{align*}
|W/u_c| &= \frac{A_{uc}/RL}{2^0} \quad 5 \quad 2 \quad 1 \\
&\rightarrow \quad u_c \rightarrow \frac{U_c}{5 + u_c} \quad \text{RL} \quad u_o
\end{align*}
\]
This set of graphs is called a "describing function" → an amplitude-dependent transfer function between a sinusoidal input & the sinusoidal component of the output.

Analysis:
1. Assume appropriate bandwidth for expected input amplitudes
2. Check amplitudes/rates of servos for typical commands
3. Nonlinear simulation (simulink)