
Topic #13

16.31 Feedback Control

State-Space Systems

• Full-state Feedback Control

• How do we change the poles of the state-space system?

• Or, even if we can change the pole locations.

• Where do we change the pole locations to?

• How well does this approach work?
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Full-state Feedback Controller

• Assume that the single-input system dynamics are given by

ẋ = Ax +Bu

y = Cx

so that D = 0.

– The multi-actuator case is quite a bit more complicated as we

would have many extra degrees of freedom.

• Recall that the system poles are given by the eigenvalues of A.

– Want to use the input u(t) to modify the eigenvalues of A to

change the system dynamics.

• Assume a full-state feedback of the form:

u = r − Kx

where r is some reference input and the gain K is R1×n

– If r = 0, we call this controller a regulator

• Find the closed-loop dynamics:

ẋ = Ax +B(r − Kx)

= (A − BK)x +Br

= Aclx +Br

y = Cx
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• Objective: Pick K so that Acl has the desired properties, e.g.,

– A unstable, want Acl stable

– Put 2 poles at −2± 2j

• Note that there are n parameters in K and n eigenvalues in A, so

it looks promising, but what can we achieve?

• Example #1: Consider:

ẋ =

[
1 1

1 2

]
x +

[
1

0

]
u

– Then

det(sI − A) = (s − 1)(s − 2)− 1 = s2 − 3s + 1 = 0

so the system is unstable.

– Define u = − [ k1 k2

]
x = −Kx, then

Acl = A−BK =

[
1 1

1 2

]
−
[
1

0

] [
k1 k2

]
=

[
1− k1 1− k2

1 2

]

– So then we have that

det(sI − Acl) = s2 + (k1 − 3)s + (1− 2k1 + k2) = 0

– Thus, by choosing k1 and k2, we can put λi(Acl) anywhere in

the complex plane (assuming complex conjugate pairs of poles).
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• To put the poles at s = −5, −6, compare the desired characteristic

equation

(s + 5)(s + 6) = s2 + 11s + 30 = 0

with the closed-loop one

s2 + (k1 − 3)x + (1− 2k1 + k2) = 0

to conclude that

k1 − 3 = 11

1− 2k1 + k2 = 30

}
k1 = 14

k2 = 57

so that K =
[
14 57

]
, which is called Pole Placement.

• Of course, it is not always this easy, as the issue of controllability

must be addressed.

• Example #2: Consider this system:

ẋ =

[
1 1

0 2

]
x +

[
1

0

]
u

with the same control approach

Acl = A − BK =

[
1 1

0 2

]
−
[
1

0

] [
k1 k2

]
=

[
1− k1 1− k2

0 2

]
so that

det(sI − Acl) = (s − 1 + k1)(s − 2) = 0

So the feedback control can modify the pole at s = 1, but it cannot

move the pole at s = 2.

• The system cannot be stabilized with full-state feed-

back control.
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• What is the reason for this problem?

– It is associated with loss of controllability of the e2t mode.

• Consider the basic controllability test:

Mc =
[

B AB
]
=

[ [
1

0

] [
1 1

0 2

] [
1

0

] ]
So that rank Mc = 1 < 2.

• Consider the modal test to develop a little more insight:

A =

[
1 1

0 2

]
, decompose as AV = V Λ ⇒ Λ = V −1AV

where

Λ =

[
1 0

0 2

]
V =

[
1 1

0 1

]
V −1 =

[
1 −1
0 1

]
Convert

ẋ = Ax + Bu
z=V −1x−→ ż = Λz + V −1Bu

where z =
[

z1 z2

]T
. But:

V −1B =

[
1 −1
0 1

] [
1

0

]
=

[
1

0

]
so that the dynamics in modal form are:

ż =

[
1 0

0 2

]
z +

[
1

0

]
u

• With this zero in the modal B-matrix, can easily see that the mode

associated with the z2 state is uncontrollable.

– Must assume that the pair (A, B) are controllable.
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Ackermann’s Formula

• The previous outlined a design procedure and showed how to do it

by hand for second-order systems.

– Extends to higher order (controllable) systems, but tedious.

• Ackermann’s Formula gives us a method of doing this entire

design process is one easy step.

K =
[
0 . . . 0 1

]M−1
c Φd(A)

where

– Mc =
[

B AB . . . An−1B
]

– Φd(s) is the characteristic equation for the closed-loop poles,

which we then evaluate for s = A.

– It is explicit that the system must be controllable because

we are inverting the controllability matrix.

• Revisit example # 1: Φd(s) = s2 + 11s+ 30

Mc =
[

B AB
]
=

[ [
1

0

] [
1 1

1 2

] [
1

0

] ]
=

[
1 1

0 1

]
So

K =
[
0 1

] [ 1 1

0 1

]−1
([

1 1

1 2

]2

+ 11

[
1 1

1 2

]
+ 30I

)

=
[
0 1

]([ 43 14

14 57

])
=
[
14 57

]

• Automated in Matlab: place.m & acker.m (see polyvalm.m too)



Fall 2001 16.31 13–6

• Where did this formula come from?

• For simplicity, consider a third-order system (case #2), but this

extends to any order.

A =


 −a1 −a2 −a3

1 0 0

0 1 0


 B =


 10
0


 C =

[
b1 b2 b3

]

– See key benefit of using control canonical state-space model

– This form is useful because the characteristic equation for the

system is obvious ⇒ det(sI − A) = s3 + a1s
2 + a2s + a3 = 0

• Can show that

Acl = A − BK =


 −a1 −a2 −a3

1 0 0

0 1 0


−


 10
0


[ k1 k2 k3

]

=


 −a1 − k1 −a2 − k2 −a3 − k3

1 0 0

0 1 0




so that the characteristic equation for the system is still obvious:

Φcl(s) = det(sI − Acl)

= s3 + (a1 + k1)s
2 + (a2 + k2)s + (a3 + k3) = 0
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• We then compare this with the desired characteristic equation de-

veloped from the desired closed-loop pole locations:

Φd(s) = s3 + (α1)s
2 + (α2)s + (α3) = 0

to get that
a1 + k1 = α1

...

an + kn = αn




k1 = α1 − a1
...

kn = αn − an

• To get the specifics of the Ackermann formula, we then:

– Take an arbitrary A, B and transform it to the control canonical

form (x ❀ z = T−1x)

– Solve for the gains K̂ using the formulas above for the state z

(u = K̂z)

– Then switch back to gains needed for the state x, so that

K = K̂T−1

(u = K̂z = Kx)

• Pole placement is a very powerful tool and we will be using it for

most of this course.


