Topic #6

16.31 Feedback Control

Control Design using Bode Plots

- Performance Issues
- Synthesis
- Lead/Lag examples
Bode's Gain-Phase Relationship

- Synthesis would be hard if we had to deal with both magnitude and phase plots, but ...

- **Theorem**: For any stable, minimum phase system, \(\angle G(j\omega) \) is uniquely related to \(|G(j\omega)| \).

- **Relationship**: On log-log plot, if slope of magnitude curve is constant over a decade of frequency, with slope \(n \), then

 \[\angle G(j\omega) \approx 90^\circ \cdot n \]

 Very Important

- So, in the cross-over frequency range \((|G_c G_p| \approx 1) \), if the slope is:

 \[S^0 \quad \text{no cross-over} \]
 \[S^{-1} \approx 90^\circ \]
 \[S^{-2} \approx 180^\circ \quad \text{too much phase as PM=0} \]

\[\Rightarrow \text{Select } G_c(s) \text{ so that LTF crosses over with a slope of -1} \]
OTHER PERFORMANCE ISSUES

- **Step Response Error** \(e_{ss} = \frac{1}{1 + G_c(0) G_p(0)} \)

 Good News: We can find \(G_c G_p(0) \) directly from the low freq bode plot (Type 0)

- For Type I systems, the low freq asymptote is infinite (slope -1)

 \(\Rightarrow \) step error of zero

 \(\Rightarrow \) velocity error (ramp input) \(e_{ss} = \frac{1}{K_v} \)

 \(\Rightarrow K_v \) is the gain of the curve at low freq

 \[K_v = \lim_{s \to 0} s \cdot G_c(s) G_p(s). \]

- For Type I systems \(G_c G_p(s) \approx \frac{K_v}{s} \)

 At low frequency

 \(\Rightarrow \) can find \(K_v \) by extending the low frequency asymptote (if necessary)

 To \(\omega = 1 \) and finding \(|G_c G_p| \) at \(\omega = 1 \)

 \[K_v = \omega \cdot |G_c G_p| \]
PERFORMANCE

- **How much phase margin?**

 The response of a 2nd order system gives:

 1) **Damping ratio of CLP poles** \(\xi = \frac{PM}{100} \), \(PM < 70^\circ \)

 2) **CLP resonant peak** \(M_r = \frac{1}{2 \sin\left(\frac{PM}{2}\right)} \)

 3) \(\omega_{BW} \approx 1.4 \omega_c \)

 CLP bandwidth \(\approx 1.4 \times \) cross over frequency.

- **Peak of TF usually close to \(\omega_c \)**

 \(\Rightarrow \) specify (ultimately) \(\omega_c \) and \(PM \)
FREQUENCY RESPONSE DESIGN

- Looked at building block \(G_c(s) = \frac{k_c(s+z)}{(s+p)} \)
 - Root locus applications

- Frequency response characteristics?
 - How use \(G_c(s) \) to modify the loop transfer function (LTF) \(G_c(s)G_p(s) \)
 - To get desired - bandwidth
 - Phase margin.
 - Error constants.

1. **Lead** \(|z| < |p| \)
 - Zero at lower frequency than pole
 - Gain increases with frequency
 - Phase positive (i.e. adds phase lead)

![Graph](image)

Plot with \(K_c = \frac{p}{z} \)
LEAD MECHANICS

- MAXIMUM PHASE ADDED

\[\sin \phi_{\text{max}} = \frac{1-\alpha}{1+\alpha} \quad \alpha = \frac{|z|}{|p|} \]

- FREQUENCY OF MAXIMUM PHASE ADDITION

\[w_{\text{max}} = \sqrt{|z| \cdot |p|} \]

- HIGH FREQUENCY GAIN INCREASE \(\frac{1}{\alpha} \)

\[\Rightarrow \text{COMPROMISE BETWEEN DESIRE FOR LARGE PHASE MARGIN (} \alpha \text{ SMALL) AND TENDENCY TO GENERATE LARGE GAINS AT HIGH FREQ.} \]

\[\Rightarrow \text{KEEP } \frac{1}{\alpha} \leq 10 \quad (|p| \leq 10|z|) \]

\[\Rightarrow \phi_{\text{max}} \leq 60^\circ \]

- USE MULTIPLE LEAD FILTERS TO GET MORE PHASE. \[G_c = k_c \left(\frac{s+z_1}{s+p_1} \right) \left(\frac{s+z_2}{s+p_2} \right) \]

- SELECTION OF \(k_c \) IS PROBLEM SPECIFIC

 - COULD ARRANGE \[|G_c(s)|_{s \to 0} = k_0 \]

 - OR SELECT \(k_c \) TO FORCE \(w_c = (w_c)_{\text{desired}} \)

- USE LEAD TO ADD PHASE \(\Rightarrow \) INCREASE PHASE MARGIN \(\Rightarrow \) IMPROVE TRANSIENT RESPONSE.
2. **LAG** \(|p| < |z| \)

- Pole at lower frequency than zero.
- \(\Rightarrow \) Gain decreases at high frequency.
- \(\Rightarrow \) Phase negative (i.e. adds lag).

\[
G_{\text{LAG}} = \frac{s/z + 1}{s/p + 1}
\]

- **LAG mechanics the same as for the lead.**
- Use **lag** to add 20 \(\log \alpha \) to low frequency gain with (hopefully) a small change to the phase margin.

\(\Rightarrow \) Plot shows gain much higher at low frequency.

\(\Rightarrow \) Keep lag dynamics typically well below the lead.
LEAD COMPENSATION: TYPICAL PROCESS

- Adding changes magnitude + phase
 ⇒ Difficult to predict new crossover frequency
 Hard to target ϕ_m at correct location.

Design approaches discussed in text.

$\phi_{req} = PM = (180 + \angle G(j\omega))$

- The process is slightly simpler if we target the lead compensator design only at the crossover frequency range.

 1) Find ϕ_{max} required ⇒ Find $\alpha = \frac{|z|}{|p|}$

 2) Put ϕ_{max} at crossover frequency
 $\omega_c^2 = |p| \cdot |z|$

 3) Select k_c so crossover is at ω_c
 ⇒ Meet bandwidth / phase margin specifications
 ⇒ No specified change in loop gain
 ⇒ Error constants.
EXAMPLE: \[G(s) = \frac{1}{s(s+1)} \] would like \[\omega_c = 10 \text{ rad/sec} \]
\[\phi_m = 40^\circ \]

At 10 rad/s, slope \(-2\) \[\Rightarrow \text{Plant phase} \approx 180^\circ \]

\[\therefore \text{need to add a lead so that} \]

slope of the loop \[G(s)G_c(s) \approx -1 \]

\[\Rightarrow \text{adding a lead also increases the phase, giving us our } \phi_m \]

1. \[\frac{Z}{P} = \frac{1 - \sin \phi_m}{1 + \sin \phi_m} \quad \Delta G(j\omega_c) = -180^\circ \]
\[\phi_m = 40^\circ \]
\[\phi_m = 40^\circ \]
\[\therefore \frac{Z}{P} = 0.22 \]

2. \[\omega_c^2 = Z \cdot P = 10^2 \quad \Rightarrow \quad Z = 4.7, \quad P = 21.4 \]

3. Pick \(K_c \) so \[|G_cG| \bigg|_{s=10j} = 1 \]
% g=1/s/(s+1)
wc=10;num=1;den=conv([1 0],[1 1]);Phim=40*pi/180;
zdps=(1-sin(Phim))/(1+sin(Phim));z=sqrt(100*zdps);p=z/zdps;
numc=[1 z];denc=[1 p];
kc=abs(polyval(conv(den,denc),j*wc)/polyval(conv(num,numc),j*wc));
f=logspace(-2,2,400);g=freqresp(num,den,f,sqrt(-1));
ge=freqresp(kc,numc,denc,f,sqrt(-1));
loglog(f,abs(g),f,abs(gc),'-',f,abs(g.*ge),':');
title('Lead Example');xlabel('Freq (rad/sec)');ylabel('Magnitude')

dbode(num,den)
LAG COMPENSATION **TYPICAL PROCESS**

- **Assumption is that we need to modify** (increase) the DC gain of the loop transfer function.

 ⇒ **If apply only a gain, then** w_c **typically increases, and the phase margin decreases.**

 This is not good ⇒ **Use lag comp** to lower high freq. gain (or increase low freq. gain).

- **Analysis simpler with** $G_{lag} = \frac{k_c (s/z + 1)}{(s/p + 1)}$

1) **Pick** $|G_{lag}|_{s=0} = k_c$ **to give the desired low frequency gain for** $L = G_{lag}(s)G_p(s)$

2) **Pick** desired gain reduction at high frequency $-20\log\left(\frac{1}{\alpha}\right)$ ($\alpha = \frac{|z|}{|p|}$)

 ⇒ Normally pick α so that w_c not changed.

3) **Heuristic:** want to limit frequency of the zero (+ pole) so that there is a minimal impact of the phase lag at $w = w_c$

 \[\Rightarrow \text{Set } Z = \frac{w_c}{10} \]
LAG DESIGN:

TWO WAYS TO GET DESIRED LOW FREQUENCY GAIN

1. **USING JUST**

 \(K_c \) **INCREASES**

 \(\omega_c \) **AND LOWERS**

 OUR PM ↔ BAD

2. **ADD LOW FREQUENCY DYNAMICS (LAG)**

 THAT INCREASE LOW FREQUENCY GAIN, LEAVING GAIN NEAR + ABOVE ORIGINAL \(\omega_c \) **UNCHANGED**

- **MANY OTHER APPROACHES EXIST**

 → **TRY TO MEET ALL SPECS WITH ONLY ONE COMPENSATOR**

 → **APPROACH I OUTLINED Splits the Problem and Makes Each Step Easier**

 → **TYPICALLY REQUIRES BOTH LEAD AND LAG TO MEET ALL SPECS.**

- **SEE BOOK/HANDBOUT #9 FOR MORE EXAMPLES + RECIPES FOR OTHER DESIGN CASES.**