
16.31 Fall 2005
Lecture Wed 19-Oct-05 ver 1.0

Charles P. Coleman

October 19, 2005

TODAY

TODAY

Stability i.s.L.
Motivation
Intuitive Argument
Quadratic Forms
Definite Forms
Examples
Lyapunov Functions
 $\dot{V}(x)$
Lyapunov's Theorems
Example
Direct Stability Test
Example
Summary of Tests
NEXT

- TODAY:
 - ◆ More Stability!
- TAKE AWAY:
 - ◆ Introduction to the matrix Lyapunov equation and Lyapunov analysis.
 - ◆ Summary of stability tests.
- References:
 - ◆ DeRusso et al.(1998), State Variables for Engineers, 9.6-9.10
 - ◆ Szidarovszky & Bahill (1997), Linear Systems Theory, 2nd Ed, 4.1
 - ◆ Luenberger (1979), Introduction to Dynamic Systems, 9.6, 9.11

Stability in the Sense of Lyapunov

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- We are concerned about the stability of the equilibrium of the system:

$$\dot{x} = f(x, t) \quad f(0, t) = 0$$

- So far we have discussed internal stability and $\epsilon-\delta$ stability which is better known as stability in the sense of Lyapunov (i.s.L.)
- Now we would like to discuss a (direct!) test for stability using Lyapunov's second method.
- This method is very valuable and will show in much of the sequel including LQR.

Motivation for Lyapunov's Indirect Method

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- We might not want to always solve the eigenvalue problem when assessing stability.
- We might not want to perform $\epsilon - \delta$ calculations to assess stability, either.
- It might be helpful to have an “direct” method to assess stability.
- That method might have broad use

Intuitive Argument for Lyapunov's Indirect Method

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- “If the time rate of change of energy of an isolated physical system is negative for every possible state, except for a single equilibrium state, then the energy will continually decrease until it assumes its minimum value at the equilibrium state.”
- The idea behind Lyapunov’s direct method is to construct an “energy” function and show that it decreases to zero along the flow of the system until it reaches a minimum at the equilibrium. This will prove stability.
- Now let’s tighten up this argument by building up the mathematical tools we need to pull off this program.

Quadratic Forms

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- Quadratic Forms will often serve as our “energy” functions.
- Let the scalar Q be given by

$$Q = x^T A x = \langle x, A x \rangle$$

- Q is called a quadratic form in x_1, x_2, \dots, x_n .
- Without loss of generality A can be taken to be symmetric ($A = A^T$).
- For example:

$$Q = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$Q = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

Definite Quadratic Forms

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- The quadratic form $Q = \langle x, Ax \rangle$ is said to be **positive definite** if it is non-negative for all real values of x , and is zero only when $x = 0$.
- If the quadratic form $\langle x, Ax \rangle$ is positive definite, the matrix A is also said to be positive definite.

Conditions:

- A must be nonsingular and the eigenvalues of A are all positive.
- All the leading principal minors of A are positive.

$$\Delta_1 = a_{11} \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} \quad \cdots \quad \Delta_n = |A|$$

Semidefinite Quadratic Forms

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- The quadratic form $Q = \langle x, Ax \rangle$ is called **positive semidefinite** if it is non-negative. (It can be zero when $x \neq 0$).
- Similarly, a quadratic form Q can be negative definite or negative semidefinite.

Example 1

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

$$V(x) = (x_1 + x_2)^2 + x_3^2$$

$$V(x) = \langle x, Ax \rangle$$

$$V(x) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- $V(x)$ is positive semidefinite. It is positive except for $x = 0$ and $x_1 = -x_2$, and $x_3 = 0$.

Example 2

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

$$V(x) = x_1^2 + x_2^2$$

$$V(x) = \langle x, Ax \rangle$$

$$V(x) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- $V(x)$ is positive definite. It is positive except for $x = 0$ where it is zero.

Example 3

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

$$V(x) = -(x_1^2 + x_2^2 + \cdots + x_n^2)$$

$$V(x) = \langle x, Ax \rangle$$

$$V(x) = (x_1 \ x_2 \ \cdots \ x_n) \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & \cdots & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- $V(x)$ is negative definite. It is negative except for $x = 0$ where it is zero.

Lyapunov Functions

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- Let $V(x)$ be a continuous scalar function of the state x .
- $V(x)$ is semidefinite if it is continuous, and has continuous first partial derivatives, and if it has the same sign except at points which it is zero. A $V(x) \geq 0$ is **positive semidefinite**, while $V(x) \leq 0$ is **negative semidefinite**.
- $V(x)$ is definite if it is continuous, and has continuous first partial derivatives, and if it has the same sign, and is nowhere zero, except possibly at the origin. For $x \neq 0$, a $V(x) > 0$ is **positive definite**, while $V(x) < 0$ is **negative definite**.
- Quadratic forms often make good Lyapunov functions.

Time Rate of Change of $V(x)$

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- We are now interested in the time rate of change of $V(x)$.
- We will use the chain rule to relate the time rate of change $\dot{V}(x)$ to the flow of the system:

$$\dot{x} = f(x, t) \quad f(0, t) = 0$$

- Recall that the $\dot{x} = f(x, t)$ is short hand for

$$\dot{x}_1 = f_1(x, t)$$

$$\dot{x}_2 = f_2(x, t)$$

⋮

$$\dot{x}_n = f_n(x, t)$$

Time Rate of Change of $V(x)$

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

■ Calculating $\dot{V}(x)$

$$\begin{aligned}\dot{V}(x) &= \frac{\partial V}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial V}{\partial x_2} \frac{\partial x_2}{\partial t} + \cdots + \frac{\partial V}{\partial x_n} \frac{\partial x_n}{\partial t} \\ &= \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 + \cdots + \frac{\partial V}{\partial x_n} \dot{x}_n \\ &= \frac{\partial V}{\partial x_1} f_1 + \frac{\partial V}{\partial x_2} f_2 + \cdots + \frac{\partial V}{\partial x_n} f_n \\ &= \langle \nabla V, f \rangle\end{aligned}$$

- If $V(x)$ is strictly positive definite and $W = \dot{V}(x)$ is negative definite then we are assured that the equilibrium $x = 0$ is stable i.s.L.
- But let's state this more precisely.

Lyapunov's Stability Theorems

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

Lyapunov's Stability Theorem

Given the system

$$\dot{x} = f(x, t) \quad f(0, t) = 0$$

the equilibrium $x = 0$ is stable if it is possible to find a definite $V(x)$ such that $V(0) = 0$, and W is semidefinite of sign opposite to $V(x)$ or vanishes identically.

Lyapunov's Asymptotic Stability Theorem

The equilibrium $x = 0$ is asymptotically stable if it is possible to find a definite $V(x)$ such that $V(0) = 0$, and W is definite of sign opposite to $V(x)$.

Example of Lyapunov Stability Analysis

TODAY
Stability i.s.L.
Motivation
Intuitive Argument
Quadratic Forms
Definite Forms
Examples
Lyapunov Functions
 $\dot{V}(x)$
Lyapunov's Theorems
Example
Direct Stability Test
Example
Summary of Tests
NEXT

- Lyapunov analysis is useful for the study of the stability of controlled nonlinear systems, too.
- For example, the Euler equations governing the attitude dynamics of a rigid spacecraft are given by

$$\begin{aligned} I_x \dot{\omega}_x - (I_y - I_z) \omega_y \omega_z &= M_x \\ I_y \dot{\omega}_y - (I_z - I_x) \omega_x \omega_z &= M_y \\ I_z \dot{\omega}_z - (I_x - I_y) \omega_x \omega_y &= M_y \end{aligned}$$

- Assume that we would like to **stabilize** a space vehicle tumbling in orbit to the point $\omega_x = \omega_y = \omega_z = 0$ using state feedback.

Example of Lyapunov Stability Analysis

TODAY
Stability i.s.L.
Motivation
Intuitive Argument
Quadratic Forms
Definite Forms
Examples
Lyapunov Functions
 $\dot{V}(x)$
Lyapunov's Theorems
Example
Direct Stability Test
Example
Summary of Tests
NEXT

- We could apply the following control torques proportional to the angular velocities

$$\begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} = \begin{pmatrix} -k_x \omega_x \\ -k_y \omega_y \\ -k_z \omega_z \end{pmatrix}$$

- Choosing the state variables $(x_1, x_2, x_3)^T = (\omega_x, \omega_y, \omega_z)$ we can write Euler's equations as $\dot{x} = A(x)x$ where

$$A(x) = \begin{pmatrix} -\frac{k_x}{I_x} & \frac{I_y}{I_x}x_3 & -\frac{I_z}{I_x}x_3 \\ -\frac{I_x}{I_y}x_3 & -\frac{k_y}{I_y} & \frac{I_z}{I_y}x_1 \\ \frac{I_x}{I_z}x_2 & -\frac{I_y}{I_z}x_1 & -\frac{k_z}{I_z} \end{pmatrix}$$

Example of Lyapunov Stability Analysis

TODAY
Stability i.s.L.
Motivation
Intuitive Argument
Quadratic Forms
Definite Forms
Examples
Lyapunov Functions
 $\dot{V}(x)$
Lyapunov's Theorems
Example
Direct Stability Test
Example
Summary of Tests
NEXT

- Choose the Lyapunov function $V(x)$ to be the square of the norm of the total angular momentum.

$$V(x) = \langle x, Qx \rangle$$
$$Q = \begin{pmatrix} I_x^2 & 0 & 0 \\ 0 & I_y^2 & 0 \\ 0 & 0 & I_z^2 \end{pmatrix}$$

$$V(x) = I_x^2 x_1^2 + I_y^2 x_2^2 + I_z^2 x_3^2$$

- Calculate the time rate of change $W = \dot{V}(x)$

$$\begin{aligned} W &= \langle \dot{x}, Qx \rangle + \langle x, Q\dot{x} \rangle \\ &= \langle A(x)x, Qx \rangle + \langle x, QA(x)x \rangle \\ &= x^T A^T(x)Qx + x^T QA(x)x \\ W &= \langle x, [A^T(x)Q + QA(x)]x \rangle \end{aligned}$$

Example of Lyapunov Stability Analysis

TODAY
Stability i.s.L.
Motivation
Intuitive Argument
Quadratic Forms
Definite Forms
Examples
Lyapunov Functions
 $\dot{V}(x)$
Lyapunov's Theorems
Example
Direct Stability Test
Example
Summary of Tests
NEXT

- Calculate the time rate of change $W = \dot{V}(x)$

$$\begin{aligned} W &= \langle x, [A^T(x)Q + QA(x)]x \rangle \\ W &= -\langle x, Mx \rangle \\ -P &= A^T(x)Q + QA(x) \end{aligned}$$

- W is negative definite if P is positive definite. Solving this matrix equation by substituting for Q and $A(x)$ we find

$$P = \begin{pmatrix} 2k_x I_x & 0 & 0 \\ 0 & 2k_y I_y & 0 \\ 0 & 0 & 2k_z I_z \end{pmatrix}$$

- Which is positive definite as long as the feedback gains are positive. Therefore the controlled equilibrium is asymptotically stable.

Direct Lyapunov Stability Test for Linear Systems

TODAY
Stability i.s.L.
Motivation
Intuitive Argument
Quadratic Forms
Definite Forms
Examples
Lyapunov Functions
 $\dot{V}(x)$
Lyapunov's Theorems
Example
Direct Stability Test
Example
Summary of Tests
NEXT

- The previous example leads to a useful (direct) stability test for linear systems
- **THEOREM:** The equilibrium of

$$\dot{x}(t) = A(t)x(t)$$

is asymptotically stable if and only if

$$A^T Q + Q A = -P$$

has positive definite solution Q with some positive definite matrix P .

- We will see this matrix equation again when we investigate the Linear Quadratic Regulator (LQR)

Direct Lyapunov Stability Test for Linear Systems

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

PROOF:

- Assume that a positive definite solution Q exists with some positive definite matrix P
- Consider the Lyapunov function $V(x) = x^T Q x$ for the equation $\dot{x} = Ax$
- $V(x)$ is continuous and has a unique minimum at $x = 0$
- Calculate $W = \dot{V}(x(t))$

$$\begin{aligned}\dot{V}(x(t)) &= \dot{x}^T Q x + x^T Q \dot{x} = (Ax)^T Q x + x^T Q (Ax) \\ &= x^T (A^T Q + Q A) x = -x^T P x < 0\end{aligned}$$

- Therefore the equilibrium is asymptotically stable by Lyapunov's Theorem.

Direct Lyapunov Stability Test for Linear Systems

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

PROOF:

- Assume that all the eigenvalues of A are such that $Re(\lambda) < 0$
- Let P by any positive definite matrix
- $V(x)$ is continuous and has a unique minimum at $x = 0$
- Choose

$$Q = \int_0^{\infty} e^{A^T t} P e^{At} dt$$

- Show that Q is positive definite and satisfies $A^T Q + Q A = -P$

Direct Lyapunov Stability Test for Linear Systems

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

PROOF:

- Suppose that $u \neq 0$, then

$$u^T Qu = \int_0^\infty u^T e^{A^T t} P e^{At} u dt > 0$$

since e^{At} is invertible and therefore $e^{At}u \neq 0$

- Q satisfies the Lyapunov matrix equation

$$\begin{aligned} A^T Q + Q A &= \int_0^\infty A^T e^{A^T t} P e^{At} dt + \int_0^\infty e^{A^T t} P e^{At} A dt \\ &= \int_0^\infty \frac{d}{dt} \left(e^{A^T t} P e^{At} \right) dt = \left[e^{A^T t} P e^{At} \right]_0^\infty \\ &= 0 - P = -P \end{aligned}$$

since $e^{A^T \cdot 0} = e^{A \cdot 0} = I$, and both $e^{A^T t}$ and e^{At} tend to zero as $t \rightarrow \infty$

Example Application of Direct Test

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

■ Consider

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} x(t)$$

- The system is asymptotically stable ($\lambda = -1, \lambda = -2$)
- $Q = I$ or $V(x) = x_1^2 + x_2^2$ does not solve the system

$$\begin{aligned} P &= -QA - A^T Q = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 6 \end{pmatrix} \end{aligned}$$

- Because P is not positive definite

$$\Delta_1 = 0 \quad \Delta_2 = -1$$

Example Application of Direct Test

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- Now try

$$Q = \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}$$

- P is now calculated to be

$$\begin{aligned} P &= -QA - A^T Q \\ &= -\begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} - \begin{pmatrix} 0 & -2 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \end{aligned}$$

- P is positive definite
- If the system is asymptotically stable, it is always possible to find a suitable Q .
- This example shows only certain p.d. quadratic forms can serve as a Lyapunov function for a given asymptotically stable system.

Summary of Stability Tests

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

- Given the system

$$\dot{x} = Ax$$

- If $Re(\lambda) \leq 0$ for all the eigenvalues λ of A , and all the eigenvalues $Re(\lambda) = 0$ have single multiplicity, then the equilibrium is stable i.s.L.
- The stability is asymptotic if and only if $Re(\lambda) < 0$ for all λ .
- If for at least one eigenvalue of A $Re(\lambda) > 0$ then the equilibrium is unstable.
- The equilibrium of is asymptotically stable if and only if

$$A^T Q + Q A = -P$$

has positive definite solution Q with some positive definite matrix P .

NEXT

TODAY

Stability i.s.L.

Motivation

Intuitive Argument

Quadratic Forms

Definite Forms

Examples

Lyapunov Functions

$\dot{V}(x)$

Lyapunov's Theorems

Example

Direct Stability Test

Example

Summary of Tests

NEXT

■ NEXT:

- ◆ (Done) Lyapunov stability
- ◆ Kalman's Canonical Decomposition (DeRusso, 4.3 pp 200-203, 6.8; Belanger, 3.7.4)
- ◆ Controller and Observer Canonical Forms, & Minimal Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
- ◆ Full state feedback & Observers (DeRusso, Chap 7; Belanger, Chap 7)
- ◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4)
- ◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
- ◆ Robustness & Performance Limitations (Various)