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■ TODAY:

◆ Canonical Forms & Duality
◆ Kalman Decomposition & Duality

■ LEARNING OUTCOMES:

◆ Identify controllable/observable subspaces
◆ Perform a Kalman decomposition and reason about it
◆ Write a controllable realization
◆ Write an observable realization
◆ Write a controllable and observable realization

■ References:
◆ DeRusso et al.(1998), State Variables for Engineers, 6.8

◆ Bélanger (1995), Control Engineering, 7.5

◆ Szidarovszky & Bahill (1997), Linear Systems Theory, 2nd Ed, 1.3

◆ Furuta et al. (1988), State Variable Methods in Automatic Control, 2.2.1-2.2.3

◆ Hirsch & Smale (1974), Diff Eqns, Dynamical Systems and Lin Alg, 7.2
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■ Warning!
■ Today’s lecture is light on examples and a little heavy on math

and proofs!
■ Sorry!
■ We need to first cover some general results about linear

operators before we can move in for the kill!
■ I’m going to try to cover all this material today, but ...
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■ Let A be an n × m real matrix
■ Let R(A) denote the range space of A

R(A) = {y | y = Ax for some x}

■ Let N(AT ) denote the null space of AT

N(AT ) =
{

y | AT y = 0
}

THEOREM: R(AT ) and N(A) are orthogonal complementary
subspaces in R

n.
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PROOF: (i)

■ Assume that u ∈ R(A) and v ∈ N(AT )
■ Then by definition of R(A), u = Ax for some x

■ And by definition of N(AT ), AT v = 0
■ We need to show that uT v = 0, so let’s calculate it!

uT v = (Ax)T v = xT AT v = xT (AT v) = xT 0 = 0

which was to be shown (Q.E.D.)
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PROOF: (ii)

■ Assume that for a vector v, uT v = 0 for all u ∈ R(A)
■ Let x = AT v

■ Then u = Ax = AAT v ∈ R(A)
■ We need to show that AT v = 0, equivalently ‖AT v‖ = 0, so let’s

try to do this!

0 = uT v = (AAT v)T v = vT AAT v = (AT v)T (AT v) = ‖AT v‖

which was to be shown (Q.E.D.)
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COROLLARY: (Linear Decomposition)
Any x ∈ R

n can be uniquely represented as x = u + v where
u ∈ R(A) and v ∈ N(AT )

R
n = R(A) ⊕ N(AT )

PROOF:

■ Let u1, u2, · · · , uk, be a basis for R(A)
■ Add vectors v1, v2, · · · , vn−k to complete the basis for R

n

■ v1, v2, · · · , vn−k is a basis for N(AT )
■ Therefore, any x can be represented as

x = u + v

x = α1u1 + α1u2 + · · · + αkuk + β1v1 + β2v2 + · · · + βn−kvn−k

■ We need to show that this representation is unique
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PROOF:

■ Assume there are two representations

x = u + v = ũ + ṽ

■ Then
u − ũ = ṽ − v

where (u − ũ) ∈ R(A) and (ṽ − v) ∈ N(AT )
■ Because these vectors are orthogonal

‖u − ũ‖ = (u − ũ)T (u − ũ) = (u − ũ)T (ṽ − v) = 0

■ Therefore, u = ũ and v = ṽ which was to be shown (Q.E.D.)



Space Decomposition by a Linear Operator

TODAY

Decomposition

Applications

Kalman’s Results

Controllable Decomp

Observable Decomp

Complete Decomp

NEXT

9 / 31

REMARKS:

■ Let AT be an m × n real matrix
■ Let R(AT ) denote the range space of AT

R(AT ) =
{

x | x = AT y for some y
}

■ Let N(A) denote the null space of A

N(A) =
{

x | AT x = 0
}

THEOREM:
R(AT ) and N(A) are orthogonal complementary subspaces in R

m.
COROLLARY:
Any y ∈ R

m can be uniquely represented as y = w + z where
w ∈ R(AT ) and z ∈ N(A)

R
n = R(AT ) ⊕ N(A)
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■ Decomposition into controllable/uncontrollable states

−x0 =

∫ t1

0

e−AτBu(τ) dτ

=
(

B AB · · · An−1B
)

∫ t1

0











α0(τ)u(τ)
α1(τ)u(τ)

...
αn−1(τ)u(τ)











dτ

−x0 =
(

B AB · · · An−1B
)











v0

v1

...
vn−1











■ The controllable states are in the range of MC

■ The uncontrollable states are in the null space of MT
C
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■ Controllability

MC =
(

B AB A2B A3B
)

MC =









1 λ1 λ2
1 λ3

1

1 λ2 λ2
2 λ3

2

0 0 0 0
0 0 0 0

















∗
∗
∗
∗









MT
C =









1 1 0 0
λ1 λ2 0 0
λ2

1 λ2
1 0 0

λ3
1 λ3

1 0 0

















0
0
∗
∗









■ Only states x1 and x2 are controllable. (Range of MC)
■ States x3 and x4 are uncontrollable. (Null space MT

C )
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■ Decomposition into observable/unobservable subspaces

y(t1) = CeAt1x0

=
(

α0(t1) α1(t1) · · · αn−1(t1)
)











C

CA
...

CAn−1











x0

■ Unobservable states are in the null space of MO

■ Observable states are in the range of MT
O
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■ Observability

MT
O =

(

CT AT CT (AT )2CT (AT )3C
)

M0 =









1 0 1 0
λ1 0 λ2 0
λ2

1 0 λ2
2 0

λ3
1 0 λ3

2 0

















0
∗
0
∗









MT
0 =









1 λ1 λ2
1 λ3

1

0 0 0 0
1 λ1 λ2

1 λ3
1

0 0 0 0

















∗
∗
∗
∗









■ States x2 and x4 are unobservable (Null space of MO)
■ States x1 and x3 are observable (Range of MT

O )



Kalman’s Decomposition

TODAY

Decomposition

Applications

Kalman’s Results

Controllable Decomp

Observable Decomp

Complete Decomp

NEXT

14 / 31

■ We can use our state space decomposition results to prove
Kalman’s results!

Kalman’s Result:

■ We can compose the state space into

1. Σ1: States which are controllable but unobservable
2. Σ2: States which are controllable and observable
3. Σ3: States which are both uncontrollable and unobservable
4. Σ4: States which are uncontrollable but observable
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THEOREM: (DeRusso, p 345 - modified)

■ If the controllability matrix associated with (A,B) has rank
n1 (n1 < n), then there exists a matrix T such that x = T x̄ that
transforms the original system into

(

˙̄xC

˙̄xC̄

)

=

(

ĀC Ā12

0 ĀC̄

)(

x̄C

x̄C̄

)

+

(

B̄C

0

)

u

y =
(

C̄C C̄C̄

)

(

x̄C

x̄C̄

)

+ Du

■ where x̄C is n1 × 1 and represents the states that are CO, and
x̄C̄ is (n − n1) × 1and represents the states that are C̄O.
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PROOF:

■ We need to demonstrate the structure of Ā and B̄ under the
transformation

■ Let the rank of MC be n1

■ Pick n1 linearly independent vectors v1, v2, · · · , vn1
from MC

(

v1 v2 · · · vn1

)

=
(

B AB · · · An−1B
)

M

■ Multiply this set of vectors by A

A
(

v1 v2 · · · vn1

)

=
(

AB A2B · · · AnB
)

M



Kalman’s Decomposition

TODAY

Decomposition

Applications

Kalman’s Results

Controllable Decomp

Observable Decomp

Complete Decomp

NEXT

17 / 31

PROOF:

■ Using the Cayley-Hamilton theorem

A
(

v1 v2 · · · vn1

)

=

(

B AB · · · An−1B
)



















0 0 0 −α0I

I 0
...

...

0 I
...

...
...

...
...

...
0 0 I −αn−1I



















M

■ This implies Avi ∈ R(MC) for i = 1, . . . , n1

■ Which means

Avi =

n1
∑

j=1

ājivj (i = 1, . . . , n1)
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PROOF:

■ This implies

A
(

v1 v2 · · · vn1

)

=

(

v1 v2 · · · vn1

)





















ā11 · · · ā1n1

...
...

ān11 · · · ān1n1

0 · · · 0
...

...
0 · · · 0





















■ We’re part of the way!
■ We have to take care of the rest of the structure of Ā matrix.
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PROOF:

■ Choose lin. indep. vectors vn1+1, · · · , vn to complete the basis.
■ In general

Avi =
n

∑

j=1

ājivj (i = n1 + 1, . . . , n)

■ Giving us
AT = TĀ

A
(

v1 v2 · · · vn

)

=

(

v1 v2 · · · vn

)























ā11 · · · ā1n1
ā1n1+1 · · · ā1n

...
...

...
...

ān11 · · · ān1n1

...
...

0 · · · 0
...

...
...

...
...

...
0 · · · 0 ānn+1 ānn






















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PROOF:

■ The columns bi of B are also in the R(MC), which means

bi =

n1
∑

j=1

b̄jivj (i = 1, . . . ,m)

■ So B̄ has the following structure

B = TB̄

B =
(

v1 v2 · · · vn

)





















b̄11 · · · b̄1m

...
...

b̄n11 · · · b̄n1m

0 · · · 0
...

...
0 · · · 0























Kalman’s Decomposition

TODAY

Decomposition

Applications

Kalman’s Results

Controllable Decomp

Observable Decomp

Complete Decomp

NEXT

21 / 31

PROOF:

■ So we have the desired result
(

˙̄xC

˙̄xC̄

)

=

(

ĀC Ā12

0 ĀC̄

)(

x̄C

x̄C̄

)

+

(

B̄C

0

)

u

y =
(

C̄C C̄C̄

)

(

x̄C

x̄C̄

)

+ Du

■ (ĀC , B̄C) is controllable
■ G(s) = C̄C(sI − ĀC)−1B̄C + D

■ The controllable subspace is A invariant
v ∈ R(MC) ⇒ Av ∈ R(MC)

■ The whole state space can be decomposed into controllable and
uncontrollable subspaces!
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■ Similarly the state space can be decomposed into observable and
unobservable subspaces

■ Duality is the easiest way to show this!
■ Let’s state some facts before we proceed with the proof
■ R

n can be written as a direct sum of

R
n = R(MT

O ) ⊕ N(MO)

■ The subspace N(MO) is the unobservable subspace

MO x = 0










C

CA
...

CAn−1











x0 = 0
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■ The unobservable subspace N(MO) is A invariant

MO Ax = 0










C

CA
...

CAn−1











Ax = 0











CA

CA2

...
CAn











x = 0















0 I · · · 0
0 0 · · · 0
... · · ·

...
0 0 · · · I

−α0I · · · −αn−1I

























C

CA
...

CAn−1











x = 0
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THEOREM: (DeRusso, p 348 - modified)

■ If the observability matrix associated with (A,C) has rank
n2 (n2 < n), then there exists a matrix T such that x = T x̄ that
transforms the original system into

(

˙̄xO

˙̄xŌ

)

=

(

ĀO 0
Ā21 Ā0̄

) (

x̄O

x̄Ō

)

+

(

B̄O

B̄Ō

)

u

y =
(

C̄O 0
)

x

(

x̄O

x̄Ō

)

+ Du

■ where x̄O is n2 × 1 and represents the states that are CO, and
x̄Ō is (n − n2) × 1and represents the states that are CŌ.
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PROOF:

■ We need to demonstrate the structure of Ā and C̄ under the
transformation

■ We know R
n can be decomposed into observable and

unobservable subspaces

R
n = R(MT

O ) ⊕ N(MO)

■ Let the rank of MT
O be n2, dimension of the observable subspace

■ (FACT: rank MO = rank MT
O )

■ MT
O contains a basis for the observable subspace (dimension n2)

■ N(MO) contains a basis for the unobservable subspace
(dimension n − n2)

■ Pick n2 linearly independent columns v1, v2, · · · , vn2
from MT

O

■ Choose n − n2 other columns vn2+1, · · · , vn in N(MO) to
complete a basis
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PROOF:

■ Form the transformation matrix

T =
(

v1 v2 · · · vn2
vn2+1 · · · vn

)

■ Since N(MO) is A-invariant

Avi =
n

∑

j=n2+1

ājivj (i = n2 + 1, . . . , n)
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PROOF:

■ Giving us
AT = TĀ

A
(

v1 v2 · · · vn

)

=

(

v1 v2 · · · vn

)























ā11 · · · ā1n2
0 · · · 0

...
...

...
...

...
... 0 · · · 0

...
... ān2+1n2+1 · · · ān2+1n

...
...

...
...

ān1 ānn2
ānn2+1 · · · ānn























■ We have the desired structure for Ā. Now let’s work on C̄
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PROOF:

■ For the vi corresponding to the basis for N(MO)

Cvi = 0

■ This implies

C̄ = CT = C
(

v1 v2 · · · vn

)

=







c̄11 · · · c̄1n2
0 · · · 0

...
...

...
...

c̄p1 · · · c̄pn2
0 · · · 0







■ Phew!
■ (ĀO, C̄O) is observable
■ G(S) = C̄O(sI − ĀO)−1B̄O

■ Now for Kalman’s grand result!
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■ In general a system with some controllable states and some
observable states can be decomposed as follows:

Ā =









Ā11 Ā12 Ā13 Ā14

0 Ā22 0 Ā24

0 0 Ā33 Ā34

0 0 0 Ā44









B̄ =









B̄1

B̄2

0
0









C̄ =
(

0 C̄2 0 C̄4

)

■ (Σ1: controllable/unobservable) n1 = dim R(MC) ∩ N(MO)
■ (Σ2: controllable/observable) n2 = dim R(MC) − n1

■ (Σ3: uncontrollable/unobservable) n3 = dim N(MO) − n1

■ (Σ4: uncontrollable/observable) n4 = n1 − n2 − n − 3
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■ (Ā22, B̄2, C̄2) is controllable and observable
■ G(s) = C̄2(sI − Ā22)

−1B̄2

■ The proof involves bases for the four subspaces and then using
invariance to obtain the desired form of the transformed system
equations (Ref: Furuta et a., 2.2.2, pp 66–72)

■ In a similar fashion, using the Cayley-Hamilton theorem, it is
possible to decompose the state space R

n into stable and
unstable subspaces! (Refs: Furuta, 2.2.3, pp 72–74; Hirsch &
Smale, 7.2, pp 150–152)

R
n = W s ⊕ W u
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■ NEXT:

◆ (Done) Lyapunov stability
◆ (Done) Controller and Observer Canonical Forms, & Minimal

Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
◆ (Done!) Kalman’s Canonical Decomposition (DeRusso, 4.3,

6.8; Belanger, 3.7.4, Furuta et al. 2.2.1-2.2.3)
◆ (Some) Full state feedback & Observers (DeRusso, Chap 7;

Belanger, Chap 7)
◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4)
◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
◆ Robustness & Performance Limitations (Various)
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