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(a) The first plot shows that there is a very slow, lightly damped eigenvalue that
dominates in the nz response. This is called the phugoid mode. Initially reacts in
the ‘short period’, or fast eigenvalue, oscillating around a final value of ~ 6
degrees for about 2 seconds before settling down. However, after this there is an
even stronger influence of the phugoid in the response.
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{(b) The second plot shows the effect of feedback with the eigenvalues chosen at

[-3+2j, -3+2j, -0.5, -0.5].

Note that although the oscillations are gone, the command response is not good.
In fact we have not really even specified our desires for command response, so

this is understandable!



(b) continued: State and input responses:
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K= [-0.2505 0.2092 0.4446 -0.4103]

Note that we seem to be commanding —u ! This is consistent with the idea that
elevator input eventually drives the system to a new trim velocity.

(c) Estimator Equation: $=A%+Bu+ K(y-Cx)

K matrix (see Matlab file): | 126.98
36979
-76.625

-58.939 ]

(d)

See At, Bt, Ct, and Dt matrix equations in attached m-file to see how all the
matrices combine into an overall system description. The time history is shown on
the next page.
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Errors in the state estimates generate large errors in that propagate through the transient
response. All states estimates converge to the actual values quickly except for u, whose
estimate takes somewhat longer to die out.
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% use first or second control input;

first or second measurement

nu=1;
ny=1;
% (a) System Matrices states are (g u alpha theta)
A = [-0.8 -0.0344 -12 0
0 -0.014 -0.2904 -0.562
1 -0.0057 -1.5 0
1 0 0 0 1;
B = [-19 -2.5
-0.0115 -0.0087
-0.16 -0.6
0 0 I
c =120 0 -1 1
0 0 0.733 0 1;
D=1[20 0
0.0768 .1134 1];
sys=ss({A,B(:,nu),C,D(:,nu));
T = [0:.01:200]1";
U = [zeros(1l,100),-.1l*ones(1,19901)]"';
v = lsim(sys,U,T,zeros(4,1));
figure(l)

subplot (211)
plot(T,y(:,1
xlabel('time
ylabel(’'nz
subplot (212)

))
, t

(sec) ')
(ft/sec/sec) ')

plot(T,180/pi*y(:,2))

xlabel ('time

vlabel { ' \gamma

% (b) Pick input and output; convert to control canonical form

% (Full state feedback does not need Cc, but we'll make it anyway,
'temporary')

B=B(:,nu) ;

Ct=C(ny, :);

D=0;

. C

(sec) ')
(deg) ')

[num, den]=ss2tf(A,B,Ct,D);

Ac=[ 0 1 0
001
0 00

-den(5)

e

-den (4)

-den(3)

-den(2)];

Ct isv
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Bc=[0;0;0;11;
Cc=[num(5) num(4) num(3) num(2)];

Dc=0;

% (b) cont'd Determine Gains

% let K = [k4 k3 k2 k1]

% u = -Kx ==> Acl = A-BK ==> A - [ 0;0;0;k4 k3 k2 k1]

% so characteristic egquation is s74 + (den{(2)+kl)*s”3 + (den(3)+k2)*s"2 ¢«
+ {(den(4)+k3)*s + den{5)+k4

%

% Choose eigenvalue locations and build up desired characteristic equation

i=sqgrt(-1);

des_eigs [-3+2*1, -3-2*i, -0.5, -0.5];
des_chic poly(des_eigs);

Kec = des_chic{(2:5)-den(2:5);

Kc = Kc(4:-1:1);

eig(Ac-Bc*Kc); % Check answers

1

% {b) cont'd Need to translate gains back to original states!
% xnew = T*xold
% so K*xnew = K*T*xold; Need to find T!!!! where T*A*Tinv = AcC

al = den(2); a2=den(3); a3=den(4);

Mcc=[1 0 0 0
al 1 0 0
az al 1 0
a3 a2 al 1 7];
Mcc=[{A"3*B A"2*B A*B B]*Mcc;
Ac - inv(Mce) *A*Mcc; % Check that the transformation works
% This implies that T=inv(Mcc)

K = Kc*inv (Mcc) ;
eig (A-B*K)

sys=ss{A-B*K,B,C,D);

T = [0:.01:20]";

U = [zeros(1l,100),-.1*ones(1,1901)]"';
[y,t,x] = lsim(sys,U,T,zeros{4,1));

figure(2)

subplot (211)
plot{T,v{:.1}))

xlabel {'time, t (sec)')
vlabel ({'nz (ft/sec/sec)')
subplot (212)

plot (T, 180/pi*y(:,2))
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xlabel({'time, t (sec)')
ylabel ('\gamma (deg)"')

u = (-K*x')'+ U;
figure(3)

subplot (211)

plot(t,x)

xlabel ('time, t (sec)')
yvlabel ('states')
legend('g', 'u', ‘\alpha', 'theta')
subplot (212)
plot{t,180/pi*u)

xlabel ('time, t (sec)')
yvlabel ('\delta_e (deg)')

e o T PP P R ey ke
%
% (c) Now, can we estimate x based on the measurements?
% xhat_dot = A*xhat + B*u + Ke*(y-C¥*xhat)
% Convert to observer form immediately
G &y
Moc = [ a3 a2 al 1

az al 1 0

al 10 0

1 00 0 71;

Moc = Moc*[C; C*A; C*A"2; C*A"3];
Ao = Moc*A*inv(Moc) ;
Co = [00 0 1];

% Choose eigenvalues of observer and find observer gain matrix

des_oeigs = [-5 -5 -5 -5];
des_ochic = poly(des_oeigs) ;

Ko des_ochic(2:5)-den{2:5) ;

Ko = Ko(4:-1:1)"';

eig(Ao-Ko*Co) ; % Check answer

il

% Convert back to original state space form

%
Ke = inv(Moc) *Ko;
eig(A-Ke*C) ; % Check

% {d) FINALLY:: Build up entire system and simulate

At = [ A -B*K
Ke*C A-B*K-Ke*C 1:;
Bt = [ B ; B 1;
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Ct = | C 00 0 0];

Dt = 0;

eig(At)

sys=ss (At,Bt,Ct,Dt) ;
[yt,t,x] = lsim(sys,U,T,[0 0 0 0 0.5 10 0.1 0.1]1"');

figure(4)

subplot (411)

plot(t,x(:,1),t, x{(:,5),"':")
yvlabel ('qg and ghat')

subplot (412)

plot(t,x(:,2),t, x(:,6),':")
yvlabel ('u and uhat')

subplot (413)

plot{t,x{:,3)Y,t, =x(:,7),":")
vlabel ('\alpha and \alpha hat')
subplot (414)

plot(t,x(:,4),t, x(:,8),':")
vlabel ('\theta and \theta hat')
xlabel('time, t (sec)')
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