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TODAY

m  [ODAY:
Decomposition
Applications 0 Canonical Forms & Duality
Kalman's Results L .
Controllable Decomp 0 Kalman Decomposition & Duality

Observable Decomp

SempISE (PEasl m LEARNING OUTCOMES:

NEXT
Identify controllable/observable subspaces

Perform a Kalman decomposition and reason about it
Write a controllable realization

Write an observable realization

Write a controllable and observable realization

I O O B

m References:

DeRusso et al.(1998), State Variables for Engineers, 6.8

Bélanger (1995), Control Engineering, 7.5

Szidarovszky & Bahill (1997), Linear Systems Theory, 2nd Ed, 1.3

Furuta et al. (1988), State Variable Methods in Automatic Control, 2.2.1-2.2.3

1 DO

Hirsch & Smale (1974), Diff Eqns, Dynamical Systems and Lin Alg, 7.2
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Decomposition

Applications
Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Warning!

Warning!

Today's lecture is light on examples and a little heavy on math

and proofs!
Sorry!
We need to first cover some general results about linear
operators before we can move in for the kill!
m |'m going to try to cover all this material today, but ...
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TODAY

Applications

Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Space Decomposition by a Linear Operator

m Let A be an n X m real matrix
m Let R(A) denote the range space of A

R(A) ={y |y = Ax for some z}
s Let N(AT) denote the null space of AT
N(A") = {y| ATy =0}

THEOREM: R(A”) and N(A) are orthogonal complementary
subspaces in R".
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TODAY

Applications

Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Space Decomposition by a Linear Operator

PROOF: (i)

m  Assume that u € R(A) and v € N(AT)

m  Then by definition of R(A), u = Ax for some x

m  And by definition of N(A®), ATv =0

m  We need to show that ufv = 0, so let's calculate it!

w'v = (Az)Tv=a"ATv =21 (ATv) =210 =0

which was to be shown (Q.E.D.)
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TODAY

Applications

Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Space Decomposition by a Linear Operator

PROOF: (ii)

m  Assume that for a vector v, ulv = 0 for all u € R(A)

m Letz = A0

m Thenu= Az = AATv € R(A)

m  We need to show that ATv = 0, equivalently || ATv]| = 0, so let's

try to do this!
0=ulv=(A44Tv)'v =0l 44Ty = (AT0) (ATv) = || AT ||

which was to be shown (Q.E.D.)
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TODAY

Applications

Kalman's Results
Controllable Decomp
Observable Decomp
Complete Decomp
NEXT

Space Decomposition by a Linear Operator

COROLLARY: (Linear Decomposition)
Any x € R"™ can be uniquely represented as © = u + v where
u € R(A) and v € N(ATD)

R™ = R(A) @ N(A")

PROOF:

m Let uy,ug, - ,u, be a basis for R(A)

m  Add vectors vy, v9, -+ ,v,_r to complete the basis for R™
m U,V ,Up_i IS a basis for N(A1)

m [herefore, any x can be represented as

r = u-+v
r = aqul+ajug + -+ agug + B + Bavg + -+ B kUn—k

m  \We need to show that this representation is unique
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TODAY

Applications

Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Space Decomposition by a Linear Operator

PROOF:

m  Assume there are two representations
r=u-+v=u-+v

m [hen
U—U=71—"

where (u — @) € R(A) and (o —v) € N(AT)
m Because these vectors are orthogonal

~

lu—dll = (u—a)" (u—a) = (u—a)" (0 —-v) =0

m Therefore, u = u and v = ¥ which was to be shown (Q.E.D.)
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TODAY

Applications

Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Space Decomposition by a Linear Operator

REMARKS:

m Let AT be an m x n real matrix
m Let R(AT) denote the range space of AT

R(A") = {z |2z = A"y for some y}
m Let N(A) denote the null space of A
N(A) ={z | Ay = 0}

THEOREM:

R(AT) and N(A) are orthogonal complementary subspaces in R™.
COROLLARY:

Any y € R™ can be uniquely represented as y = w + z where

w € R(AT) and 2 € N(A)

R" = R(A") @ N(A)
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| o
: | ﬁ Application - Controllability

TODAY

Decomposition

Applications

Kalman’s Results

1
Controllable Decomp — X0 — / G_ATB’U,(T) d’T
0

Observable Decomp

e [ ao(rulr)
= (B AB --- An—lB)/1 . dr

0 .
\tn1 (T)u(r) ]

[0

U1

)

m The controllable states are in the range of M¢
m [he uncontrollable states are in the null space of Mg

m  Decomposition into controllable/uncontrollable states

—z9y = (B AB ... A"'B)
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TODAY
Decomposition
Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Application - Controllability

Controllability
MC:(B AB A’B A3B)
1 A1 AT AT\ [/ 1 1
o 1 )\2 )\% )\% S T )\1 )\2
Me=10 0 0 o]+ M¢ A2 )2
0O 0 0 O * AP AT

Only states x1 and x2 are controllable. (Range of M)
States w3 and x4 are uncontrollable. (Null space M})

o O O O

o O O O

* x O O
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TODAY

Decomposition

Applications
Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp
NEXT

Application - Observability

Decomposition into observable/unobservable subspaces

y(ty) = CeAtla:O

— (ag(tl) ay(ty) --- Oén—l(tl))

Unobservable states are in the null space of My
Observable states are in the range of M}

(CCA\

\ca

L0
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| o
: | ﬁ Application - Observability

onA m  Observability
ecomposition
Kman's Results Mg — <CT ATCT (AT)QCT (AT)BC)

Controllable Decomp
Observable Decomp

Complete Decomp

NEXT
1 0 1 0\ /0 1 A1 A2 A3\ [
A 0 X O] [ r [0 0 0 O0]][=x
Mo A0 Moo M0_1A1 PYIED LN N I
A0 A 0/ \& 0 0 0 0/ \x

m States x5 and x4 are unobservable (Null space of Mp)
m States z; and z3 are observable (Range of M})
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'

= Kalman’s Decomposition

;ODAY N m \We can use our state space decomposition results to prove
ecomposition .
Applications Kalman's results!

Kalman's Results

Controllable Decomp

Kalman's Result:

Observable Decomp

Complete Decomp

NExT s We can compose the state space into
1. >21: States which are controllable but unobservable
2. 9. States which are controllable and observable
3. 23: States which are both uncontrollable and unobservable
4. 34: States which are uncontrollable but observable
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| ®
' | ﬁ Kalman’s Decomposition

LORAY THEOREM: (DeRusso, p 345 - modified)

Decomposition

poplications m If the controllability matrix associated with (A, B) has rank

n1 (n1 < n), then there exists a matrix 1" such that = T'T that
Observable Decom .. .
’ transforms the original system into

5 - (¥ 2)E)-(0)

_ _ 7¢
y = (CC C’@) <£C)+Du

Complete Decomp
NEXT

m  where z% is ny x 1 and represents the states that are CO, and

z% is (n — n1) x land represents the states that are CO.
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Kalman’s Decomposition

TODAY PROOF:

Decomposition

poplieations m  We need to demonstrate the structure of A and B under the

transformation

Observable Decomp

Complete Decomp m Let the rank of Mo be ny

2T Pick n1 linearly independent vectors vy, va, -+ , vy, from Mc
(vi vy -+ wp)=(B AB -+ A"IB)M

m  Multiply this set of vectors by A

A(vp vy -+ wn) = (AB A°B --- A"B)M
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Kalman’s Decomposition

TODAY PROOF:

Decomposition

poplieations m  Using the Cayley-Hamilton theorem
Sbser:/ableDDecomp A (Ul Vo e ,Unl) —
omplete Decomp
NEXT (000 0 —aol \
I 0 : :
(B AB --- A™!'B)|g 1 ; M

\O 0 I —&7;_11)

m  This implies Av; € R(M¢g) fori=1,...,n1
m  Which means

ni
Av; = E a;;V; (i:1,...,nl)
J=1
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Kalman’s Decomposition

TODAY PROOF:

Decomposition
Applicati is impli
pplications m ThlS |mp||eS

Kalman's Results

Controllable Decomp

Observable Decomp A (Ul V9 . vnl) —

Complete Decomp

NEXT (C_lll Tt A1ny \

1

\ 0 . 0 )
m  We're part of the way!
m  \We have to take care of the rest of the structure of A matrix.

18 / 31



= Kalman’s Decomposition

TODAY PROOF:

Decomposition

Applications . . o .
ol e Resulie m  Choose lin. indep. vectors vy, 41, , U, to complete the basis.

= In general

Observable Decomp

Complete Decomp
NEXT

n
Avi:Zdjivj (i=n1+1,...,n)
j=1

m  Giving us

AT =TA
A(v1 vy - Un):
(511 e Qlpy, Qlpg4+1 C_lm\
(/Ul V9 ... ,UTL) anll a’nlnl
0 0
\ 0 0 Sy



Kalman’s Decomposition

TODAY PROOF:

Decomposition
gilels m  The columns b; of B are also in the R(M¢), which means

Kalman's Results

Controllable Decomp

Observable Decomp

ni
Complete Decomp b?, — E B]’ij (Z p— 17 ceey m)
j=1

NEXT

m  So B has the following structure

B=TB
(B i)
BZ(’Ul vy - Un> 677(,)11 Bn(l)m
\(5 (5/
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| ®
' | ﬁ Kalman’s Decomposition

TODAY PROOF:

Decomposition

ﬁzl"r::if‘:gsesults m  So we have the desired result
Observable Decomp CE'C AC A12 CE'C _|_ BC
Complete Decom =~ — A —C U
NEX'pI' i z¢ 0 Ag z¢ 0
_ _ 7C
y = (Cc Cg) (i,é + Du

m (Ac, Be) is controllable
G(S) — éc(S[ — AC)_l.BC + D
The controllable subspace is A invariant
v e R(Mcg)= Av € R(M¢)
m [he whole state space can be decomposed into controllable and
uncontrollable subspaces!
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TODAY
Decomposition
Applications
Kalman's Results
Controllable Decomp

Observable Decomp

Complete Decomp
NEXT

Kalman’s Decomposition

m  Similarly the state space can be decomposed into observable and

unobservable subspaces

m  Duality is the easiest way to show this!
Let's state some facts before we proceed with the proof
R™ can be written as a direct sum of

R™ = R(Mp) & N(Mo)
m  The subspace N(Mp) is the unobservable subspace

Mox = 0
C
(e

e

CU():O
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Kalman’s Decomposition

ropay: - m  The unobservable subspace N(Mp) is A invariant
Decomposition
Applications
Kalman’s Results MO ACC — ()
Controllable Decomp
[ C )
Complete Decomp
NEXT
Ar = 0
\oA")
( CA\
CA?
r = 0

)

(. 8 .\(CCA\

A S |
o \CAn_lj 23 / 31



TODAY
Decomposition
Applications
Kalman's Results
Controllable Decomp

Observable Decomp

Complete Decomp
NEXT

Kalman’s Decomposition

THEOREM: (DeRusso, p 348 - modified)

If the observability matrix associated with (A, C') has rank
no (no < n), then there exists a matrix 1" such that = T'T that
transforms the original system into

(o) = (32 &) Co)+ (59)

_ 70
where z9 is na x 1 and represents the states that are CO, and

z9 is (n — ny) x land represents the states that are CO.
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Kalman’s Decomposition

TODAY PROOF:

Decomposition

poplieations m  We need to demonstrate the structure of A and C under the
Controllable Decomp transformation

m  We know R™ can be decomposed into observable and

NEXT unobservable subspaces

R™ = R(MJ) @& N(Mp)

Let the rank of Mg be n9, dimension of the observable subspace
(FACT: rank Mo = rank M})

MY, contains a basis for the observable subspace (dimension n2)
N(Mp) contains a basis for the unobservable subspace
(dimension n — no)

Pick no linearly independent columns vy, vs, -+ , vy, from Mg
Choose n — ng other columns v, 41,--- ,v, in N(Mp) to
complete a basis
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Kalman’s Decomposition

TODAY PROOF:

Decomposition

Bysrofeart . .
ppiications m  Form the transformation matrix

Kalman's Results

Controllable Decomp

T = (v1 v2 - Upy Upyil

Complete Decomp
NEXT

m Since N(Mp) is A-invariant
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= Kalman’s Decomposition

TODAY PROOF:

Decomposition

Applications -
[ |
Kalman's Results GIVIng us

Controllable Decomp AT = TA

Complete Decomp A (’Ul (0 « .. fUn) —
NEXT — —
/a’ll o o o a1n2 O o o o O \

(U1 S ’Un) 0 0

ang—i—lng—l—l T ang—l—ln

\C_Lnl C_L'rmg C_Lnng—l—l e C_Lnn )

m  We have the desired structure for A. Now let's work on C
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Kalman’s Decomposition

TODAY PROOF:

Decomposition
Applications ) . .

e m For the v; corresponding to the basis for N(Mp)
Controllable Decomp

Cvs = 0

Complete Decomp
NEXT

m [his implies

C = C’T:C(vl Vo v vn)
E11 -+ Ciny 0 -+ 0
Cpl ~** Cpny 0 - 0

Phew!

(Ap, Co) is observable

G(S) = Co(sI — Ao)Bo
Now for Kalman's grand result!
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TODAY

Decomposition

Applications
Kalman's Results
Controllable Decomp
Observable Decomp

Complete Decomp

NEXT

Kalman’s Decomposition

m |n general a system with some controllable states and some
observable states can be decomposed as follows:

4
i_| 0 A2 0 Ax
0 0 Asz Ass
0 0 0 Ay
By
Bl A - ]
B=17] ¢=(0 C 0 Cy
0

(X1: controllable/unobservable) ny = dim R(M¢g) N N(Mp)
(X2: controllable/observable) ny = dim R(M¢c) — ny

(X3: uncontrollable/unobservable) nz = dim N(Mgp) — nq
(X4: uncontrollable/observable) ny =ny —no —n — 3
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Kalman’s Decomposition

TODAY

Do n (Ao, Bg,_C_’Q) is controllable and observable

Applications n G(S) — 02(31 — A22)_1B2

Ej:;?{:bie:izmp m  The proof involves bases for the four subspaces and then using
invariance to obtain the desired form of the transformed system
NEXT equations (Ref: Furuta et a., 2.2.2, pp 66—-72)

m In a similar fashion, using the Cayley-Hamilton theorem, it is
possible to decompose the state space R™ into stable and
unstable subspaces! (Refs: Furuta, 2.2.3, pp 72-74; Hirsch &
Smale, 7.2, pp 150-152)

RTL:WS@W’U,
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" NEXT
TODAY - NEXT
Decomposition .
poplieations (1 (Done) Lyapunov stability
Controllable Decomp 0 (Done) Controller and Observer Canonical Forms, & Minimal
2::3;:‘;5:;:? Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
0 (Done!) Kalman's Canonical Decomposition (DeRusso, 4.3,
P

6.8; Belanger, 3.7.4, Furuta et al. 2.2.1-2.2.3)
0 (Some) Full state feedback & Observers (DeRusso, Chap 7;
Belanger, Chap 7)

0 LQR (Linear Quadratic Regulator) (Belanger, 7.4)
0 Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
[0 Robustness & Performance Limitations (Various)
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