
16.31 Fall 2005
Lecture Presentation Mon 31-Oct-05 ver 1.1

Charles P. Coleman

October 31, 2005

TODAY

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ TODAY:

- ◆ Controllability Tests
- ◆ Observability Tests

■ LEARNING OUTCOMES:

- ◆ Perform controllability tests
- ◆ Perform observability tests

■ References:

- ◆ Bélanger (1995), Control Engineering, 3.5, 3.6
- ◆ DeRusso et al. (1998), State Variables for Engineers, 4.3
- ◆ Fairman (1998), Linear Control Theory, 2.2, 2.5.3, 3.3, 4.7.2
- ◆ Furuta et al. (1988), State Variable Methods in Automatic Control, 2.1
- ◆ Morris (2001), Introduction to Feedback Control, 2.2
- ◆ Skelton et al. (1997), A Unified Algebraic Approach to Linear Control Design, 3.3, 3.5
- ◆ Szidároszky & Bahill (1997), Linear Systems Theory, 2nd Ed, 5.1, 6.1

TODAY

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- Warning!
- More math and proofs!
- You gotta see this stuff at some point in your graduate career!
- Why not now!
- Today's goal is to give you more comprehensive list of controllability and observability tests.
- To start off, lets revisit a result stated (no proved!) in DeRusso et al.

Distinct Eigenvalues

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- For a system where the system matrix A has distinct eigenvalues

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

- Where the diagonalized transformed system $x = Mq$ is

$$\dot{q} = \Lambda x + \bar{B}u$$

$$y = \bar{C}q$$

with

$$\Lambda = M^{-1}AM \quad \bar{B} = M^{-1} \quad \bar{C} = CM$$

Distinct Eigenvalues

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ For the diagonalized system

$$\dot{q} = \Lambda x + \bar{B}u$$

$$y = \bar{C}q$$

- Complete controllability requires no zero rows of \bar{B}
- Complete observability requires no zero columns of \bar{C}
- The uncontrollable modes correspond to the zero rows of \bar{B}
- The unobservable modes correspond to the zero columns of \bar{C}

Toy Problem

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Toy problem:

$$\dot{x}_1 = \lambda_1 x_1 + u$$

$$\dot{x}_2 = \lambda_2 x_2 + u$$

$$\dot{x}_3 = \lambda_3 x_3$$

$$\dot{x}_4 = \lambda_4 x_4$$

$$y = x_1 + x_3$$

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$C = (1 \ 0 \ 1 \ 0) \quad D = (0)$$

■ What states are controllable? What states are observable? What is the minimal?

Unobservable States

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

DEFINITION:

- A state $x_{\bar{O}}$ is said to be unobservable if the zero-input solution

$$y(t) = Ce^{At}x_{\bar{O}} = 0$$

for all $t \geq 0$.

- By Cayley-Hamilton the state $x_{\bar{O}}$ must be orthogonal to all the rows of C and all the rows of CA^k for $k = 0, \dots, n-1$.
- That is $x_{\bar{O}} \in N(M_O)$

$$y(t) = Ce^{At_1}x_{\bar{O}} = 0$$
$$0_{(n \cdot p) \times 1} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} x_{\bar{O}}$$

- There are no unobservable states if $\text{rank}(M_O) = n$

Unobservable States

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- **THEOREM:** The system (A, C) is unobservable iff there exists an eigenvector v of A such that $Cv = 0$.

$$y(t) = Ce^{At_1}x_{\bar{O}} = 0$$

$$0_{(n \cdot p) \times 1} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} x_{\bar{O}}$$

$$\begin{aligned} x_{\bar{O}}(t) &= \alpha_1 e^{\lambda_1 t} v_1 + \alpha_2 e^{\lambda_2 t} v_2 + \cdots + \alpha_n e^{\lambda_n t} v_n \\ y(t) &= C(\alpha_1 e^{\lambda_1 t} v_1 + \alpha_2 e^{\lambda_2 t} v_2 + \cdots + \alpha_n e^{\lambda_n t} v_n) \end{aligned}$$

- Proof? Write $x_{\bar{O}}$ as a lin. combination of the eigenvectors of A .
- For distinct eigenvalues λ , the eigenvectors v decompose the state space \mathbb{R}^n .

Uncontrollable States - Repeated Eigenvalues

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- If there are repeated eigenvalues, there may be several independent eigenvectors associated with the repeated eigenvalue.

$$v_{i1}^0, v_{i2}^0, \dots, v_{iK}^0$$

- A linear combination of eigenvectors is also an eigenvector.

$$v = a_1 v_{i1}^0 + a_2 v_{i2}^0 + \dots + a_n v_{iK}^0$$

- $Cv = 0$ if

$$Cv = a_1 Cv_{i1}^0 + a_2 Cv_{i2}^0 + \dots + a_n Cv_{iK}^0 = 0$$

- or if

$$\text{rank}([Cv_{i1}^0 \ Cv_{i2}^0 \ \dots \ Cv_{iK}^0]) < K$$

Unobservable States - Repeated Eigenvalues

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ If

$$\text{rank}([Cv_{i1}^0 \ Cv_{i2}^0 \ \dots \ Cv_{iK}^0]) = K$$

then no eigenvector of A is orthogonal to all the rows of C .

REMARK:

■ If there are more independent eigenvectors associated with some repeated eigenvalues than there are outputs ($K > p$) then

$$[Cv_{i1}^0 \ Cv_{i2}^0 \ \dots \ Cv_{iK}^0]$$

■ has fewer rows (p) than columns (K)
■ Since the rank cannot exceed the number of rows, it meets the condition for unobservability.

Uncontrollable States

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

DEFINITION:

- A state $x_{\bar{C}}$ is said to be uncontrollable if it is orthogonal to the zero-state response $x(t)$ for all $t > 0$ and all input functions

$$x_{\bar{C}}^T \int_0^t e^{A\tau} B u(t - \tau) d\tau = 0$$

$$\int_0^t x_{\bar{C}}^T e^{A\tau} B u(t - \tau) d\tau = 0$$

- For this to be true for all $t > 0$ and all $u(\cdot)$

$$x_{\bar{C}}^T e^{A\tau} B = 0$$

for all $t \geq 0$

Uncontrollable States

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- By Cayley-Hamilton the state $x_{\bar{C}}$ must be orthogonal to all the columns of C and all the columns of $A^k B$ for $k = 0, \dots, n-1$.

$$\begin{aligned} x_{\bar{C}}^T e^{A\tau} B &= 0_{1 \times m} \\ x_{\bar{C}}^T [\alpha_0(\tau)I + \alpha_1(\tau)A + \dots + \alpha_{n-1}(\tau)A^{n-1}] B &= 0 \\ x_{\bar{C}}^T [\alpha_0(\tau)B + \alpha_1(\tau)AB + \dots + \alpha_{n-1}(\tau)A^{n-1}B] &= 0 \\ \alpha_0(\tau)x_{\bar{C}}^T B + \alpha_1(\tau)x_{\bar{C}}^T AB + \dots + \alpha_{n-1}(\tau)x_{\bar{C}}^T A^{n-1}B &= 0 \end{aligned}$$

- That is $x_{\bar{C}} \in N(M_C^T)$

$$B^T e^{A^T \tau} x_{\bar{C}} = 0_{m \times 1}$$

$$0_{(n \cdot m) \times 1} = \begin{pmatrix} B^T \\ B^T A \\ \vdots \\ B^T (A^T)^{n-1} \end{pmatrix} x_{\bar{C}}$$

- There are no uncontrollable states if $\text{rank}(M_C) = n$

Uncontrollable States

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- **THEOREM:** The system (A, B) is uncontrollable iff there exists an eigenvector w of A^T such that $B^T w = 0$.
- **THEOREM:** The system (A, B) is uncontrollable iff there exists a left eigenvector w of A such that $w^T B = 0$.

$$x_{\bar{C}}^T e^{A\tau} B = 0_{1 \times m}$$
$$x_{\bar{C}}^T (B \ AB \ \cdots \ A^{n-1}B) = 0_{1 \times (n \cdot m)}$$

$$x_{\bar{C}}^T(t) = \alpha_1 e^{\lambda_1 t} w_1^T + \alpha_2 e^{\lambda_2 t} w_2^T + \cdots + \alpha_n e^{\lambda_n t} w_n^T$$

- Proof? Write $x_{\bar{C}}^T$ as a linear combination of the eigenvectors w of A^T .
- For distinct eigenvalues λ , the left eigenvectors w^T decompose the state space \mathbb{R}^n .

Unobservable States - Repeated Eigenvalues

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues

Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- If there are repeated eigenvalues, there may be several independent left eigenvectors associated with the repeated eigenvalue.

$$w_{i1}^0, w_{i2}^0, \dots, w_{iK}^0$$

- A linear combination of left eigenvectors is also an eigenvector.

$$w = a_1 w_{i1}^0 + a_2 w_{i2}^0 + \dots + a_n w_{iK}^0$$

- $B^T w = 0$ if

$$B^T w = a_1 B^T w_{i1}^0 + a_2 B^T w_{i2}^0 + \dots + a_n B^T w_{iK}^0 = 0$$

- or if

$$\text{rank}([B^T w_{i1}^0 \ B^T w_{i2}^0 \ \dots \ B^T w_{iK}^0]) < K$$

Uncontrollable States - Repeated Eigenvalues

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ If

$$\text{rank}([B^T w_{i1}^0 \ B^T w_{i2}^0 \ \cdots \ B^T w_{iK}^0]) = K$$

then no left eigenvector of A is orthogonal to all the columns of B .

REMARK:

■ If there are more independent eigenvectors associated with some repeated eigenvalues than there are inputs ($K > m$) then

$$[B^T w_{i1}^0 \ B^T w_{i2}^0 \ \cdots \ B^T w_{iK}^0]$$

has fewer rows (m) than columns (K)

■ Since the rank cannot exceed the number of rows, it meets the condition for uncontrollability.

Diagonal Form

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form

PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- We can now revisit our statement about a diagonalized system now that we have discussed right eigenvectors v , and left eigenvectors w
- We know that the matrix M that diagonalizes A , where $x = Mq$ contains the eigenvectors of A . (Assume distinct eigenvalues)

$$M = (v_1 \quad v_2 \quad \cdots \quad v_n)$$

- The rows of its inverse M^{-1} are the left eigenvectors of A (The eigenvectors of A^T)

$$M^{-1} = \begin{pmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_n^T \end{pmatrix}$$

Diagonal Form

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- The transformed distribution \bar{B} and output matrix \bar{C} are given by

$$\bar{B} = M^{-1}B = \begin{pmatrix} w_1^T B \\ w_2^T B \\ \vdots \\ w_n^T B \end{pmatrix}$$
$$\bar{C} = CT = (Cv_1 \quad Cv_2 \quad \cdots \quad Cv_n)$$

- We recover the conditions we stated at the beginning of the lecture
- We recover the conditions of the stated theorems

PBH Test - Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- We can combine some of the previous results into one test!

Popov-Belevitch-Hautus (PBH) TEST:

- (A, B) is controllable iff the matrix

$$\begin{pmatrix} (sI - A) & B \end{pmatrix}$$

has rank n for all numbers s .

- This can be considered as a corollary to the theorem that (A, B) is completely controllable iff the matrix A^T (A) has no right (left) eigenvector that is orthogonal to the columns of B (B^T).

PBH Test - Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

PROOF:

- Suppose that $[(sI - A) \ B]$ does not have full row rank
- Then there exists w^T , a left eigenvector of A , such that

$$w^T ((sI - A) \ B) = 0$$

- which says

$$w^T A = \lambda w^T \quad w^T B = 0$$

- Then

$$\begin{aligned} w^T M_C &= w^T (B \ AB \ \dots \ A^{n-1}B) \\ &= w^T (B \ \lambda B \ \dots \ \lambda^{n-1}B) \\ &= 0 \end{aligned}$$

- And the system is uncontrollable

PBH Test - Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

PROOF:

- Suppose that the system is not controllable.
- Then it can be transformed by a matrix T into

$$\begin{pmatrix} \dot{\bar{x}}^C \\ \dot{\bar{x}}^{\bar{C}} \end{pmatrix} = \begin{pmatrix} \bar{A}_C & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{C}} \end{pmatrix} \begin{pmatrix} \bar{x}^C \\ \bar{x}^{\bar{C}} \end{pmatrix} + \begin{pmatrix} \bar{B}_C \\ 0 \end{pmatrix} u$$

- Let λ be an eigenvalue of $\bar{A}_{\bar{C}}$ and choose left eigenvector $w_{\bar{C}}^T$ so that $w_{\bar{C}}^T \bar{A}_{\bar{C}} = \lambda w_{\bar{C}}^T$
- Define the $1 \times n$ vector

$$w^T = (0 \quad w_{\bar{C}}^T)$$

PBH Test - Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

PROOF:

■ Then

$$w^T \begin{pmatrix} (sI - \bar{A}) & \bar{B} \end{pmatrix} = \begin{pmatrix} 0 & w_{\bar{C}}^T \end{pmatrix} \begin{pmatrix} \lambda I - \bar{A}_C & -\bar{A}_{12} & \bar{B}_C \\ 0 & \lambda I - \bar{A}_{\bar{C}} & 0 \end{pmatrix}$$

$$w^T \begin{pmatrix} (sI - T^{-1}AT) & T^{-1}\bar{B} \end{pmatrix} = 0$$

$$w^T T^{-1} \begin{pmatrix} (sI - A)T & B \end{pmatrix} = 0$$

■ T^{-1} is nonsingular which implies $w^T T^{-1} \neq 0$

■ Since T is nonsingular

$$w^T T^{-1} (sI - A) T = 0$$

becomes

$$w^T (sI - A) = 0$$

PBH Test - Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

PROOF:

■ Putting this together implies

$$w^T T^{-1} \begin{pmatrix} (sI - A) & B \end{pmatrix} = 0$$

■ Hence, if (A, B) is not controllable, the matrix

$$\begin{pmatrix} (sI - A) & B \end{pmatrix}$$

loses rank at $s = \lambda$.

Toy Problem

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Toy problem:

$$\begin{pmatrix} ((sI - A) & B) \\ s - \lambda_1 & 0 & 0 & 0 & 1 \\ 0 & s - \lambda_2 & 0 & 0 & 1 \\ 0 & 0 & s - \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & s - \lambda_4 & 0 \end{pmatrix}$$

- Does not have full rank for all s !
- Let $s = \lambda_3$

$$\begin{pmatrix} (\lambda_3 - \lambda_1) & 0 & 0 & 0 & 1 \\ 0 & (\lambda_3 - \lambda_2) & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & (\lambda_3 - \lambda_4) & 0 \end{pmatrix}$$

- Column 5 is now a linear combination of columns 1 and 2!

PBH Test - Observability

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe
REMARKS
NEXT

- Similarly we have the following observability test!

Popov-Belevitch-Hautus (PBH) TEST:

- (A, C) is observable iff the matrix

$$\begin{pmatrix} (sI - A^T) & C^T \end{pmatrix}$$

has rank n for all numbers s .

- Equivalently

$$\begin{pmatrix} (sI - A) \\ C \end{pmatrix}$$

has rank n for all numbers s .

PBH and Controller Pole Placement

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe

PBH-Pole Placement

Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe

REMARKS

NEXT

- We can use the PBH test to strengthen a statement we have already made

THEOREM:

- Whenever A has a left eigenvector w^T such that $w^T B = 0$, the corresponding eigenvalue of A , λ , is invariant to state feedback.
- That is λ is an eigenvalue of $(A - BK)$.

PROOF:

$$\begin{aligned} w^T(A - BK) &= w^T A - w^T BK \\ &= w^T A - 0 \\ &= \lambda w^T \end{aligned}$$

- And we see that λ is an eigenvalue of the controlled system matrix for all feedback gain matrices K .

PBH and Observer Pole Placement

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- A similar results holds for observer design

THEOREM:

- Whenever A has a right eigenvector v such that $Cv = 0$, the corresponding eigenvalue of A , λ , is an eigenvalue of $(A + LC)$.

PROOF:

$$\begin{aligned}(A + LC)v &= Av + LCv \\ &= Av - 0 \\ &= \lambda v\end{aligned}$$

- And we see that λ is an eigenvalue of the observer error dynamics for all observer gain matrices L
- We cannot control the error dynamics of unobservable states
- The best we can hope for is detectability

Controllability Gramian

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Controllability revisited

$$\begin{aligned} x(t_1) - e^{At_1}x(0) &= \int_0^{t_1} e^{A(t_1-\sigma)} Bu(\sigma) d\sigma \\ \tilde{x} &= \int_0^{t_1} e^{A(t_1-\sigma)} Bu(\sigma) d\sigma \\ \tilde{x} &= \int_0^{t_1} R(\sigma)u(\sigma) d\sigma = L(u) \end{aligned}$$

- For the range of the linear operator L to be \mathbb{R}^n the columns of $R(\sigma)$ (not square!) must be linearly independent ($N(R) = 0$) for $\sigma \in [0, t_1]$
- We form the Gramian of R (DeRusso, 3.2), and require that it be positive definite

Controllability Gramian

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Controllability Gramian

$$\begin{aligned} W_C(t_1) &= \int_0^{t_1} R(\sigma) R^T(\sigma) d\sigma \\ &= \int_0^{t_1} e^{A(t_1-\sigma)} B B^T e^{A^T(t_1-\sigma)} d\sigma \end{aligned}$$

■ For controllability we require

$$\dot{W}_C(t) = W_C A^T + A W_C + B B^T$$

$$W_C(0) = 0$$

$$W_C(t_1) > 0$$

Controllability Gramian

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ We can rewrite the integral

$$\begin{aligned} W_C(t_1) &= \int_0^{t_1} e^{A(t_1-\sigma)} B B^T e^{A^T(t_1-\sigma)} d\sigma \\ &= - \int_{t_1}^0 e^{A\tau} B B^T e^{A^T\tau} d\tau \\ &= \int_0^{t_1} e^{A\tau} B B^T e^{A^T\tau} d\tau \end{aligned}$$

■ THEOREM: (A, B) is completely controllable iff there exists $t_1 < \infty$ such that

$$\begin{aligned} W_C(t_1) &= \int_0^{t_1} e^{A\tau} B B^T e^{A^T\tau} d\tau > 0 \\ \dot{W}_C(t) &= W_C A^T + A W_C + B B^T \\ W_C(0) &= 0 \end{aligned}$$

Controllability Gramian

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

REMARK:

■ The u that gets us to \tilde{x} is

$$u(t) = B^T e^{A^T(t_1-t)} W_C^{-1}(t_1) \tilde{x}$$

■ This is impractical to calculate, but does just nicely for proofs!

$$\begin{aligned}\tilde{x} &= \int_0^{t_1} e^{A(t_1-\sigma)} B u(\sigma) d\sigma \\ &= \int_0^{t_1} e^{A(t_1-\sigma)} B B^T e^{A^T(t_1-\sigma)} d\sigma W_C^{-1}(t_1) \tilde{x} \\ &= W_C(t_1) W_C^{-1}(t_1) \tilde{x} \\ &= \tilde{x}\end{aligned}$$

Observability Gramian

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Observability revisited

$$\begin{aligned} y(t) &= Cx(t) \\ &= Ce^{At}x_0 \end{aligned}$$

- For the a unique solution of x_0 over the interval $t \in [0, t_1]$, the columns of Ce^{At} (not square!) must be linearly independent.
- Again, we form a Gramian, and require that it be positive definite

Observability Gramian

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Observability Gramian

$$W_O(t) = \int_0^t e^{A^T \tau} C^T C e^{A \tau} d\tau$$

■ THEOREM: (A, C) is completely observable iff there exists $t_1 < \infty$ such that

$$W_O(t_1) = \int_0^{t_1} e^{A^T \tau} C^T C e^{A \tau} d\tau > 0$$

■ NOTE: Sometimes this is proved using the adjoint system (Szidarovsky & Bahill, 6.11)

$$\begin{aligned}\dot{z} &= -A^T z + C^T v \\ w &= B^T z\end{aligned}$$

Lyapunov Stability and Gramians

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- The controllability and observability gramians are symmetric matrices that can be positive definite.
- They can behave as quadratic forms
- Which makes them targets for use as Lyapunov functions!

Lyapunov Stability and Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Define

$$X = W_C(\infty) = \int_0^{\infty} e^{A\sigma} BB^T e^{A^T\sigma} d\sigma$$

THEOREM:

- X exists iff the controllable modes are asymptotically stable
- If X exists, then $X > 0$ iff (A, B) is controllable
- If X exists it satisfies

$$0 = XA^T + AX + BB^T$$

(Skelton et al., 3.3.1)

- Use this result in a Lyapunov context

Lyapunov Stability and Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

- Choose the following Lyapunov function

$$V(x(t)) = x^T(t)X^{-1}x(t)$$

- Note that X satisfies

$$0 = XA^T + AX + BB^T$$

- Or

$$XA^T + AX = -BB^T < 0$$

- $V(x) > 0$. We need to calculate its time derivative and show $\dot{V}(x) \leq 0$ and $\dot{V}(x) = 0$ implies $x = 0$ to obtain the stability result we desire.

Lyapunov Stability and Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

$$\begin{aligned}\dot{V}(x(t)) &= \dot{x}^T(t)X^{-1}x(t) + x^T(t)X^{-1}\dot{x}(t) \\ &= x^T(t)A^T X^{-1}x(t) + x^T(t)X^{-1}Ax(t) \\ &= x^T(t)(X^{-1}X)A^T X^{-1}x(t) + x^T(t)X^{-1}A(XX^{-1})x(t) \\ &= x^T(t)X^{-1}[XA^T + AX]X^{-1}x(t) \\ &= x^T(t)X^{-1}[-BB^T]X^{-1}x(t) \\ &= -x^T(t)X^{-1}BB^TX^{-1}x(t) \\ &< 0\end{aligned}$$

- Which is the result we desire!
- We can now state a theorem

Lyapunov Stability and Controllability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

THEOREM: The following are equivalent: (Skelton et al., 3.5.1)

- (i) The system $\dot{x} = Ax$ is asymptotically stable i.s.L
- (ii) The eigenvalues of A lie in the open left half plane
- (iii) If (A, B) is a controllable pair, then there exists $X > 0$ satisfying

$$0 = XA^T + AX + BB^T$$

- (iv) If (A, B) is stabilizable, then there exists $X \geq 0$ satisfying

$$0 = XA^T + AX + BB^T$$

- With $B = I$ we recover our previous Lyapunov result: $\dot{x} = Ax$ is asymptotically stable if there exists $X > 0$ such that

$$0 < XA^T + AX$$

- A similar results holds for observability

Lyapunov Stability and Observability

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

■ Define

$$P = W_O(\infty) = \int_0^{\infty} e^{A^T \sigma} C^T C e^{A \sigma} d\sigma$$

THEOREM: The following are equivalent: (Skelton et al., 3.5.1)

- (i) The system $\dot{x} = Ax$ is asymptotically stable i.s.L
- (ii) The eigenvalues of A lie in the open left half plane
- (iii) If (A, C) is an observable pair, then there exists $P > 0$ satisfying

$$0 = PA + A^T P + C^T C$$

Remarks

TODAY
Distinct Eigenvalues
Toy Problem
Unobservable States
Repeated Eigenvalues
Uncontrollable States
Repeated Eigenvalues
Diagonal Form
PBH Test-Control
Toy Problem
PBH Test-Observe
PBH-Pole Placement
Gramian-Control
Gramian-Observe
Lyapunov-Gramian
Lyapunov-Control
Lyapunov-Observe

REMARKS

NEXT

- The controllability and observability gramians are rarely used for LTI
- The controllability and observability test matrices are most popular!
- However, the PBH test can sometimes be quite slick!
- The link to Lyapunov stability analysis is provided to give you an introduction to the concept of matrix equalities and inequalities.
- We may build on this at the end of the course if we have time to look at LMI approaches to robust control

NEXT

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

NEXT:

- ◆ (Done) Lyapunov stability
- ◆ (Done) Controller and Observer Canonical Forms, & Minimal Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
- ◆ (Done) Kalman's Canonical Decomposition (DeRusso, 4.3, 6.8; Belanger, 3.7.4, Furuta et al. 2.2.1-2.2.3)
- ◆ (Some) Full state feedback & Observers (DeRusso, Chap 7; Belanger, Chap 7, How)
- ◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4, How)
- ◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4, How)
- ◆ Robustness & Performance Limitations (Various)