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■ TODAY:

◆ Canonical Forms & Duality
◆ Kalman Decomposition & Duality

■ LEARNING OUTCOMES:

◆ Perform pole placement
◆ Design an observer and place observer eigenvalues
◆ Calculate canonical decompositions
◆ Identify controllable/observable subspaces
◆ Perform a Kalman decomposition and reason about it
◆ Write a controllable realization
◆ Write an observable realization
◆ Write a controllable and observable realization

■ References:
◆ DeRusso et al.(1998), State Variables for Engineers, 6.5, 6.7-6.6

◆ Bélanger (1995), Control Engineering, 7.5

◆ Ogata (1994),Designing Linear Control Systems with Matlab, 2-2
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■ For the system below, find the gains K to shift the eigenvalues
of A to −1 and −10

A =

(

−2 0
0 −3

)

B =

(

1
1

)

C =
(

−1 2
)

■ Verify that the system is completely controllable

(

B AB
)

=

(

1 −2
1 −3

)

■ Calculate the transfer function

G(s) = C(sI − A)−1B

=
(

−1 2
)

(

s + 2 0
0 s + 3

)

−1 (

1
1

)

G(s) =
s + 1

s2 + 5s + 6
=

b1s + b2

s2 + a1s + a2
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■ Use the transfer function to find the controller canonical form

AC =

(

0 1
−a2 −a1

)

=

(

0 1
−6 −5

)

BC =

(

0
1

)

CC =
(

b2 b1

)

=
(

1 1
)

■ The closed-loop Φcl(s) and desired poles Φd(s) are given by

Φcl(s) = s2 + (5 + k2C)s + (6 + k1C)

Φd(s) = s2 + 11s + 10

■ The canonical form controller gains KC are found using

k2C = 11 − 5 = 6

k1C = 10 − 6 = 4

KC =
(

4 6
)
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■ The controller gains for the orginal system are given by

K = KC M−1

CC

MCC =
(

AB B
)

(

1 0
a1 1

)

=

(

−2 1
−3 1

) (

1 0
5 1

)

=

(

3 1
2 1

)

M−1

CC
=

(

1 −1
−2 3

)

K = KC M−1

CC

=
(

4 6
)

(

1 −1
−2 3

)

K =
(

−8 14
)
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■ Directly trying to find the controller gains we find

(A − BK) =

(

−2 0
0 −3

)

−

(

1
1

)

(

k1 k2

)

=

(

−2 0
0 −3

)

−

(

k1 k2

k1 k2

)

=

(

−(2 + k1) −k2

−k1 −(3 + k2)

)

det(sI − (A − BK)) = det

(

s + (2 + k1) k2

k1 s + (3 + k2)

)

= [s + (2 + k1)][s + (3 + k2)] − k1k2

■ Easy for 2 × 2.
■ For large n, very simple if in controller cannonical form.
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■ For the system below, find observer gains L to shift the observer
eigenvalues to −3 and −30

A =

(

−2 0
0 −3

)

B =

(

1
1

)

C =
(

−1 2
)

■ Verify that the system is completely observable
(

C
CA

)

=

(

−1 2
2 −6

)

■ What do we do next? Duality!
■ Find gain matrix B to place poles at -3 and -30.

A ⇒ AT

B ⇒ CT

K ⇒ LT
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■ Find gain matrix B to place poles at -3 and -30.

A ⇒ AT

B ⇒ CT

K ⇒ LT

A = AT =

(

−2 0
0 −3

)

B = CT =

(

−1
2

)

■ This (dual) system is completely controllable

(

B AB
)

=

(

−1 2
2 −6

)

(

CT AT CT
)

=

(

C
CA

)T

■ Proceed using controller canonical form?
■ No! Use an alternative method of pole placement
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■ The controlled system state equations are given by

ẋ = (A − BK)x = Âx

■ The characteristic equation of the controlled system is

det[sI − (A − BK)] = det(sI − Â)

Φd(s) = sn + αnsn−1 + · · · + αn−1s + αn

■ Cayley-Hamilton says Â satisfies its own characteristic equation.

Φd(Â) = Ân + αnÂn−1 + · · · + αn−1Â + αnI = 0

■ But we also have

Φd(A) = An + αnAn−1 + · · · + αn−1A + αnI 6= 0
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■ For the 2 × 2 case of design of the observer gains LT = B

Φd(Â) = Â2 + α1Â + α2I

= (A − BK)2 + α1(A − BK) + α2I

= (A2 − ABK − BKÂ) + α1(A − BK) + α2I

= (A2 + α1A + α2I) − ABK − BKÂ − α1BK

= Φd(A) − ABK − BKÂ − α1BK

0 = Φd(A) − ABK − BKÂ − α1BK

Φd(A) = ABK + BKÂ + α1BK

Φd(A) = B(KÂ + α1K) + AB(K)

Φd(A) =
(

B AB
)

(

α1K + KÂ
K

)
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■ Continuing the calculation

Φd(A) =
(

B AB
)

(

α1K + KÂ
K

)

M−1

C
Φd(A) =

(

α1K + KÂ
K

)

■ We want the last row K

(

0 1
)

M−1

C
Φd(A) = K

■ This is Ackerman’s formula for pole placement
■ It does not require transformation to controller canonical form
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■ Continuing with the design of the observer gains
■ Find gain matrix B to place poles at -3 and -30.

A = AT =

(

−2 0
0 −3

)

B = CT =

(

−1
2

)

■ The desired characteristic equation is

Φd(s) = (s + 3)(s + 30) = s2 + 33s + 90

■ Φd(A) is given by

Φd(A) =

(

4 0
0 9

)

+ 33

(

−2 0
0 −3

)

+ 90

(

1 0
0 1

)

Φd(A) =

(

28 0
0 0

)



Ackerman’s Formula - Pole Placement

TODAY

CC Form

OC Form

Ackerman’s Formula

Decomposition

Comments

NEXT

13 / 26

■ MC and M−1

C
are given by

MC =
(

B AB
)

=

(

−1 2
2 −6

)

M−1

C
=

(

−3 −1
−1 −1/2

)

■ The observer gain matrix K = LT is given by

K =
(

0 1
)

M−1

C
Φd(A)

=
(

0 1
)

(

−3 −1
−1 −1/2

)(

28 0
0 0

)

=
(

−1 −1/2
)

(

28 0
0 0

)

K =
(

28 0
)
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■ Check

K = LT =
(

28 0
)

L =

(

28
0

)

A − LC =

(

−2 0
0 −3

)

−

(

28
0

)

(

−1 2
)

=

(

−2 0
0 −3

)

−

(

−28 48
0 0

)

=

(

−30 48
0 −3

)

■ (A − LC) is upper triangular. Eigenvalues on diagonal.
■ Design goal achieved.
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■ Not every state space realization is completely controllable or
completely observable. Consider:

ẋ1 = λ1x1 + u

ẋ2 = λ2x2 + u

ẋ3 = λ3x3

ẋ4 = λ4x4

y = x1 + x3

A =









λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4









B =









1
1
0
0









C =
(

1 0 1 0
)

D =
(

0
)
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■ What does the controllability matrix tell us?

MC =
(

B AB A2B A3B
)

MC =









1 λ1 λ2
1

λ3
1

1 λ2 λ2
2

λ3
2

0 0 0 0
0 0 0 0









■ Only states x1 and x2 are controllable. (Range of MC)
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■ What does the observability matrix tell us?

MO =
(

C CA CA2 CA3
)

M0 =









1 0 1 0
λ1 0 λ2 0
λ2

1
0 λ2

2
0

λ3
1

0 λ3
2

0









■ Only states x1 and x3 are observable. (Range of MT
O

)

MT
0 =









1 λ1 λ2
1

λ3
1

0 0 0 0
1 λ1 λ2

1
λ3

1

0 0 0 0








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■ Combining these results:

◆ Only states x1 and x2 are controllable. (Range of MC)
◆ Only states x1 and x3 are observable. (Range of MT

O
)

■ Or restating these facts

◆ x1 is both controllable and observable (CO)
◆ x2 is controllable and unobservable (CŌ)
◆ x3 is uncontrollable and observable (C̄O)
◆ x4 is uncontrollable and unobservable (C̄Ō)

■ We have just performed a Kalman Decomposition of the system
into its fundamental controllable and observable subspaces.

■ We need a theorem
■ We need a general algorithm for performing decomposition
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THEOREM: (DeRusso, p 345)

■ If the controllability matrix associated with (A,B) has rank
n1 (n1 < n), then there exists a matrix P such that x̄ = Px that
transforms the original system into

(

˙̄xC

˙̄xC̄

)

=

(

ĀC Ā12

0 ĀC̄

)(

x̄C

x̄C̄

)

+

(

B̄C

0

)

u

y =
(

C̄C C̄C̄

)

(

x̄C

x̄C̄

)

+ Du

■ where x̄C is n1 × 1 and represents the states that are CO, and
x̄C̄ is (n − n1) × 1and represents the states that are C̄O.
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■ How do we find P?
■ Choose n1 linearly independent columns from

MC =
(

B AB · · · An−1B
)

■ Place them in P−1

P−1 =





| | |
x1 x2 · · · xn1

| | |





■ Choose (n − n1) other column vectors to make P−1 non-singular

P−1 =





| | · · · | | |
x1 x2 · · · xn1

v1 · · · vn−n1

| | · · · | | |




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■ Example

ẋ =

(

−1 0
0 −1

)

x +

(

1
1

)

u

■ Controllability matrix MC

MC =

(

1 −1
1 −1

)

■ Place first column of MC into P−1

P−1 =

(

1 v11

1 v12

)

■ Let v = [1 0]T

P−1 =

(

1 1
1 0

)
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■ Continuing
˙̄x = PAP−1x̄ + PBu

˙̄x =

(

−1 0
0 −1

)

x̄ +

(

1
0

)

u

■ Which has the desired (controllable) decomposition
■ We have a similar result for observability
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THEOREM: (DeRusso, p 348)

■ If the observability matrix associated with (A,C) has rank
n2 (n2 < n), then there exists a matrix P such that x̄ = Px that
transforms the original system into

(

˙̄xO

˙̄xŌ

)

=

(

ĀO 0
Ā21 Ā0̄

) (

x̄O

x̄Ō

)

+

(

B̄O

B̄Ō

)

u

y =
(

C̄O 0
)

x

(

x̄O

x̄Ō

)

+ Du

■ where x̄O is n2 × 1 and represents the states that are CO, and
x̄Ō is (n − n2) × 1and represents the states that are CŌ.

■ Proof? Duality!!
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■ In general, a realization can be partitioned into four subsets:

1. States which are controllable and observable
2. States which are controllable but unobservable
3. States which are uncontrollable but observable
4. States which are both uncontrollable and unobservable

■ We will prove this result in Friday’s lecture lecture.
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■ You now have used CC form to perform pole placement.
■ You now have invoked duality and used Ackerman’s formula to

perform (full order) observer design.
■ You’ve done one “eyeball” decomposition and have learned one

formal way of calculating a Kalman decomposition
■ You now know how to calculate a controllable state space

realization and (partially) how to calculate an observable state
space realization
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■ NEXT:

◆ (Done) Lyapunov stability
◆ (Done) Controller and Observer Canonical Forms, & Minimal

Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
◆ (Almost) Kalman’s Canonical Decomposition (DeRusso, 4.3

pp 200-203, 6.8; Belanger, 3.7.4)
◆ (Some) Full state feedback & Observers (DeRusso, Chap 7;

Belanger, Chap 7)
◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4)
◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
◆ Robustness & Performance Limitations (Various)
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