

---

**16.31 Fall 2005**  
**Lecture Presentation Wed 26-Oct-05 ver 1.1**

Charles P. Coleman

October 27, 2005



# TODAY

TODAY

CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

## ■ TODAY:

- ◆ Canonical Forms & Duality
- ◆ Kalman Decomposition & Duality

## ■ LEARNING OUTCOMES:

- ◆ Perform pole placement
- ◆ Design an observer and place observer eigenvalues
- ◆ Calculate canonical decompositions
- ◆ Identify controllable/observable subspaces
- ◆ Perform a Kalman decomposition and reason about it
- ◆ Write a controllable realization
- ◆ Write an observable realization
- ◆ Write a controllable and observable realization

## ■ References:

- ◆ DeRusso et al.(1998), State Variables for Engineers, 6.5, 6.7-6.6
- ◆ Bélanger (1995), Control Engineering, 7.5
- ◆ Ogata (1994),Designing Linear Control Systems with Matlab, 2-2



## Use of Controller Canonical Form - Pole Placement

TODAY  
CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- For the system below, find the gains  $K$  to shift the eigenvalues of  $A$  to  $-1$  and  $-10$

$$A = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad C = \begin{pmatrix} -1 & 2 \end{pmatrix}$$

- Verify that the system is completely controllable

$$(B \quad AB) = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$

- Calculate the transfer function

$$\begin{aligned} G(s) &= C(sI - A)^{-1}B \\ &= (-1 \quad 2) \begin{pmatrix} s+2 & 0 \\ 0 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ G(s) &= \frac{s+1}{s^2+5s+6} = \frac{b_1s+b_2}{s^2+a_1s+a_2} \end{aligned}$$



## Use of Controller Canonical Form

TODAY

CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- Use the transfer function to find the controller canonical form

$$A_C = \begin{pmatrix} 0 & 1 \\ -a_2 & -a_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix} \quad B_C = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C_C = \begin{pmatrix} b_2 & b_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

- The closed-loop  $\Phi_{cl}(s)$  and desired poles  $\Phi_d(s)$  are given by

$$\Phi_{cl}(s) = s^2 + (5 + k_{2C})s + (6 + k_{1C})$$

$$\Phi_d(s) = s^2 + 11s + 10$$

- The canonical form controller gains  $K_C$  are found using

$$k_{2C} = 11 - 5 = 6$$

$$k_{1C} = 10 - 6 = 4$$

$$K_C = (4 \quad 6)$$



## Use of Controller Canonical Form

TODAY

CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- The controller gains for the orginal system are given by

$$K = K_C M_{CC}^{-1}$$

$$\begin{aligned} M_{CC} &= (AB \quad B) \begin{pmatrix} 1 & 0 \\ a_1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \end{aligned}$$

$$M_{CC}^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$\begin{aligned} K &= K_C M_{CC}^{-1} \\ &= (4 \quad 6) \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \end{aligned}$$

$$K = (-8 \quad 14)$$



## Use of Controller Canonical Form

TODAY

CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- Directly trying to find the controller gains we find

$$\begin{aligned}(A - BK) &= \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} k_1 & k_2 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} - \begin{pmatrix} k_1 & k_2 \\ k_1 & k_2 \end{pmatrix} \\ &= \begin{pmatrix} -(2 + k_1) & -k_2 \\ -k_1 & -(3 + k_2) \end{pmatrix} \\ \det(sI - (A - BK)) &= \det \begin{pmatrix} s + (2 + k_1) & k_2 \\ k_1 & s + (3 + k_2) \end{pmatrix} \\ &= [s + (2 + k_1)][s + (3 + k_2)] - k_1 k_2\end{aligned}$$

- Easy for  $2 \times 2$ .
- For large  $n$ , very simple if in controller canonical form.



## Observer Canonical Form

TODAY  
CC Form  
OC Form

Ackerman's Formula  
Decomposition  
Comments  
NEXT

- For the system below, find observer gains  $L$  to shift the observer eigenvalues to  $-3$  and  $-30$

$$A = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad C = \begin{pmatrix} -1 & 2 \end{pmatrix}$$

- Verify that the system is completely observable

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 2 & -6 \end{pmatrix}$$

- What do we do next? Duality!
- Find gain matrix  $B$  to place poles at  $-3$  and  $-30$ .

$$\begin{aligned} A &\Rightarrow A^T \\ B &\Rightarrow C^T \\ K &\Rightarrow L^T \end{aligned}$$



## Observer Canonical Form - Duality

TODAY  
CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- Find gain matrix  $B$  to place poles at -3 and -30.

$$A \Rightarrow A^T$$

$$B \Rightarrow C^T$$

$$K \Rightarrow L^T$$

$$A = A^T = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} \quad B = C^T = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

- This (dual) system is completely controllable

$$(B \ AB) = \begin{pmatrix} -1 & 2 \\ 2 & -6 \end{pmatrix}$$

$$(C^T \ A^T C^T) = \begin{pmatrix} C \\ CA \end{pmatrix}^T$$

- Proceed using controller canonical form?
- No! Use an alternative method of pole placement



## Ackerman's Formula (Cayley-Hamilton)

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition  
Comments  
NEXT

- The controlled system state equations are given by

$$\dot{x} = (A - BK)x = \hat{A}x$$

- The characteristic equation of the controlled system is

$$\begin{aligned}\det[sI - (A - BK)] &= \det(sI - \hat{A}) \\ \Phi_d(s) &= s^n + \alpha_n s^{n-1} + \cdots + \alpha_{n-1} s + \alpha_n\end{aligned}$$

- Cayley-Hamilton says  $\hat{A}$  satisfies its own characteristic equation.

$$\Phi_d(\hat{A}) = \hat{A}^n + \alpha_n \hat{A}^{n-1} + \cdots + \alpha_{n-1} \hat{A} + \alpha_n I = 0$$

- But we also have

$$\Phi_d(A) = A^n + \alpha_n A^{n-1} + \cdots + \alpha_{n-1} A + \alpha_n I \neq 0$$



## Ackerman's Formula (Cayley-Hamilton)

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition  
Comments

NEXT

- For the  $2 \times 2$  case of design of the observer gains  $L^T = B$

$$\begin{aligned}\Phi_d(\hat{A}) &= \hat{A}^2 + \alpha_1 \hat{A} + \alpha_2 I \\ &= (A - BK)^2 + \alpha_1(A - BK) + \alpha_2 I \\ &= (A^2 - ABK - BK\hat{A}) + \alpha_1(A - BK) + \alpha_2 I \\ &= (A^2 + \alpha_1 A + \alpha_2 I) - ABK - BK\hat{A} - \alpha_1 BK \\ &= \Phi_d(A) - ABK - BK\hat{A} - \alpha_1 BK \\ 0 &= \Phi_d(A) - ABK - BK\hat{A} - \alpha_1 BK \\ \Phi_d(A) &= ABK + BK\hat{A} + \alpha_1 BK \\ \Phi_d(A) &= B(K\hat{A} + \alpha_1 K) + AB(K) \\ \Phi_d(A) &= \begin{pmatrix} B & AB \end{pmatrix} \begin{pmatrix} \alpha_1 K + K\hat{A} \\ K \end{pmatrix}\end{aligned}$$



# Ackerman's Formula (Cayley-Hamilton)

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

## ■ Continuing the calculation

$$\Phi_d(A) = (B \ AB) \begin{pmatrix} \alpha_1 K + K \hat{A} \\ K \end{pmatrix}$$

$$M_C^{-1} \Phi_d(A) = \begin{pmatrix} \alpha_1 K + K \hat{A} \\ K \end{pmatrix}$$

## ■ We want the last row $K$

$$(0 \ 1) M_C^{-1} \Phi_d(A) = K$$

- This is Ackerman's formula for pole placement
- It does not require transformation to controller canonical form



## Ackerman's Formula - Pole Placement

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition  
Comments  
NEXT

- Continuing with the design of the observer gains
- Find gain matrix  $B$  to place poles at -3 and -30.

$$A = A^T = \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} \quad B = C^T = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

- The desired characteristic equation is

$$\Phi_d(s) = (s + 3)(s + 30) = s^2 + 33s + 90$$

- $\Phi_d(A)$  is given by

$$\Phi_d(A) = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} + 33 \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} + 90 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Phi_d(A) = \begin{pmatrix} 28 & 0 \\ 0 & 0 \end{pmatrix}$$



## Ackerman's Formula - Pole Placement

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition  
Comments  
NEXT

- $M_C$  and  $M_C^{-1}$  are given by

$$M_C = \begin{pmatrix} B & AB \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 2 & -6 \end{pmatrix}$$
$$M_C^{-1} = \begin{pmatrix} -3 & -1 \\ -1 & -1/2 \end{pmatrix}$$

- The observer gain matrix  $K = L^T$  is given by

$$K = \begin{pmatrix} 0 & 1 \end{pmatrix} M_C^{-1} \Phi_d(A)$$
$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} -3 & -1 \\ -1 & -1/2 \end{pmatrix} \begin{pmatrix} 28 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -1/2 \end{pmatrix} \begin{pmatrix} 28 & 0 \\ 0 & 0 \end{pmatrix}$$
$$K = \begin{pmatrix} 28 & 0 \end{pmatrix}$$



# Ackerman's Formula - Pole Placement

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

## ■ Check

$$K = L^T = \begin{pmatrix} 28 & 0 \end{pmatrix}$$

$$L = \begin{pmatrix} 28 \\ 0 \end{pmatrix}$$

$$\begin{aligned} A - LC &= \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} - \begin{pmatrix} 28 \\ 0 \end{pmatrix} \begin{pmatrix} -1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 0 \\ 0 & -3 \end{pmatrix} - \begin{pmatrix} -28 & 48 \\ 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -30 & 48 \\ 0 & -3 \end{pmatrix} \end{aligned}$$

- $(A - LC)$  is upper triangular. Eigenvalues on diagonal.
- Design goal achieved.



# Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
**Decomposition**  
Comments  
NEXT

- Not every state space realization is completely controllable or completely observable. Consider:

$$\dot{x}_1 = \lambda_1 x_1 + u$$

$$\dot{x}_2 = \lambda_2 x_2 + u$$

$$\dot{x}_3 = \lambda_3 x_3$$

$$\dot{x}_4 = \lambda_4 x_4$$

$$y = x_1 + x_3$$

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$C = (1 \ 0 \ 1 \ 0) \quad D = (0)$$



## Which States are Controllable?

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

- What does the controllability matrix tell us?

$$M_C = \begin{pmatrix} B & AB & A^2B & A^3B \end{pmatrix}$$
$$M_C = \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \lambda_1^3 \\ 1 & \lambda_2 & \lambda_2^2 & \lambda_2^3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- Only states  $x_1$  and  $x_2$  are controllable. (Range of  $M_C$ )



## Which States are Observable?

TODAY  
CC Form

OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- What does the observability matrix tell us?

$$M_O = (C \quad CA \quad CA^2 \quad CA^3)$$

$$M_O = \begin{pmatrix} 1 & 0 & 1 & 0 \\ \lambda_1 & 0 & \lambda_2 & 0 \\ \lambda_1^2 & 0 & \lambda_2^2 & 0 \\ \lambda_1^3 & 0 & \lambda_2^3 & 0 \end{pmatrix}$$

- Only states  $x_1$  and  $x_3$  are observable. (Range of  $M_O^T$ )

$$M_O^T = \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \lambda_1^3 \\ 0 & 0 & 0 & 0 \\ 1 & \lambda_1 & \lambda_1^2 & \lambda_1^3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$



# Kalman Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula

Decomposition

Comments

NEXT

- Combining these results:
  - ◆ Only states  $x_1$  and  $x_2$  are controllable. (Range of  $M_C$ )
  - ◆ Only states  $x_1$  and  $x_3$  are observable. (Range of  $M_O^T$ )
- Or restating these facts
  - ◆  $x_1$  is both controllable and observable ( $CO$ )
  - ◆  $x_2$  is controllable and unobservable ( $C\bar{O}$ )
  - ◆  $x_3$  is uncontrollable and observable ( $\bar{C}O$ )
  - ◆  $x_4$  is uncontrollable and unobservable ( $\bar{C}\bar{O}$ )
- We have just performed a Kalman Decomposition of the system into its fundamental controllable and observable subspaces.
- We need a theorem
- We need a general algorithm for performing decomposition



# Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

## THEOREM: (DeRusso, p 345)

- If the controllability matrix associated with  $(A, B)$  has rank  $n_1$  ( $n_1 < n$ ), then there exists a matrix  $P$  such that  $\bar{x} = Px$  that transforms the original system into

$$\begin{aligned}\begin{pmatrix} \dot{\bar{x}}^C \\ \dot{\bar{x}}^{\bar{C}} \end{pmatrix} &= \begin{pmatrix} \bar{A}_C & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{C}} \end{pmatrix} \begin{pmatrix} \bar{x}^C \\ \bar{x}^{\bar{C}} \end{pmatrix} + \begin{pmatrix} \bar{B}_C \\ 0 \end{pmatrix} u \\ y &= (\bar{C}_C \quad \bar{C}_{\bar{C}}) \begin{pmatrix} \bar{x}^C \\ \bar{x}^{\bar{C}} \end{pmatrix} + Du\end{aligned}$$

- where  $\bar{x}^C$  is  $n_1 \times 1$  and represents the states that are  $CO$ , and  $\bar{x}^{\bar{C}}$  is  $(n - n_1) \times 1$  and represents the states that are  $\bar{C}O$ .



# Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

- How do we find  $P$ ?
- Choose  $n_1$  linearly independent columns from

$$M_C = (B \ AB \ \dots \ A^{n-1}B)$$

- Place them in  $P^{-1}$

$$P^{-1} = \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \cdots & x_{n_1} \\ | & | & & | \end{pmatrix}$$

- Choose  $(n - n_1)$  other column vectors to make  $P^{-1}$  non-singular

$$P^{-1} = \begin{pmatrix} | & | & \cdots & | & | & & | \\ x_1 & x_2 & \cdots & x_{n_1} & v_1 & \cdots & v_{n-n_1} \\ | & | & \cdots & | & | & & | \end{pmatrix}$$



# Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

## ■ Example

$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u$$

## ■ Controllability matrix $M_C$

$$M_C = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

## ■ Place first column of $M_C$ into $P^{-1}$

$$P^{-1} = \begin{pmatrix} 1 & v_{11} \\ 1 & v_{12} \end{pmatrix}$$

## ■ Let $v = [1 \ 0]^T$

$$P^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$



# Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

## ■ Continuing

$$\dot{\bar{x}} = PAP^{-1}\bar{x} + PBu$$

$$\dot{\bar{x}} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \bar{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u$$

- Which has the desired (controllable) decomposition
- We have a similar result for observability



# Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

THEOREM: (DeRusso, p 348)

- If the observability matrix associated with  $(A, C)$  has rank  $n_2$  ( $n_2 < n$ ), then there exists a matrix  $P$  such that  $\bar{x} = Px$  that transforms the original system into

$$\begin{aligned}\begin{pmatrix} \dot{\bar{x}}^O \\ \dot{\bar{x}}^{\bar{O}} \end{pmatrix} &= \begin{pmatrix} \bar{A}_O & 0 \\ \bar{A}_{21} & \bar{A}_{\bar{O}} \end{pmatrix} \begin{pmatrix} \bar{x}^O \\ \bar{x}^{\bar{O}} \end{pmatrix} + \begin{pmatrix} \bar{B}_O \\ \bar{B}_{\bar{O}} \end{pmatrix} u \\ y &= (\bar{C}_O \ 0) x \begin{pmatrix} \bar{x}^O \\ \bar{x}^{\bar{O}} \end{pmatrix} + Du\end{aligned}$$

- where  $\bar{x}^O$  is  $n_2 \times 1$  and represents the states that are  $CO$ , and  $\bar{x}^{\bar{O}}$  is  $(n - n_2) \times 1$  and represents the states that are  $C\bar{O}$ .
- Proof? Duality!!



## Kalman's Decomposition

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

- In general, a realization can be partitioned into four subsets:
  1. States which are controllable and observable
  2. States which are controllable but unobservable
  3. States which are uncontrollable but observable
  4. States which are both uncontrollable and unobservable
- We will prove this result in Friday's lecture.



## Comments

TODAY  
CC Form  
OC Form

Ackerman's Formula

Decomposition

Comments

NEXT

- You now have used CC form to perform pole placement.
- You now have invoked duality and used Ackerman's formula to perform (full order) observer design.
- You've done one "eyeball" decomposition and have learned one formal way of calculating a Kalman decomposition
- You now know how to calculate a controllable state space realization and (partially) how to calculate an observable state space realization



## NEXT

TODAY  
CC Form  
OC Form  
Ackerman's Formula  
Decomposition  
Comments  
NEXT

### ■ NEXT:

- ◆ (Done) Lyapunov stability
- ◆ (Done) Controller and Observer Canonical Forms, & Minimal Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
- ◆ (Almost) Kalman's Canonical Decomposition (DeRusso, 4.3 pp 200-203, 6.8; Belanger, 3.7.4)
- ◆ (Some) Full state feedback & Observers (DeRusso, Chap 7; Belanger, Chap 7)
- ◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4)
- ◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
- ◆ Robustness & Performance Limitations (Various)