
16.31 Fall 2005
Lecture Presentation Mon 24-Oct-05 ver 1.0

Charles P. Coleman

October 24, 2005

TODAY

TODAY

Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- TODAY:
 - ◆ Controllability & Observability
 - ◆ Duality & Canonical Forms
- LEARNING OUTCOMES:
 - ◆ Perform controllability tests
 - ◆ Perform observability tests
 - ◆ Write a controllable realization
 - ◆ Write an observable realization
 - ◆ Write a controllable and observable realization
 - ◆ Perform pole placement
 - ◆ Design an observer and place observer eigenvalues
- References:
 - ◆ DeRusso et al.(1998), State Variables for Engineers, 6.1-6.6
 - ◆ Bélanger (1995), Control Engineering, 3.7.6

Controllability - Review

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

- Complete Controllability:
The system

$$\dot{x} = Ax + Bu$$

is said to be completely controllable if for $x(0) = 0$ and any given state x_1 there exists finite time t_1 and a piecewise continuous input $u(t)$, $0 \leq t \leq t_1$ such that $x(t_1) = x_1$.

- Complete controllability is equivalent to controllability to the origin in finite time

Controllability

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

- Complete controllability is equivalent to controllability to the origin in finite time
- Consider the following SISO system

$$x(t_1) = e^{At_1}x(0) + \int_0^{t_1} e^{A(t_1-\tau)}Bu(\tau) d\tau$$

$$0 = e^{At_1}x_0 + \int_0^{t_1} e^{A(t_1-\tau)}Bu(\tau) d\tau$$

$$e^{-At_1}0 = e^{-At_1} \left\{ e^{At_1}x_0 + \int_0^{t_1} e^{A(t_1-\tau)}Bu(\tau) d\tau \right\}$$

$$0 = x_0 + \int_0^{t_1} e^{-A\tau}Bu(\tau) d\tau$$

$$-x_0 = \int_0^{t_1} e^{-A\tau}Bu(\tau) d\tau$$

Controllability

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

■ Using the Cayley-Hamilton Theorem

$$\begin{aligned} -x_0 &= \int_0^{t_1} e^{-A\tau} Bu(\tau) d\tau \\ &= \int_0^{t_1} \{\alpha_0(\tau)I + \cdots + \alpha_{n-1}(\tau)A^{n-1}\} Bu(\tau) d\tau \\ &= \int_0^{t_1} \{\alpha_0(\tau)u(\tau)B + \cdots + \alpha_{n-1}(\tau)u(\tau)A^{n-1}B\} d\tau \\ &= (B \quad AB \quad \cdots \quad A^{n-1}B) \int_0^{t_1} \begin{pmatrix} \alpha_0(\tau)u(\tau) \\ \alpha_1(\tau)u(\tau) \\ \vdots \\ \alpha_{n-1}(\tau)u(\tau) \end{pmatrix} d\tau \end{aligned}$$

Controllability

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

■ Continuing

$$-x_0 = (B \ AB \ \dots \ A^{n-1}B) \int_0^{t_1} \begin{pmatrix} \alpha_0(\tau)u(\tau) \\ \alpha_1(\tau)u(\tau) \\ \vdots \\ \alpha_{n-1}(\tau)u(\tau) \end{pmatrix} d\tau$$

$$-x_0 = (B \ AB \ \dots \ A^{n-1}B) \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n-1} \end{pmatrix}$$

■ For controllability to the origin M_C must have full rank n

$$M_C = (B \ AB \ \dots \ A^{n-1}B)$$

Observability - Review

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

■ Complete Observability: The system

$$\dot{x} = Ax$$

$$y = Cx$$

is said to be completely observable if there is a $t_1 > 0$ such that knowledge of $y(t)$, for all t , $0 \leq t \leq t_1$, is sufficient to determine $x(0)$.

Observability

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Complete observability is the ability to determination of $x(0)$ in finite time
- Consider the following SISO system

$$\begin{aligned}x(t_1) &= e^{At_1}x(0) \\y(t_1) &= Cx(t_1)\end{aligned}$$

- Using the Cayley-Hamilton Theorem

$$\begin{aligned}y(t_1) &= Cx(t_1) \\&= C \{ \alpha_0(t_1)I + \cdots + \alpha_{n-1}(t_1)A^{n-1} \} x_0 \\&= \{ \alpha_0(t_1)C + \cdots + \alpha_{n-1}(t_1)CA^{n-1} \} x_0\end{aligned}$$

Observability

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

■ Continuing

$$\begin{aligned} y(t_1) &= \{\alpha_0(t_1)C + \cdots + \alpha_{n-1}(t_1)CA^{n-1}\} x_0 \\ &= (\alpha_0(t_1) \quad \alpha_1(t_1) \quad \cdots \quad \alpha_{n-1}(t_1)) \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} x_0 \end{aligned}$$

■ For observability of x_0 M_O must have full rank n

$$M_O = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

Similarity Transformations

TODAY
Controllability
Observability
Transformations

Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Similarity transformations $x = Mq$ do not change controllability or observability.

$$\overline{A} = M^{-1}AM \quad \overline{B} = M^{-1}B \quad \overline{C} = CM$$

$$\begin{aligned}\overline{M_C} &= \begin{pmatrix} \overline{B} & \overline{AB} & \dots & \overline{A}^{n-1}\overline{B} \end{pmatrix} \\ &= M^{-1} \begin{pmatrix} B & AB & \dots & A^{n-1}B \end{pmatrix}\end{aligned}$$

$$\overline{M_O} = \begin{pmatrix} \overline{C} \\ \overline{CA} \\ \vdots \\ \overline{CA}^{n-1} \end{pmatrix} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} M$$

- Since M has full rank n , $\overline{M_C}$ and $\overline{M_O}$ also have rank M_C and M_O , respectively.

Duality

TODAY

Controllability

Observability

Transformations

Duality

Canonical Forms

Controller Form

Observer Form

Properties-Duality

Controller

Observer

Error Dynamics

Observer

Design Duality

Comments

NEXT

- The dual of the primal LTI system

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

is given by

$$\dot{z} = A^T z + C^T v$$

$$w = B^T z$$

- Duality can be used to reduce the amount of work needed to prove properties of controllability and observability. It is also useful in the design of controllers and observers.

Duality

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

■ Controllability of the Dual System

$$\begin{aligned}\dot{z} &= A^T z + C^T v \\ w &= B^T z\end{aligned}$$

$$\begin{aligned}M_C &= (C^T \quad A^T C^T \quad \dots \quad (A^{n-1})^T C^T) \\ M_C^T &= \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}\end{aligned}$$

- The primal LTI system is completely observable iff its dual is completely controllable.
- The primal LTI system is completely controllable iff its dual is completely observable.

Canonical Forms

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Two similarity transformations $x = M_{CC} q$ and $x = M_{OC} q$ are useful for designing SISO controllers and observers.

$$G(s) = C(sI - A)^{-1}B$$

$$G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \cdots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_{n-1} s + a_n}$$

$$M_{CC} = (A^{n-1}B \ A^{n-2}B \ \cdots \ B) \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ a_1 & 1 & \cdots & \vdots & \vdots \\ a_2 & a_1 & \cdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \end{pmatrix}$$

Canonical Forms

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Two similarity transformations $x = M_{CC}q$ and $x = M_{OC}q$ are useful for designing (SISO) controllers and observers.

$$G(s) = C(sI - A)^{-1}B$$
$$G(s) = \frac{b_1s^{n-1} + b_2s^{n-2} + \cdots + b_{n-1}s + b_n}{s^n + a_1s^{n-1} + a_2s^{n-2} + \cdots + a_{n-1}s + a_n}$$

$$M_{OC}^{-1} = \begin{pmatrix} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_2 & a_1 & \cdots & \vdots & \vdots \\ a_1 & 1 & \cdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix} \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

Controller Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- The transformation $x = M_{CC} q$ leads to
- Controller Canonical Form

$$A_C = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & & \vdots & \\ -a_n & -a_{n-1} & \cdots & \cdots & -a_2 & -a_1 \end{pmatrix} \quad B_C = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

$$C_C = (b_n \quad b_{n-1} \quad \cdots \quad b_2 \quad b_1)$$

- where the coefficients are obtained from

$$G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \cdots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_{n-1} s + a_n}$$

- NB: Other authors will write this canonical form differently, but the forms are equivalent!

Observer Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- The transformation $x = M_{OC} q$ leads to
- Observer Canonical Form

$$A_O = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix} \quad B_O = \begin{pmatrix} b_n \\ b_{n-1} \\ \vdots \\ b_2 \\ b_1 \end{pmatrix} \quad C_O = (0 \quad \cdots \quad 0 \quad 1)$$

- where the coefficients are obtained from

$$G(s) = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \cdots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \cdots + a_{n-1} s + a_n}$$

- NB: Other authors will write this canonical form differently, but the forms are equivalent!

Canonical Form Properties

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form

Properties-Duality

Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Controller and Observer Canonical Form state space realizations are minimal.
- Duality - Controller and Observer Forms and Dual

$$A_O = A_C^T \quad B_O = C_C^T \quad C_O = B_C^T$$

- Controllable canonical form is completely observable (duality!)
- Observer canonical form is completely controllable (duality!)

Controller using Controllable Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller

Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Controllers can be easily specified using controller canonical form
- Consider the following system (in controllable canonical form!)

$$A = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad C = [b_1 \ b_2 \ b_3]$$

- It's characteristic equation is
$$\det(sI - A) = s^3 + a_1s^2 + a_2s + a_3 = 0$$

Controller using Controllable Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality

Controller

Observer
Error Dynamics
Observer

Design Duality
Comments

NEXT

- Apply state feedback control $u = -Kx$ to modify the system behavior. $A_{cl} = A - BK$

$$\begin{aligned} A - BK &= \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \\ &= \begin{bmatrix} -a_1 - k_1 & -a_2 - k_2 & -a_3 - k_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{aligned}$$

- The new characteristic equation for the system is

$$\begin{aligned} \Phi_{cl}(s) &= \det(sI - A_{cl}) \\ &= s^3 + (a_1 + k_1)s^2 + (a_2 + k_2)s + (a_3 + k_3) = 0 \end{aligned}$$

Controller using Controllable Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality

Controller

Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- This process is called pole placement.
- We will choose feedback gains K

$$K = [\ k_1 \ k_2 \ k_3 \]$$

such that we get the characteristic equation of the desired closed-loop pole locations.

$$\Phi_{cl}(s) = s^3 + (a_1 + k_1)s^2 + (a_2 + k_2)s + (a_3 + k_3) = 0$$

$$\Phi_d(s) = s^3 + (\alpha_1)s^2 + (\alpha_2)s + (\alpha_3) = 0$$

- In this case

$$\left. \begin{array}{l} a_1 + k_1 = \alpha_1 \\ \vdots \\ a_n + k_n = \alpha_n \end{array} \right\} \begin{array}{l} k_1 = \alpha_1 - a_1 \\ \vdots \\ k_n = \alpha_n - a_n \end{array}$$

Observer Using Observer Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Observers can be easily specified using observer canonical form
- Suppose we can measure the output y but wish to apply full state feedback $u = -Kx$ to modify the behavior of our system.
- If we do not measure all of the states x we need to create an estimate for x .
- We could build a parallel system and create an estimated state \tilde{x} and perhaps feedback the ouput error $y - \tilde{y}$ to improve the state estimate.

$$\begin{aligned}\dot{\tilde{x}} &= A\tilde{x} + Bu + L(y - \tilde{y}) \\ \tilde{y} &= C\tilde{x} + Du\end{aligned}$$

Observer Error Dynamics

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer

Error Dynamics

Observer
Design Duality
Comments

NEXT

- The state observer error dynamics $e(t) = x - \tilde{x}$ are given by

$$\begin{aligned}\dot{e}(t) &= \dot{x} - \dot{\tilde{x}} \\ &= (Ax + Bu) - (A\tilde{x} + Bu + L(y - \tilde{y})) \\ &= (Ax + Bu) - (A\tilde{x} + Bu + L(Cx - C\tilde{x})) \\ &= A(x - \tilde{x}) + Bu - Bu - LC(x - \tilde{x}) \\ &= (A - LC)e\end{aligned}$$

- The estimated error $e(t) = \exp^{(A-LC)t} e(0)$ goes to zero if $(A - LC)$ is asymptotically stable.
- Can we choose observer gains L to make this so?
- Choosing these gains is easy using Observer Canonical Form

Observer Using Observer Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Consider the following system (in observer canonical form!)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Calculating $(A - LC)$

$$A - LC = \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} - \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Observer Using Observer Canonical Form

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

■ Calculating $(A - LC)$

$$\begin{aligned} A - LC &= \begin{bmatrix} -a_1 & 1 & 0 \\ -a_2 & 0 & 1 \\ -a_3 & 0 & 0 \end{bmatrix} - \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} -a_1 - l_1 & 1 & 0 \\ -a_2 - l_2 & 0 & 1 \\ -a_3 - l_3 & 0 & 0 \end{bmatrix} \end{aligned}$$

■ The closed-loop poles of the estimator are at the roots of

$$\det[sI - (A - LC)] = s^3 + (a_1 + l_1)s^2 + (a_2 + l_2)s + (a_3 + l_3) = 0$$

■ So we can make the observer error to zero as quickly as we'd like! (Trade-offs?)

Design Duality

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Note that the poles of $(A - LC)$ and $(A - LC)^T$ are identical.
- Also we have that $(A - LC)^T = A^T - C^T L^T$
- So designing L^T for this transposed system looks like finding feedback gains K for the controller problem $(A - BK)$ where

$$\begin{aligned} A &\Rightarrow A^T \\ B &\Rightarrow C^T \\ K &\Rightarrow L^T \end{aligned}$$

- Hence we have a duality in the design of controllers and observers

Comments

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments
NEXT

- Controllability implies that we can design a controller applying state feedback control $u = -Kx$ to modify all of the system responses to our liking.
- Observability will implies that we can design a state observer using observer gains L to observe all of the states of the system that we do not measure.
- The number of states which are both controllable and observable is the same as the order of the transfer function. (Kalman Decomposition)
- A realization that is minimal is always both controllable and observable. (Canonical Forms)

Comments

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments

NEXT

- If we don't have controllability we might at least want stabilizability.
- If we can't have observability we might at least want detectability.
- If some states are measured, we might not have to build a full order state observer.

NEXT

TODAY
Controllability
Observability
Transformations
Duality
Canonical Forms
Controller Form
Observer Form
Properties-Duality
Controller
Observer
Error Dynamics
Observer
Design Duality
Comments

NEXT

■ NEXT:

- ◆ (Done) Lyapunov stability
- ◆ (Done) Controller and Observer Canonical Forms, & Minimal Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
- ◆ Kalman's Canonical Decomposition (DeRusso, 4.3 pp 200-203, 6.8; Belanger, 3.7.4)
- ◆ Full state feedback & Observers (DeRusso, Chap 7; Belanger, Chap 7)
- ◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4)
- ◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
- ◆ Robustness & Performance Limitations (Various)