
16.31 Fall 2005
Lecture Mon 17-Oct-05 ver 1.0

Charles P. Coleman

October 23, 2005

TODAY

TODAY

NEXT

Internal Stability

Stable/Unstable

Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

- TODAY:

- ◆ Stability

- TAKE AWAY:

- ◆ Definitions of stability that are accepted in the field.
 - ◆ Stability is the motivation for state feedback control!

NEXT

TODAY

NEXT

Internal Stability

Stable/Unstable

Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

■ NEXT:

- ◆ Lyapunov stability
- ◆ Kalman's Canonical Decomposition
- ◆ Controller and Observer Canonical Forms, & Minimal Realizations
- ◆ Full state feedback & Observers
- ◆ LQR (Linear Quadratic Regulator)
- ◆ Kalman Filter
- ◆ Robustness & Performance Limitations

Internal Stability - Bélanger

TODAY

NEXT

Internal Stability

Stable/Unstable
Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

DEFINITION:

An LTI system is **internally stable** if the zero-input solution $x(t)$ converges to zero, for any initial state. (Bélanger, p. 105)

$$\lim_{t \rightarrow \infty} x(t) = e^{At}x(0) \rightarrow 0$$

- What does this definition of stability preclude?

THEOREM 3.6:

An LTI system is internally stable if, and only if, all eigenvalues of A lie in the open left-half (complex) plane. (Bélanger, p. 105)

Internal Stability

TODAY

NEXT

Internal Stability

Stable/Unstable

Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

PROOF:

Internally stable implies eigenvalues in open left-half plane.

- The terms of the zero-input solution $x(t)$ are of the form $t^k e^{\lambda t}$, where λ is an eigenvalue of A . If all the eigenvalues have negative real parts, then all terms of $x(t)$ tend to zero. This shows sufficiency.

Eigenvalues not in open left-half plane implies not internally stable.

- Let one eigenvalue of A , λ , be such that $Re(\lambda) \geq 0$. Let v be an eigenvector corresponding to λ . If the initial state is v , then $x(t) = ve^{\lambda t}$. Since $Re(\lambda) \geq 0$, $x(t)$ does not tend to zero. This establishes necessity.

Stable and Unstable Subspaces

TODAY
NEXT

Internal Stability
Stable/Unstable
Spaces

$\epsilon - \delta$ Stability
Asymptotic Stability
DESIGN
NEXT

- The eigenvalues with negative real parts are the stable modes, those with real parts that are positive (or zero!) are unstable modes.
- The stable and unstable modes form subspaces, that is, the state space decomposes into invariant stable and unstable spaces.
- In fact, the state space decomposes into three subspaces: the stable manifold, the unstable manifold, and the center manifold.
- The modes with eigenvalues on the $j\omega$ axis are part of the center manifold.
- These concepts hold for nonlinear systems, too.

$\epsilon - \delta$ Stability - DeRusso, et al.

TODAY

NEXT

Internal Stability

Stable/Unstable
Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

Consider the following non-linear autonomous system:

$$\dot{x} = f(x, t) \quad f(0, t) = 0$$

DEFINITION:

The equilibrium of the above system is **stable** if, given any $\epsilon > 0$, there exists a $\delta(\epsilon, t_0) > 0$, such that $\|x_0\| < \delta$ implies $\|x(t; x_0, t_0)\| < \epsilon$ for all $t \geq t_0$. (DeRusso, et al., p. 471)

■ Is this stability definition an improvement?

DEFINITION:

The equilibrium is **unstable** if it is not stable. (DeRusso, et al., p. 471)

Asymptotic Stability - DeRusso, et al.

TODAY

NEXT

Internal Stability

Stable/Unstable
Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

Consider the following non-linear autonomous system:

$$\dot{x} = f(x, t) \quad f(0, t) = 0$$

DEFINITION:

The equilibrium of the above system is **asymptotically stable** if, in addition to the equilibrium being stable, there exists a $\delta_0(\epsilon, t_0) > 0$, such that, if $\|x_0\| < \delta_0$, the solution $\|x(t; x_0, t_0)\|$ approaches 0 as t approaches infinity. (DeRusso, et al., p. 472)

DESIGN

TODAY

NEXT

Internal Stability

Stable/Unstable
Spaces

$\epsilon - \delta$ Stability

Asymptotic Stability

DESIGN

NEXT

- Often feedback control can provide freedom in the design phase of a system.
- Control can allow greater freedom to achieve performance objectives.
- But there is always a cost!

NEXT

TODAY
NEXT
Internal Stability
Stable/Unstable
Spaces
 $\epsilon - \delta$ Stability
Asymptotic Stability
DESIGN
NEXT

- Wednesday - Lyapunov Stability
- Friday - ???