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■ TODAY:

◆ More Stability!

■ TAKE AWAY:

◆ Introduction to the matrix Lyapunov equation and Lyapunov
analysis.

◆ Summary of stability tests.

■ References:

◆ DeRusso et al.(1998), State Variables for Engineers, 9.6-9.10
◆ Szidarovszky & Bahill (1997), Linear Systems Theory, 2nd

Ed, 4.1
◆ Luenberger (1979), Introduction to Dynamic Systems, 9.6,

9.11
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■ We are concerned about the stability of the equilibrium of the
system:

ẋ = f(x, t) f(0, t) = 0

■ So far we have discussed internal stability and ǫ−δ stability which
is better known as stability in the sense of Lyapunov (i.s.L.)

■ Now we would like to discuss a (direct!) test for stability using
Lyapunov’s second method.

■ This method is very valuable and will show in much of the sequel
including LQR.
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■ We might not want to always solve the eigenvalue problem when
assessing stability.

■ We might not want to perform ǫ−δ calculations to assess
stability, either.

■ It might be helpful to have an “direct” method to assess stability.
■ That method might have broad use
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■ “If the time rate of change of energy of an isolated physical
system is negative for every possible state, except for a single
equilibrium state, then the energy will continually decrease until
it assumes its minimum value at the equilibrium state.”

■ The idea behind Lyapunov’s direct method is to construct an
“energy” function and show that it decreases to zero along the
flow of the system until it reaches a minimum at the equilibrium.
This will prove stability.

■ Now let’s tighten up this argument by building up the
mathematical tools we need to pull off this program.
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■ Quadratic Forms will often serve as our “energy” functions.
■ Let the scalar Q be given by

Q = xTAx = 〈x,Ax〉

■ Q is called a quadratic form in x1, x2, . . . , xn.
■ Without loss of generality A can be taken to by symmetric

(A =AT ).
■ For example:

Q =
(

x1 x2

)

(

a11 a12

a12 a22

) (

x1

x2

)

Q = a11x
2

1
+ 2a12x1x2 + a22x

2

2
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■ The quadratic form Q = 〈x,Ax〉 is said to be positive definite

if it is non-negative for all real values of x, and is zero only when
x = 0.

■ If the quadratic form 〈x,Ax〉 is positive definite, the matrix A is
also said to be positive definite.

Conditions:

■ A must be nonsingular and the eigenvalues of A are all positive.
■ All the leading principal minors of A are positive.

∆1 = a11 ∆2 =

∣

∣

∣

∣

a11 a12

a12 a22

∣

∣

∣

∣

· · · ∆n = |A|
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■ The quadratic form Q = 〈x,Ax〉 is called positive semidefinite

if it is non-negative. (It can be zero when x 6= 0).
■ Similarly, a quadratic form Q can be negative definite or negative

semidefinite.
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V (x) = (x1 + x2)
2 + x2

3

V (x) = 〈x,Ax〉

V (x) =
(

x1 x2 x3

)





1 1 0
1 1 0
0 0 1









x1

x2

x3





■ V (x) is positive semidefinite. It is positive except for x = 0 and
x1 = −x2, and x3 = 0.
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V (x) = x2

1
+ x2

2

V (x) = 〈x,Ax〉

V (x) =
(

x1 x2

)

(

1 0
0 1

)(

x1

x2

)

■ V (x) is positive definite. It is positive except for x = 0 where it
is zero.
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V (x) = −(x1 + x2

2
+ · · · + x2

n)

V (x) = 〈x,Ax〉

V (x) =
(

x1 x2 · · · xn

)











−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

0 0 · · · −1





















x1

x2

...
xn











■ V (x) is negative definite. It is negative except for x = 0 where it
is zero.
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■ Let V (x) be a continuous scalar function of the state x.
■ V (x) is semidefinite if it is continuous, and has continuous first

partial derivatives, and if it has the same sign except at points
which it is zero. A V (x) ≥ 0 is positive semidefinite, while
V (x) ≤ 0 is negative semidefinite.

■ V (x) is definite if it is continuous, and has continuous first
partial derivatives, and if it has the same sign, and is nowhere
zero, except possibly at the origin. For x 6= 0, a V (x) > 0 is
positive definite, while V (x) < 0 is negative definite.

■ Quadratic forms often make good Lyapunov functions.
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■ We are now interested in the time rate of change of V (x).
■ We will use the chain rule to relate the time rate of change V̇ (x)

to the flow of the system:

ẋ = f(x, t) f(0, t) = 0

■ Recall that the ẋ = f(x, t) is short hand for

ẋ1 = f1(x, t)

ẋ2 = f2(x, t)
...

ẋn = fn(x, t)
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■ Calculating V̇ (x)

V̇ (x) =
∂V

∂x1

∂x1

∂t
+

∂V

∂x2

∂x2

∂t
+ · · · +

∂V

∂xn

∂xn

∂t

=
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 + · · · +
∂V

∂xn
ẋn

=
∂V

∂x1

f1 +
∂V

∂x2

f2 + · · · +
∂V

∂xn
fn

= 〈∇V, f〉

■ If V (x) is strictly positive definite and W = V̇ (x) is negative
definite then we are assured that the equilibrium x = 0 is stable
i.s.L.

■ But let’s state this more precisely.
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Lyapunov’s Stability Theorem

Given the system

ẋ = f(x, t) f(0, t) = 0

the equilibrium x = 0 is stable if it is possible to find a definite V (x)
such that V (0) = 0, and W is semidefinite of sign opposite to V (x)
or vanishes identically.

Lyapunov’s Asymptotic Stability Theorem

The equilibrium x = 0 is asymptotically stable if it is possible to find
a definite V (x) such that V (0) = 0, and W is definite of sign
opposite to V (x).
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■ Lyapunov analysis is useful for the study of the stability of
controlled nonlinear systems, too.

■ For example, the Euler equations governing the attitude
dynamics of a rigid spacecraft are given by

Ixω̇x − (Iy − Iz)ωyωz = Mx

Iyω̇y − (Iz − Ix)ωxωz = My

Izω̇z − (Ix − Iy)ωxωy = My

■ Assume that we would like to stabilize a space vehicle tumbling
in orbit to the point ωx = ωy = ωz = 0 using state feedback.
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■ We could apply the following control torques proportional to the
angular velocities





Mx

My

Mz



 =





−kxωx

−kyωy

−kzωz





■ Choosing the state variables (x1, x2, x3)
T = (ωx, ωy, ωz) we can

write Euler’s equations as ẋ = A(x)x where

A(x) =















−
kx

Ix

Iy

Ix
x3 −

Iz

Ix
x3

−
Ix

Iy
x3 −

ky

Iy

Iz

Iy
x1

Ix

Iz
x2 −

Iy

Iz
x1 −

kz

Iz














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■ Choose the Lyapunov function V (x) to be the square of the
norm of the total angular momentum.

V (x) = 〈x,Qx〉

Q =





I2
x 0 0
0 I2

y 0

0 0 I2
z





V (x) = I2

xx2

1 + I2

yx2

2 + I2

z x2

3

■ Calculate the time rate of change W = V̇ (x)

W = 〈ẋ, Qx〉 + 〈x,Qẋ〉

= 〈A(x)x,Qx〉 + 〈x,QA(x)x〉

= xT AT (x)Qx + xT QA(x)x

W =
〈

x, [AT (x)Q + QA(x)]x
〉
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■ Calculate the time rate of change W = V̇ (x)

W =
〈

x, [AT (x)Q + QA(x)]x
〉

W = −〈x,Mx〉

−P = AT (x)Q + QA(x)

■ W is negative definite if P is positive definite. Solving this
matrix equation by substituting for Q and A(x) we find

P =





2kxIx 0 0
0 2kyIy 0
0 0 2kzIz





■ Which is positive definite as long as the feedback gains are
positive. Therefore the controlled equilibrium is asymptotically
stable.
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■ The previous example leads to a useful (direct) stability test for
linear systems

■ THEOREM: The equilibrium of

ẋ(t) = A(t)x(t)

is asymptotically stable if and only if

AT Q + QA = −P

has positive definite solution Q with some positive definite
matrix P .

■ We will see this matrix equation again when we investigate the
Linear Quadratic Regulator (LQR)
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PROOF:

■ Assume that a positive definite solution Q exits with some
positive definite matrix P

■ Consider the Lyapunov function V (x) = xT Qx for the equation
ẋ = Ax

■ V (x) is continuous and has a unique minimum at x = 0
■ Calculate W = V̇ (x(t))

V̇ (x(t)) = ẋT Qx + xT Qẋ = (Ax)T Qx + xT Q(Ax)

= xT (AT Q + QA)x = −xT Px < 0

■ Therefore the equilibrium is asymptotically stable by Lyapunov’s
Theorem.
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PROOF:

■ Assume that all the eigenvalues of A are such that Re(λ) < 0
■ Let P by any positive definite matrix
■ V (x) is continuous and has a unique minimum at x = 0
■ Choose

Q =

∫

∞

0

eAT tPeAtdt

■ Show that Q is positive definite and satisfies AT Q + QA = −P
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PROOF:

■ Suppose that u 6= 0, then

uT Qu =

∫

∞

0

uT eAT tPeAtu dt > 0

since eAt is invertible and therefore eAtu 6= 0
■ Q satisfies the Lyapunov matrix equation

AT Q + QA =

∫

∞

0

AT eAT tPeAtdt +

∫

∞

0

eAT tPeAtA dt

=

∫

∞

0

d

dt

(

eAT tPeAt
)

dt =
[

eAT tPeAt
]

∞

0

= 0 − P = −P

since eAT
·0 = eA·0 = I, and both eAT t and eAt tend to zero as

t → ∞
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■ Consider

ẋ(t) =

(

0 1
−2 −3

)

x(t)

■ The system is asymptotically stable (λ = −1, λ = −2)
■ Q = I or V (x) = x2

1
+ x2

2
does not solve the system

P = −QA − AT Q =

(

0 −1
2 3

)

+

(

0 2
−1 3

)

=

(

0 1
1 6

)

■ Because P is not positive definite

∆1 = 0 ∆2 = −1
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■ Now try

Q =

(

5 1
1 1

)

■ P is now calculated to be

P = −QA − AT Q

= −

(

5 1
1 1

)(

0 1
−2 −3

)

−

(

0 −2
1 −3

)(

5 1
1 1

)

=

(

4 0
0 4

)

■ P is positive definite
■ If the system is asymptotically stable, it is always possible to find

a suitable Q.
■ This example shows only certain p.d. quadratic forms can serve

as a Lyapunov function for a given asymptotically stable system.
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■ Given the system
ẋ = Ax

■ If Re(λ) ≤ 0 for all the eigenvalues λ of A, and all the
eigenvalues Re(λ) = 0 have single multiplicity, then the
equilibrium is stable i.s.L.

■ The stability is asymptotic if and only if Re(λ) < 0 for all λ.
■ If for at least one eigenvalue of A Re(λ) > 0 then the

equilibrium is unstable.
■ The equilibrium of is asymptotically stable if and only if

AT Q + QA = −P

has positive definite solution Q with some positive definite
matrix P .
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■ NEXT:

◆ (Done) Lyapunov stability
◆ Kalman’s Canonical Decomposition (DeRusso, 4.3 pp

200-203, 6.8; Belanger, 3.7.4)
◆ Controller and Observer Canonical Forms, & Minimal

Realizations (DeRusso, Chap 6; Belanger, 3.7.6)
◆ Full state feedback & Observers (DeRusso, Chap 7;

Belanger, Chap 7)
◆ LQR (Linear Quadratic Regulator) (Belanger, 7.4)
◆ Kalman Filter (DeRusso, 8.9, Belanger 7.6.4)
◆ Robustness & Performance Limitations (Various)
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