Topic #13

16.31 Feedback Control

State-Space Systems
Full-state Feedback Control
How do we change the poles of the state-space system?
Or, even if we can change the pole locations.
Where do we change the pole locations to?

How well does this approach work?
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Full-state Feedback Controller

e Assume that the single-input system dynamics are given by

r = Ax + Bu
y = Cx
so that D = 0.

— The multi-actuator case is quite a bit more complicated as we
would have many extra degrees of freedom.

e Recall that the system poles are given by the eigenvalues of A.

— Want to use the input u(t) to modify the eigenvalues of A to
change the system dynamics.

e Assume a full-state feedback of the form:
u=r— Kz
where r is some reference input and the gain K is R'*"

— If » = 0, we call this controller a regulator

e F'ind the closed-loop dynamics:

t = Avx+ B(r — Kx)
= (A— BK)xz + Br
= A,z + Br

y = Cx
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e Objective: Pick K so that A, has the desired properties, e.g.,
— A unstable, want A, stable

— Put 2 poles at —2 + 29

e Note that there are n parameters in K and n eigenvalues in A, so
it looks promising, but what can we achieve?

e Example #1: Consider:

|11 n 1
T = | 9 T 0 U
— Then

det(sI —A)=(s—1)(s—2)—1=5"—35s+1=0

so the system is unstable.

— Define u = — [kl kg}x:—K:I:, then

Ay =A-BK = “ ;]—[é] [k ko] = [1_’“1 1_k2]

— So then we have that
det(s[ — Ad) — 5 + (kl — 3)5 + (1 — 2k + k’g) =0

— Thus, by choosing ki and ks, we can put \;(Ay) anywhere in
the complex plane (assuming complex conjugate pairs of poles).
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e Toput the polesat s = —5, —6, compare the desired characteristic
equation
(5+5)(s+6)=5"+11s +30 =0

with the closed-loop one
82—|—(k‘1—3)£}3—|—(1—2k1—|—]€2):0

to conclude that
ki —3=11 ki1 = 14
1 — 2k + ko = 30 ko = 57

so that K = [ 14 57 ], which is called Pole Placement.

e Of course, it is not always this easy, as the issue of controllability
must be addressed.

e Example #2: Consider this system:

i~y |o o]

with the same control approach

B (1] Ju 1=k 1k
Acl_A—BK_[()Q] [O][k1 kg]_[ ) ) ]

so that
det(sl — Ay)=(s—1+k1)(s—2)=0

So the feedback control can modify the pole at s = 1, but it cannot
move the pole at s = 2.

e The system cannot be stabilized with full-state feed-
back control.



Fall 2001 16.31 13-4

e What is the reason for this problem?

— It is associated with loss of controllability of the e* mode.

e Consider the basic controllability test:

m=8las]-[ [3]1]53] o] ]

So that rank M, =1 < 2.

e Consider the modal test to develop a little more insight:

A= [(1) ;] decompose as AV =VA = A=V"'1AV

where
110 |11 4 |1 -1
=los) Veled) viele ]
Convert

2=V "1lg
—

= Ax + Bu s=MAz+V 'Bu

where z = [ 21 29 ]T. But:

cu-[3 A2

so that the dynamics in modal form are:
z = LU z+ !
o2 0]"

e With this zero in the modal B-matrix, can easily see that the mode
associated with the zo state is uncontrollable.

— Must assume that the pair (A, B) are controllable.
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Ackermann’s Formula

e The previous outlined a design procedure and showed how to do it
by hand for second-order systems.

— Extends to higher order (controllable) systems, but tedious.

e Ackermann’s Formula gives us a method of doing this entire
design process is one easy step.

K=[0...01]M '®44)
where

~M.=[B AB ... A"'B]
— ®y4(s) is the characteristic equation for the closed-loop poles,
which we then evaluate for s = A.

— It is explicit that the system must be controllable because
we are inverting the controllability matrix.

o Revisit example # 1: $y(s) = 5% + 115 + 30

st =[] s s] =L
w= o] (1] ufia] o

= [0 1] ([ﬁ éﬂ) = [ 14 57]

e Automated in Matlab: place.m & acker.m (see polyvalm.m too)
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e Where did this formula come from?

e For simplicity, consider a third-order system (case #2), but this
extends to any order.

—a1 —ag —das 1
A= 1 0 0 B=|0| C=[b b by]
0 1 0 0

— See key benefit of using control canonical state-space model

— This form is useful because the characteristic equation for the
system is obvious = det(s] — A) = s® + a15° + azs + a3 = 0

e (Can show that

—a1 —ay —as 1
Ay=A-BK = 10 0| =0k ke ksl
0 1 0 0
i —a1 — kl —a9 — kz —as — ]{3
= 1 0 0
0 1 0

so that the characteristic equation for the system is still obvious:

Pu(s) = det(sl — Ay)
= 574 (a1 + ky)s* 4 (ag + ko)s + (a3 + k3) = 0
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e We then compare this with the desired characteristic equation de-
veloped from the desired closed-loop pole locations:

Dy(s) = 8% + (a1)s” + (a2)s + (az) = 0
to get that

CL1‘|‘]€1:()41 lﬁ:()dl—al

an—l—kn:an kn:an_an

e To get the specifics of the Ackermann formula, we then:

— Take an arbitrary A, B and transform it to the control canonical
form (x ~ z =T 1x)

— Solve for the gains K using the formulas above for the state z

(u=Kz)
— Then switch back to gains needed for the state x, so that
K=KT!
(u=Kz=Kz)

e Pole placement is a very powerful tool and we will be using it for
most of this course.



