
16.31 Fall 2005
Lecture Fri 7-Oct-05 ver 1.2

Charles P. Coleman

October 9, 2005

TODAY

TODAY

Design Issues

Satellite Design

Two Stick Cart

■ TAKE AWAY:

- ◆ Think about controllability and observability up front in the DESIGN phase.
- ◆ Don't assume that control will save you!

■ Design Examples

- ◆ Satellite
- ◆ Two Stick Cart

■ References:

- ◆ Grantham & Vincent (1993), Modern Control Systems Analysis and Design
- ◆ Szidarovszky & Bahill (1997), Linear Systems Theory, 2nd Ed

Controllability and Observability - Real Life Designs

TODAY

Design Issues

Satellite Design

Two Stick Cart

- So far we've had a lot of theoretical definitions, but what can cause unobservability or uncontrollability in a mathematical model of a real system?

Controllability and Observability - Real Life Designs

TODAY

Design Issues

Satellite Design

Two Stick Cart

- So far we've had a lot of theoretical definitions, but what can cause unobservability or uncontrollability in a mathematical model of a real system?
 1. In general, a system contains real internal variables which are not accessible to either or both control or observation.

Controllability and Observability - Real Life Designs

TODAY

Design Issues

Satellite Design

Two Stick Cart

- So far we've had a lot of theoretical definitions, but what can cause unobservability or uncontrollability in a mathematical model of a real system?
 1. In general, a system contains real internal variables which are not accessible to either or both control or observation.
 2. The relationship between states and either or both inputs and outputs may not be linearly independent.

Controllability and Observability - Real Life Designs

TODAY

Design Issues

Satellite Design

Two Stick Cart

- So far we've had a lot of theoretical definitions, but what can cause unobservability or uncontrollability in a mathematical model of a real system?
 1. In general, a system contains real internal variables which are not accessible to either or both control or observation.
 2. The relationship between states and either or both inputs and outputs may not be linearly independent.
 3. A system could have subsystems having identical dynamics.

Controllability and Observability - Real Life Designs

TODAY

Design Issues

Satellite Design

Two Stick Cart

- So far we've had a lot of theoretical definitions, but what can cause unobservability or uncontrollability in a mathematical model of a real system?
 1. In general, a system contains real internal variables which are not accessible to either or both control or observation.
 2. The relationship between states and either or both inputs and outputs may not be linearly independent.
 3. A system could have subsystems having identical dynamics.
 4. Pole-zero cancellation in the transfer function of cascaded systems.

Controllability and Observability - Real Life Designs

TODAY

Design Issues

Satellite Design

Two Stick Cart

- So far we've had a lot of theoretical definitions, but what can cause unobservability or uncontrollability in a mathematical model of a real system?
 1. In general, a system contains real internal variables which are not accessible to either or both control or observation.
 2. The relationship between states and either or both inputs and outputs may not be linearly independent.
 3. A system could have subsystems having identical dynamics.
 4. Pole-zero cancellation in the transfer function of cascaded systems.
- We should be concerned about these issues in the up front DESIGN of a controlled system!

TODAY

Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

Satellite Design

Geosynchronous Satellite

TODAY

Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

■ States

r_1 = radial position

θ_1 = angular position

r_2 = radial velocity

θ_2 = angular velocity

■ Controls

u_1 = radial thruster

u_2 = tangential thruster

■ Outputs

y_1 = radial position

y_2 = angular position

Geosynchronous Satellite

TODAY

Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

■ State Equations

$$\dot{x} = Ax + Bu$$

$$y_1 = C_1 x$$

$$y_2 = C_2 x$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3\omega^2 & 0 & 0 & 2\omega \\ 0 & 0 & 0 & 1 \\ 0 & -2\omega & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$C_1 = (1 \ 0 \ 0 \ 0) \quad C_2 = (0 \ 0 \ 1 \ 0)$$

Geosynchronous Satellite

TODAY

Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

■ DESIGN:

- ◆ What actuators must be present for the system to be controllable?
- ◆ What sensors must be present for the states to be observable from the measured output?

■ Controls & Outputs

$$\begin{array}{ll} u_1 = \text{radial thruster} & u_2 = \text{tangential thruster} \\ y_1 = \text{radial position} & y_2 = \text{angular position} \end{array}$$

Geosynchronous Satellite

TODAY
Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

- The satellite system is completely controllable with both thrusters

$$M_C = (B \quad AB \quad A^2B \quad A^3B)$$
$$M_C = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 2\omega & -\omega^2 & 0 \\ 1 & 0 & 0 & 2\omega & -\omega^2 & 0 & 0 & 2\omega^3 \\ 0 & 0 & 0 & 1 & -2\omega & 0 & 0 & -4\omega^2 \\ 0 & 1 & -2\omega & 0 & 0 & -4\omega^2 & 2\omega^3 & 0 \end{pmatrix}$$

- M_C has rank 4
- What if the tangential thruster u_2 fails, and we are only left with the radial thruster u_1 ?

$$B_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Geosynchronous Satellite Radial Thruster Control

TODAY
Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

- The satellite system is not controllable only using the radial thruster u_1 .

$$M_C = (B_1 \quad AB_1 \quad A^2B_1 \quad A^3B_1)$$

$$M_C = \begin{pmatrix} 0 & 1 & 0 & -\omega^2 \\ 1 & 0 & -\omega^2 & 0 \\ 0 & 0 & -2\omega & 0 \\ 0 & -2\omega & 0 & 2\omega^3 \end{pmatrix}$$

- M_C has rank 3 since column 4 is a multiple of column 2.
- We can't control the system with only the radial thruster u_1 . Can we control the system only with the tangential thruster u_2 ?

$$B_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Geosynchronous Satellite Tangential Thruster Control

TODAY
Design Issues

Satellite Design

Satellite States
Satellite State Eqs
Satellite Design
Radial Control

Tangential Control
Radial Measurement
Tangential Measure
Conclusions

Two Stick Cart

- The satellite system is controllable only using the tangential thruster u_2 .

$$M_C = \begin{pmatrix} B_2 & AB_2 & A^2B_2 & A^3B_2 \end{pmatrix}$$

$$M_C = \begin{pmatrix} 0 & 0 & 2\omega & 0 \\ 0 & 2\omega & 0 & 2\omega^3 \\ 0 & 1 & 0 & -4\omega^2 \\ 1 & 0 & -4\omega^2 & 0 \end{pmatrix}$$

- M_C has rank 4.
- Maybe we should have redundancy in tangential thruster control?

Geosynchronous Satellite Radial Measurement

TODAY

Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

- Are the states of the satellite observable if we only measure its radial distance?

$$C_1 = (1 \ 0 \ 0 \ 0)$$

$$M_0 = \begin{pmatrix} C_1 \\ C_1 A \\ C_1 A^2 \\ C_1 A^3 \end{pmatrix}$$

$$M_O = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3\omega^2 & 0 & 0 & 2\omega \\ 0 & -\omega^2 & 0 & 0 \end{pmatrix}$$

- rank 3. 3rd column is zero!
- The system states are not observable solely from the measurement of the radial position of the satellite.

Geosynchronous Satellite Tangential Measure

TODAY
Design Issues

Satellite Design

Satellite States
Satellite State Eqs
Satellite Design
Radial Control
Tangential Control
Radial Measurement
Tangential Measure
Conclusions

Two Stick Cart

- Hopefully the system states are observable if we are only left with an angular position measurement.

$$C_2 = (0 \ 0 \ 1 \ 0)$$

$$M_0 = \begin{pmatrix} C_2 \\ C_2 A \\ C_2 A^2 \\ C_2 A^3 \end{pmatrix}$$

$$M_O = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -2\omega & 0 & 0 \\ -6\omega^2 & 0 & 0 & -4\omega^2 \end{pmatrix}$$

- The system states are observable solely from the measurement of the tangential position of the satellite.

Geosynchronous Satellite

TODAY

Design Issues

Satellite Design

Satellite States

Satellite State Eqs

Satellite Design

Radial Control

Tangential Control

Radial Measurement

Tangential Measure

Conclusions

Two Stick Cart

■ DESIGN Conclusions:

- ◆ We must at least have tangential thruster to control the satellite system.
- ◆ We must at least measure the angular position of the satellite to estimate the system's states.

■ Controls & Outputs

$$u_2 = \text{ tangential thruster} \quad y_2 = \text{ angular position}$$

TODAY

Design Issues

Satellite Design

Two Stick Cart

Cart Dynamics

Cart State Equations

Cart Design

NEXT WEEK

Two Stick Cart

Cart with two sticks

TODAY
Design Issues

Satellite Design

Two Stick Cart

Cart Dynamics

Cart State Equations

Cart Design

NEXT WEEK

■ System Parameters

M : cart mass

M_1 : mass of stick 1

L_1 : length of stick 1

M_2 : mass of stick 2

L_2 : length of stick 2

$$M_1 = M_2$$

■ Dynamics (linearized!)

Sum horizontal forces

$$M\dot{v} = -M_1g\theta_1 - M_2g\theta_2 + u$$

Sum torques about each pivot point

$$M_1(\dot{v} + L_1\ddot{\theta}_1) = M_1g\theta_1$$

$$M_2(\dot{v} + L_2\ddot{\theta}_2) = M_2g\theta_2$$

Eliminate \dot{v} from the equations

Cart with two sticks

TODAY

Design Issues

Satellite Design

Two Stick Cart

Cart Dynamics

Cart State Equations

Cart Design

NEXT WEEK

■ States

$$\begin{array}{ll} x_1 = \theta_1 & x_3 = \dot{\theta}_1 \\ x_2 = \theta_2 & x_4 = \dot{\theta}_2 \end{array}$$

■ State Equations

$$\dot{x} = Ax + Bu$$

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & a_2 & 0 & 0 \\ a_3 & a_4 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 \\ 0 \\ -c \\ -d \end{pmatrix}$$

$$\begin{array}{lll} a_1 = \frac{(M + M_2)g}{ML_1} & a_2 = \frac{M_2g}{ML_1} & c = \frac{1}{ML_1} \\ a_3 = \frac{M_2g}{ML_2} & a_4 = \frac{(M + M_2)g}{ML_2} & d = \frac{1}{ML_2} \end{array}$$

Cart System Design

TODAY
Design Issues

Satellite Design

Two Stick Cart

Cart Dynamics

Cart State Equations

Cart Design

NEXT WEEK

- DESIGN: What restrictions must we place on the system for it to be controllable?
- M_C must have rank 4.

$$M_C = \begin{pmatrix} B & AB & A^2B & A^3B \end{pmatrix}$$

$$M_C = \begin{pmatrix} 0 & -c & 0 & -(a_1c + a_2d) \\ 0 & -d & 0 & -(a_3c + a_4d) \\ -c & 0 & -(a_1c + a_2d) & 0 \\ -d & 0 & -(a_3c + a_4d) & 0 \end{pmatrix}$$

- M_C will have rank less than 4 if

$$\begin{aligned} \alpha \begin{pmatrix} c \\ d \end{pmatrix} &= \begin{pmatrix} (a_1c + a_2d) \\ (a_3c + a_4d) \end{pmatrix} \\ c(a_3c + a_4d) &= d(a_1c + a_2d) \end{aligned}$$

Cart System Design

TODAY
Design Issues

Satellite Design

Two Stick Cart

Cart Dynamics

Cart State Equations

Cart Design

NEXT WEEK

- M_C will have rank less than 4 if

$$c(a_3c + a_4d) = d(a_1c + a_2d)$$

$$\begin{aligned} \frac{1}{ML_1} \left(\frac{M_2g}{ML_2} \frac{1}{ML_1} + \frac{(M+M_2)g}{ML_2} \frac{1}{ML_2} \right) \\ = \\ \frac{1}{ML_2} \left(\frac{M_2g}{ML_1} \frac{1}{ML_2} + \frac{(M+M_2)g}{ML_1} \frac{1}{ML_1} \right) \end{aligned}$$

- If $L_1 = L_2$ the cart system is uncontrollable.
- This is an example of two subsystems having the same dynamics.
- Fix this in the DESIGN, 'cause control can't help you out!
Unless?...

NEXT WEEK

- Monday - Columbus Day
- Wednesday - Quiz Review with Dr Paduano
- Friday - Quiz 1

TODAY

Design Issues

Satellite Design

Two Stick Cart

Cart Dynamics

Cart State Equations

Cart Design

NEXT WEEK