
1 / 40

16.31 Fall 2005

Lecture Presentation Mon 31-Oct-05 ver 1.1

Charles P. Coleman

October 31, 2005



TODAY

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

2 / 40

■ TODAY:

◆ Controllability Tests
◆ Observability Tests

■ LEARNING OUTCOMES:

◆ Perform controllability tests
◆ Perform observability tests

■ References:
◆ Bélanger (1995), Control Engineering, 3.5, 3.6

◆ DeRusso et al.(1998), State Variables for Engineers, 4.3

◆ Fairman(1998), Linear Control Theory, 2.2, 2.5.3, 3.3, 4.7.2

◆ Furuta et al. (1988), State Variable Methods in Automatic Control, 2.1

◆ Morris (2001), Introduction to Feedback Control, 2.2

◆ Skelton et al. (1997), A Unified Algebraic Approach to Linear Control Design, 3.3, 3.5

◆ Szidarovszky & Bahill (1997), Linear Systems Theory, 2nd Ed, 5.1, 6.1
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■ Warning!
■ More math and proofs!
■ You gotta see this stuff at some point in your graduate career!
■ Why not now!
■ Today’s goal is to give you more comprehensive list of

controllability and observability tests.
■ To start off, lets revisit a result stated (no proved!) in DeRusso

et al.
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■ For a system where the system matrix A has distinct eigenvalues

ẋ = Ax + Bu

y = Cx

■ Where the diagonalized transformed system x = Mq is

q̇ = Λx + B̄u

y = C̄q

with
Λ = M−1AM B̄ = M−1 C̄ = CM
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■ For the diagonalized system

q̇ = Λx + B̄u

y = C̄q

■ Complete controllability requires no zero rows of B̄

■ Complete observability requires no zero columns of C̄

■ The uncontrollable modes correspond to the zero rows of B̄

■ The unobservable modes correspond to the zero columns of C̄
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■ Toy problem:

ẋ1 = λ1x1 + u

ẋ2 = λ2x2 + u

ẋ3 = λ3x3

ẋ4 = λ4x4

y = x1 + x3

A =









λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4









B =









1
1
0
0









C =
(

1 0 1 0
)

D =
(

0
)

■ What states are controllable? What states are observable? What
is the minimal?



Unobservable States

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

7 / 40

DEFINITION:

■ A state xŌ is said to be unobservable if the zero-input solution

y(t) = CeAtxŌ = 0

for all t ≥ 0.
■ By Cayley-Hamilton the state xŌ must be orthogonal to all the

rows of C and all the rows of CAk for k = 0, · · · , n − 1.
■ That is xŌ ∈ N(MO)

y(t) = CeAt1xŌ = 0

0(n·p)×1 =











C

CA
...

CAn−1











xŌ

■ There are no unobservable states if rank(MO) = n
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■ THEOREM: The system (A,C) is unobservable iff there exists
an eigenvector v of A such that Cv = 0.

y(t) = CeAt1xŌ = 0

0(n·p)×1 =











C

CA
...

CAn−1











xŌ

xŌ(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · · + αneλntvn

y(t) = C(α1e
λ1tv1 + α2e

λ2tv2 + · · · + αneλntvn)

■ Proof? Write xŌ as a lin. combination of the eigenvectors of A.
■ For distinct eigenvalues λ, the eigenvectors v decompose the

state space R
n.
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■ If there are repeated eigenvalues, there may be several
independent eigenvectors associated with the repeated
eigenvalue.

v0
i1, v

0
i2, · · · , v0

iK

■ A linear combination of eigenvectors is also an eigenvector.

v = a1v
0
i1 + a2v

0
i2 + · · · + anv0

iK

■ Cv = 0 if

Cv = a1Cv0
i1 + a2Cv0

i2 + · · · + anCv0
iK = 0

■ or if
rank(

[

Cv0
i1 Cv0

i2 · · · Cv0
iK

]

) < K
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■ If
rank(

[

Cv0
i1 Cv0

i2 · · · Cv0
iK

]

) = K

then no eigenvector of A is orthogonal to all the rows of C.

REMARK:

■ If there are more independent eigenvectors associated with some
repeated eigenvalues than there are outputs (K > p) then

[

Cv0
i1 Cv0

i2 · · · Cv0
iK

]

has fewer rows (p) than columns (K)
■ Since the rank cannot exceed the number of rows, it meets the

condition for unobservability.
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DEFINITION:

■ A state xC̄ is said to be uncontrollable if it is orthogonal to the
zero-state response x(t) for all t > 0 and all input functions

xT
C̄

∫ t

0
eAτBu(t − τ)dτ = 0

∫ t

0
xT

C̄
eAτBu(t − τ)dτ = 0

■ For this to be true for all t > 0 and all u(·)

xT
C̄
eAτB = 0

for all t ≥ 0
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■ By Cayley-Hamilton the state xC̄ must be orthogonal to all the
columns of C and all the columns of AkB for k = 0, · · · , n − 1.

xT
C̄
eAτB = 01×m

xT
C̄

[

α0(τ)I + α1(τ)A + · · · + αn−1(τ)An−1
]

B = 0

xT
C̄

[

α0(τ)B + α1(τ)AB + · · · + αn−1(τ)An−1B
]

= 0

α0(τ)xT
C̄
B + α1(τ)xT

C̄
AB + · · · + αn−1(τ)xT

C̄
An−1B = 0

■ That is xC̄ ∈ N(MT
C )

BT eAT τxC̄ = 0m×1

0(n·m)×1 =











BT

BT A
...

BT (AT )n−1











xC̄

■ There are no uncontrollable states if rank(MC) = n



Uncontrollable States

TODAY

Distinct Eigenvalues

Toy Problem

Unobservable States

Repeated Eigenvalues

Uncontrollable States

Repeated Eigenvalues

Diagonal Form

PBH Test-Control

Toy Problem

PBH Test-Observe

PBH-Pole Placement

Gramian-Control

Gramian-Observe

Lyapunov-Gramian

Lyapunov-Control

Lyapunov-Observe

REMARKS

NEXT

13 / 40

■ THEOREM: The system (A,B) is uncontrollable iff there exists
an eigenvector w of AT such that BT w = 0.

■ THEOREM: The system (A,B) is uncontrollable iff there exists
a left eigenvector w of A such that wT B = 0.

xT
C̄
eAτB = 01×m

xT
C̄

(

B AB · · · An−1B
)

= 0 1×(n·m)

xT
C̄
(t) = α1e

λ1twT
1 + α2e

λ2twT
2 + · · · + αneλntwT

n

■ Proof? Write xT
C̄

as a linear combination of the eigenvectors w of

AT .
■ For distinct eigenvalues λ, the left eigenvectors wT decompose

the state space R
n.
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■ If there are repeated eigenvalues, there may be several
independent left eigenvectors associated with the repeated
eigenvalue.

w0
i1, w

0
i2, · · · , w0

iK

■ A linear combination of left eigenvectors is also an eigenvector.

w = a1w
0
i1 + a2w

0
i2 + · · · + anw0

iK

■ BT w = 0 if

BT w = a1B
T w0

i1 + a2B
T w0

i2 + · · · + anBT w0
iK = 0

■ or if
rank(

[

BT w0
i1 BT w0

i2 · · · BT w0
iK

]

) < K
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■ If
rank(

[

BT w0
i1 BT w0

i2 · · · BT w0
iK

]

) = K

then no left eigenvector of A is orthogonal to all the columns of
B.

REMARK:

■ If there are more independent eigenvectors associated with some
repeated eigenvalues than there are inputs (K > m) then

[

BT w0
i1 BT w0

i2 · · · BT w0
iK

]

has fewer rows (m) than columns (K)
■ Since the rank cannot exceed the number of rows, it meets the

condition for uncontrollability.
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■ We can no revisit our statement about a diagonalized system
now that we have discussed right eigenvectors v, and left
eigenvectors w

■ We know that the matrix M that diagonalizes A, where x = Mq

contains the eigenvectors of A. (Assume distinct eigenvalues)

M =
(

v1 v2 · · · vn

)

■ The rows of its inverse M−1 are the left eigenvectors of A (The
eigenvectors of AT )

M−1 =











wT
1

wT
2
...

wT
n










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■ The transformed distribution B̄ and output matrix C̄ are given by

B̄ = M−1B =











wT
1 B

wT
2 B
...

wT
n B











C̄ = CT =
(

Cv1 Cv2 · · · Cvn

)

■ We recover the conditions we stated at the beginning of the
lecture

■ We recover the conditions of the stated theorems
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■ We can combine some of the previous results into one test!

Popov-Belevitch-Hautus (PBH) TEST:

■ (A,B) is controllable iff the matrix

(

(sI − A) B
)

has rank n for all numbers s.
■ This can be considered as a corollary to the theorem that (A,B)

is completely controllable iff the matrix AT (A) has no right
(left) eigenvector that is orthogonal to the columns of B (BT ).
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PROOF:

■ Suppose that [(sI − A) B] does not have full row rank
■

■ Then there exists wT , a left eigenvector of A, such that

wT
(

(sI − A) B
)

= 0

■ which says
wT A = λwT wT B = 0

■ Then

wT MC = wT
(

B AB · · · An−1B
)

= wT
(

B λB · · · λn−1B
)

= 0

■ And the system is uncontrollable
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PROOF:

■ Suppose that the system is not controllable.
■ Then it can be transformed by a matrix T into

(

˙̄xC

˙̄xC̄

)

=

(

ĀC Ā12

0 ĀC̄

)(

x̄C

x̄C̄

)

+

(

B̄C

0

)

u

■ Let λ be an eigenvalue of ĀC̄ and choose left eigenvector wT
C̄

so

that wT
C̄
ĀC̄ = λwT

C̄

■ Define the 1 × n vector

wT =
(

0 wT
C̄

)
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PROOF:

■ Then

wT
(

(sI − Ā) B̄
)

=
(

0 wT
C̄

)

(

λI − ĀC −Ā12 B̄C

0 λI − ĀC̄ 0

)

wT
(

(sI − T−1AT ) T−1B̄
)

= 0
wT T−1

(

(sI − A)T B
)

= 0

■ T−1 is nonsingular which implies wT T−1 6= 0
■ Since T is nonsingular

wT T−1(sI − A)T = 0

becomes
wT T−1(sI − A) = 0
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PROOF:

■ Putting this together implies

wT T−1
(

(sI − A) B
)

= 0

■ Hence, if (A,B) is not controllable, the matrix

(

(sI − A) B
)

loses rank at s = λ.
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■ Toy problem:
(

(sI − A) B
)









s − λ1 0 0 0 1
0 s − λ2 0 0 1
0 0 s − λ3 0 0
0 0 0 s − λ4 0









■ Does not have full rank for all s!
■ Let s = λ3









(λ3 − λ1) 0 0 0 1
0 (λ3 − λ2) 0 0 1
0 0 0 0 0
0 0 0 (λ3 − λ4) 0









■ Column 5 is now a linear combination of columns 1 and 2!
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■ Similarly we have the following observability test!

Popov-Belevitch-Hautus (PBH) TEST:

■ (A,C) is observable iff the matrix

(

(sI − AT ) CT
)

has rank n for all numbers s.
■ Equivalently

(

(sI − A)
C

)

has rank n for all numbers s.
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■ We can use the PBH test to strengthen a statement we have
already made

THEOREM:

■ Whenever A has a left eigenvector wT such that wT B = 0, the
corresponding eigenvalue of A, λ, is invariant to state feedback.

■ That is λ is an eigenvalue of (A − BK).

PROOF:

wT (A − BK) = wT A − wT BK

= wT A − 0

= λwT

■ And we see that λ is an eigenvalue of the controlled system
matrix for all feedback gain matrices K.
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■ A similar results holds for observer design

THEOREM:

■ Whenever A has a right eigenvector v such that Cv = 0, the
corresponding eigenvalue of A, λ, is an eigenvalue of (A + LC).

PROOF:

(A + LC)v = Av + LCv

= Av − 0

= λv

■ And we see that λ is an eigenvalue of the observer error
dynamics for all observer gain matrices L

■ We cannot control the error dynamics of unobservable states
■ The best we can hope for is detectability
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■ Controllability revisited

x(t1) − eAt1x(0) =

∫ t1

0
eA(t1−σ)Bu(σ) dσ

x̃ =

∫ t1

0
eA(t1−σ)Bu(σ) dσ

x̃ =

∫ t1

0
R(σ)u(σ) dσ = L(u)

■ For the range of the linear operator L to be R
n the columns of

R(σ) (not square!) must be linearly independent (N(R) = 0) for
σ ∈ [0, t1]

■ We form the Gramian of R (DeRusso, 3.2), and require that it
be positive definite
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■ Controllability Gramian

WC(t1) =

∫ t1

0
R(σ)RT (σ) dσ

=

∫ t1

0
eA(t1−σ)BBT eAT (t1−σ) dσ

■ For controllability we require

ẆC(t) = WCAT + AWC + BBT

WC(0) = 0

WC(t1) > 0
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■ We can rewrite the integral

WC(t1) =

∫ t1

0
eA(t1−σ)BBT eAT (t1−σ) dσ

= −

∫ 0

t1

eAτBBT eAT τ dτ

=

∫ t1

0
eAτBBT eAT τ dτ

■ THEOREM: (A,B) is completely controllable iff there exists
t1 < ∞ such that

WC(t1) =

∫ t1

0
eAτBBT eAT τ dτ > 0

ẆC(t) = WCAT + AWC + BBT

WC(0) = 0
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REMARK:

■ The u that gets us to x̃ is

u(t) = BT eAT (t1−t)W−1
C (t1)x̃

■ This is impractical to calculate, but does just nicely for proofs!

x̃ =

∫ t1

0
eA(t1−σ)Bu(σ) dσ

=

∫ t1

0
eA(t1−σ)BBT eAT (t1−σ) dσW−1

C (t1)x̃

= WC(t1)W
−1
C (t1)x̃

= x̃
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■ Observability revisited

y(t) = Cx(t)

= CeAtx0

■ For the a unique solution of x0 over the interval t ∈ [0, t1], the
columns of CeAt (not square!) must be linearly independent.

■ Again, we form a Gramian, and require that it be positive definite
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■ Observability Gramian

WO(t) =

∫ t

0
eAT τCT CeAτ dτ

■ THEOREM: (A,C) is completely observable iff there exists
t1 < ∞ such that

WO(t1) =

∫ t1

0
eAT τCT CeAτ dτ > 0

■ NOTE: Sometimes this is proved using the adjoint system
(Szidarovsky & Bahill, 6.11)

ż = −AT z + CT v

w = BT z
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■ The controllability and observability gramians are symmetric
matrices that can be positive definite.

■ They can behave as quadratic forms
■ Which makes them targets for use as Lyapunov functions!
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■ Define

X = WC(∞) =

∫

∞

0
eAσBBT eAT σ dσ

THEOREM:

■ X exists iff the controllable modes are asymptotically stable
■ If X exists, then X > 0 iff (A,B) is controllable
■ If X exists it satisfies

0 = XAT + AX + BBT

(Skelton et al., 3.3.1)
■ Use this result in a Lyapunov context
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■ Choose the following Lyapunov function

V (x(t)) = xT (t)X−1x(t)

■ Note that X satisfies

0 = XAT + AX + BBT

■ Or
XAT + AX = −BBT < 0

■ V (x) > 0. We need to calculate its time derivative and show
V̇ (x) ≤ 0 and V̇ (x) = 0 implies x = 0 to obtain the stability
result we desire.
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V̇ (x(t)) = ẋT (t)X−1x(t) + xT (t)X−1ẋ(t)

= xT (t)AT X−1x(t) + xT (t)X−1Ax(t)

= xT (t)(X−1X)AT X−1x(t) + xT (t)X−1A(XX−1)x(t)

= xT (t)X−1[XAT + AX]X−1x(t)

= xT (t)X−1[−BBT ]X−1x(t)

= −xT (t)X−1BBT X−1x(t)

< 0

■ Which is the result we desire!
■ We can now state a theorem
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THEOREM: The following are equivalent: (Skelton et al., 3.5.1)

(i) The system ẋ = Ax is asymptotically stable i.s.L
(ii) The eigenvalues of A lie in the open left half plane
(iii) If (A,B) is a controllable pair, then there exists X > 0 satisfying

0 = XAT + AX + BBT

(iv) If (A,B) is stabilizable, then there exists X ≥ 0 satisfying

0 = XAT + AX + BBT

■ With B = I we recover our previous Lyapunov result: ẋ = Ax is
asymptotically stable if there exits X > 0 such that

0 < XAT + AX

■ A similar results holds for observability
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■ Define

P = WO(∞) =

∫

∞

0
eAT σCT CeAσ dσ

THEOREM: The following are equivalent: (Skelton et al., 3.5.1)

(i) The system ẋ = Ax is asymptotically stable i.s.L
(ii) The eigenvalues of A lie in the open left half plane
(iii) If (A,C) is an observable pair, then there exists P > 0 satisfying

0 = PA + AT P + CT C
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■ The controllability and observability gramiams are rarely used for
LTI

■ The controllability and observability test matrices are most
popular!

■ However, the PBH test can sometimes be quite slick!
■ The link to Lyapunov stability analysis is provided to give you an

introduction to the concept of matrix equalities and inequalities.
■ We may build on this at the end of the course if we have time to

look at LMI approaches to robust control
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■ NEXT:

◆ (Done) Lyapunov stability
◆ (Done) Controller and Observer Canonical Forms, & Minimal

Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
◆ (Done) Kalman’s Canonical Decomposition (DeRusso, 4.3,

6.8; Belanger, 3.7.4, Furuta et al. 2.2.1-2.2.3)
◆ (Some) Full state feedback & Observers (DeRusso, Chap 7;

Belanger, Chap 7, How)
◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4, How)
◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4, How)
◆ Robustness & Performance Limitations (Various)
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